Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Affiliation country
Publication year range
1.
Food Funct ; 15(1): 110-124, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38044717

ABSTRACT

Increasing evidence supports the existence of fetal-originated adult diseases. Recent research indicates that the intrauterine environment affects the fetal hypothalamic energy intake center. Inulin is a probiotic that can moderate metabolic disorders, but whether maternal inulin intervention confers long-term metabolic benefits to lipid metabolism in offspring in their adult lives and the mechanism involved are unknown. Here, we used a maternal overnutrition model that was induced by excess energy intake before and during pregnancy and lactation and maternal inulin intervention was performed during pregnancy and lactation. The hypothalamic genome methylation in offspring was analyzed using a methylation array. The results showed that maternal inulin treatment modified the maternal high-fat diet (HFD)-induced increases in body weight, adipose tissue weight, and serum insulin and leptin levels and decreases in serum adiponectin levels. Maternal inulin intervention regulated the impairments in hypothalamic leptin resistance, induced the methylation of Socs3, Npy, and Il6, and inhibited the methylation of Lepr in the hypothalamus of offspring. In conclusion, maternal inulin intervention modifies offspring lipid metabolism, and the underlying mechanism involves the methylation of genes in the hypothalamus feeding circuit.


Subject(s)
Lipid Metabolism Disorders , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Leptin , Diet, High-Fat/adverse effects , Obesity/genetics , Obesity/metabolism , Inulin/pharmacology , Inulin/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Lipid Metabolism Disorders/metabolism , Hypothalamus/metabolism , Lipids , Maternal Nutritional Physiological Phenomena
2.
Front Pharmacol ; 13: 915592, 2022.
Article in English | MEDLINE | ID: mdl-36091833

ABSTRACT

Diabetic nephropathy (DN) is a severe diabetic complication of the kidney and is the main cause of end-stage kidney disease worldwide. Cordyceps sinensis (C. sinensis) is not only a traditional Chinese medicine (TCM) but also a healthy food. In China, C. sinensis has been widely used to treat various kidney diseases. Bailing Capsule, which active ingredient is C. sinensis, is approved to treat kidney disease, respiratory disease, and immune disease. However, its underlying mechanism in DN remains unclear. The purpose of the present study was to investigate the underlying mechanism of Bailing Capsule on kidney in diabetic rats. The DN model was established by streptozotocin (STZ) injection. Low and high doses of Bailing Capsule were orally administrated for 12 weeks after diabetes induction. Renal function was evaluated by serum creatinine, blood urea nitrogen, 24-h urinary protein, and urinary albumin. Mesangial matrix expansion and renal fibrosis were measured using histopathology staining. We found that the disorder of renal function and pathology in DN rats was significantly modified by Bailing Capsule treatment. Consistently, Bailing Capsule markedly alleviated DN rat glomerulosclerosis, tubulointerstitial injury and renal fibrosis as shown by pathological staining. Moreover, Bailing Capsule significantly reduced the kidney triglyceride content and renal lipid droplet formation in DN rats. The renal transcriptome revealed that Bailing Capsule-treated kidneys had 498 upregulated genes and 448 downregulated genes. These differentially expressed genes were enriched in the peroxisome proliferator activated receptor (PPAR) pathway and fatty acid metabolism function ontology. mRNA and protein expression analyses revealed substantial enhancement of the lipolysis pathway and inhibition of lipogenesis in Bailing Capsule-treated rat kidneys compared to DN rats. Bailing Capsule activated the expression of PPARα, ACOX1 (acyl-CoA oxidase 1), and SCD (stearoyl-CoA desaturase) in diabetic nephropathy while suppressing the expression of FASN (fatty acid synthase). In conclusion, Bailing Capsule could attenuate renal triglyceride accumulation in diabetic rats by moderating PPARα pathway.

3.
Curr Res Food Sci ; 5: 1365-1378, 2022.
Article in English | MEDLINE | ID: mdl-36092021

ABSTRACT

In recent years, organic chromium (III) supplements have received increasing attentions for their low toxicity, high bioavailability and wide range of health-promoting benefits. This study aimed to investigate the preventive effects of chromium (III)-enriched yeast (YCr) on high-fat and high-fructose diet (HFHFD)-induced hyperlipidemia and hyperglycemia in mice, and further clarify its mechanism of action from the perspective of intestinal microbiomics and liver metabolomics. The results indicated that oral administration of YCr remarkably inhibited the aberrant elevations of body weight, blood glucose and lipid levels, hepatic cholesterol (TC) and triglyceride (TG) levels caused by HFHFD. Liver histological examination showed that oral YCr intervention inhibited HFHFD induced liver lipid accumulation. Besides, 16S rDNA amplicon sequencing showed that YCr intervention was beneficial to ameliorating intestinal microbiota dysbiosis by altering the proportion of some intestinal microbial phylotypes. Correlation-based network analysis indicated that the key intestinal microbial phylotypes intervened by YCr were closely related to some biochemical parameters associated with glucose and lipid metabolism. Liver metabolomics analysis revealed that dietary YCr intervention significantly regulated the levels of some biomarkers involved in purine metabolism, glycerophospholipid metabolism, citrate cycle, pyrimidine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and so on. Moreover, dietary YCr intervention regulated the mRNA levels of key genes associated with glucose, cholesterol, fatty acids and bile acids metabolism in liver. These findings suggest that dietary YCr intervention has beneficial effects on glucose and lipid metabolism by regulating intestinal microbiota and liver metabolic pathway, and thus can be served as a functional component to prevent hyperlipidemia and hyperglycemia.

4.
Int J Biol Macromol ; 219: 964-979, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35940431

ABSTRACT

Organic chromium is of great interest and has become an important chromium supplement resource in recent years because of its low toxicity and easy absorption. In our previous study, we synthesized a novel organic chromium [GLP-Cr] through the chelation of Ganoderma lucidum polysaccharide and chromium (III). The purpose of this study was to investigate the beneficial effects of GLP-Cr on the improvement of metabolic syndromes (MetS) in mice fed with a high-fat and high-fructose diet (HFHFD) and its mechanism of action. The results indicated that oral administration of GLP-Cr inhibited the excessive exaltation of body weight, glucose tolerance, fasting blood glucose and lipid levels, hepatic total cholesterol (TC), triglyceride (TG) levels caused by HFHFD. Besides, 16S rRNA amplicon sequencing showed that GLP-Cr intervention evidently ameliorated intestinal microbiota dysbiosis by changing the proportions of some intestinal microbial phylotypes. In addition, correlation network-based analysis indicated that the key intestinal microbial phylotypes were closely related to biochemical parameters associated with MetS under GLP-Cr intervention. Liver metabolomics analysis suggested that GLP-Cr intervention significantly regulated the levels of some biomarkers involved in alpha-linolenic acid metabolism, fatty acid biosynthesis, steroid hormone biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, steroid hormone biosynthesis, primary bile acid biosynthesis, and so on. Moreover, GLP-Cr intervention regulated liver mRNA levels of key genes associated with glucose and lipid metabolism. The mRNA level of glucose transporter type 4 (Glut4) was markedly increased by GLP-Cr intervention, and the mRNA levels of phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6Pase) in the liver were significantly decreased. Meanwhile, GLP-Cr intervention significantly decreased hepatic mRNA levels of cluster of differentiation 36 (Cd36), acetyl-CoA carboxylase 1 (Acc1) and sterol regulatory element binding protein-1c (Srebp-1c), indicating that GLP-Cr intervention inhibited the excessive accumulation of free fatty acids in the liver. These findings suggest that the prevention of hyperglycemia and dyslipidemia by GLP-Cr may be closely related to the regulation of gut microbial composition and hepatic metabolic pathways, thus GLP-Cr can be serving as a functional component in the prevention of MetS.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Reishi , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/pharmacology , Animals , Bile Acids and Salts/pharmacology , Biomarkers , Blood Glucose/metabolism , Cholesterol , Chromium/chemistry , Diet , Diet, High-Fat/adverse effects , Dysbiosis/drug therapy , Fatty Acids, Nonesterified , Fructose/adverse effects , Glucose/metabolism , Glucose Transporter Type 4 , Glucose-6-Phosphatase/metabolism , Glucose-6-Phosphatase/pharmacology , Glycerophospholipids , Hormones , Metabolic Syndrome/drug therapy , Metabolic Syndrome/etiology , Mice , Phosphoenolpyruvate/pharmacology , Polysaccharides/pharmacology , RNA, Messenger/metabolism , RNA, Ribosomal, 16S , Reishi/genetics , Steroids/pharmacology , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides , alpha-Linolenic Acid/pharmacology
5.
Food Funct ; 13(10): 5820-5837, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35543349

ABSTRACT

Alcoholic liver injury is mainly caused by long-term excessive alcohol consumption and has become a global public threat to human health. It is well known that Ganoderma lucidum has excellent beneficial effects on liver function and lipid metabolism. The object of this study was to investigate the hepatoprotective effects of ganoderic acid A (GAA, one of the main triterpenoids in G. lucidum) against alcohol-induced liver injury and reveal the underlying mechanisms of its protective effects. The results showed that oral administration of GAA significantly inhibited the abnormal elevation of the liver index, serum total triglyceride (TG), cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mice exposed to alcohol intake, and also significantly protected the liver against alcohol-induced excessive lipid accumulation and pathological changes. Besides, alcohol-induced oxidative stress in the liver was significantly ameliorated by the dietary intervention of GAA through decreasing the hepatic levels of lactate dehydrogenase (LDH) and malondialdehyde (MDA), and increasing hepatic activities of catalase (CAT), superoxide dismutase (SOD), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and hepatic levels of glutathione (GSH). In addition, GAA intervention evidently ameliorated intestinal microbial disorder by markedly increasing the abundance of Muribaculaceae, Prevotellaceae, Jeotgalicoccus, Bilophila, Family_XIII_UCG_001, Aerococcus, Ruminococcaceae_UCG_005, Harryflintia, Christensenellaceae, Rumonpcpccaceae, Prevotelaceae_UCG_001, Clostridiales_vadinBB60_group, Parasutterella and Bifidobacterium, but decreasing the proportion of Lactobacillus, Burkholderia_Caballeroria_Paraburkholderia, Escherichia_Shigella and Erysipelatoclostridium. Furthermore, liver metabolomics based on UPLC-QTOF/MS demonstrated that oral administration of GAA had a significant regulatory effect on the composition of liver metabolites in mice exposed to alcohol intake, especially the levels of the biomarkers involved in the metabolic pathways of riboflavin metabolism, glycine, serine and threonine metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, biosynthesis of unsaturated fatty acids, synthesis and degradation of ketone bodies, fructose and mannose metabolism. Moreover, dietary supplementation of GAA significantly regulated the hepatic mRNA levels of lipid metabolism and inflammatory response related genes. Conclusively, these findings demonstrate that GAA has beneficial effects on alleviating alcohol-induced liver injury and is expected to become a new functional food ingredient for the prevention of alcoholic liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Reishi , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Cholesterol/metabolism , Ethanol/pharmacology , Heptanoic Acids , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lipid Metabolism , Liver/metabolism , Mice , Oxidative Stress
6.
Curr Res Food Sci ; 5: 515-530, 2022.
Article in English | MEDLINE | ID: mdl-35281335

ABSTRACT

Alcoholic liver injury is mainly caused by excessive alcohol consumption and has become a global public health problem threatening human health. It is well known that Ganoderma lucidum possesses various excellent beneficial effects on liver function and lipid metabolism. The purpose of this study was to evaluate the underlying protective effect and action mechanism of ganoderic acids-rich G. lucidum ethanol extract (GLE) on alcohol-induced liver injury in mice with excessive alcohol intake. Results showed that oral administration of GLE could obviously inhibit the abnormal increases of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and also significantly protect the liver against alcohol-induced excessive hepatic lipid accumulation and pathological changes. In addition, alcohol-induced oxidative stress in liver was significantly ameliorated by the dietary intervention of GLE through reducing the hepatic levels of maleic dialdehyde (MDA) and lactate dehydrogenase (LDH), and increasing the hepatic levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and alcohol dehydrogenase (ADH). Compared with the model group, GLE intervention significantly ameliorated the intestinal microbial disorder by elevating the relative abundance of Ruminiclostridium_9, Prevotellaceae_UCG-001, Oscillibacter, [Eubacterium]_xylanophilum_group, norank_f_Clostridiates_vadinBB60_group, GCA-900066225, Bilophila, Ruminococcaceae_UCG-009, norank_f_Desulfovibrionaceae and Hydrogenoanaerobacterium, but decreasing the proportion of Clostridium_sensu_stricto_1. Furthermore, liver metabolomic profiling suggested that GLE intervention had a significant regulatory effect on the composition of liver metabolites in mice with excessive alcohol intake, especially the levels of some biomarkers involved in primary bile acid biosynthesis, riboflavin metabolism, tryptophan metabolism, biosynthesis of unsaturated fatty acids, fructose and mannose metabolism, glycolysis/gluconeogenesis. Additionally, dietary supplementation with GLE significantly regulated the mRNA levels of key genes related to fatty acids metabolism, ethanol catabolism and inflammatory response in liver. Conclusively, these findings indicate that GLE has a potentially beneficial effect on alleviating alcohol-induced liver injury and may be developed as a promising functional food ingredient.

7.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35075100

ABSTRACT

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Subject(s)
COVID-19 Drug Treatment , Coronavirus/drug effects , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Caspase 3/drug effects , Caspase 3/genetics , Coronavirus/metabolism , Coronavirus Infections/drug therapy , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/genetics , Databases, Pharmaceutical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Flavanones/chemistry , Flavanones/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Interleukin-6/genetics , Lignin/chemistry , Lignin/pharmacology , Luteolin/chemistry , Luteolin/pharmacology , Mitogen-Activated Protein Kinase 14/drug effects , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 8/drug effects , Mitogen-Activated Protein Kinase 8/genetics , Molecular Docking Simulation , NF-kappa B p50 Subunit/drug effects , NF-kappa B p50 Subunit/genetics , Naphthols/chemistry , Naphthols/pharmacology , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/genetics , Protein Interaction Maps , Quercetin/chemistry , Quercetin/pharmacology , SARS-CoV-2/metabolism , Signal Transduction , Sitosterols/chemistry , Sitosterols/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
8.
Article in English | MEDLINE | ID: mdl-34462638

ABSTRACT

Red yeast rice is a traditional Chinese medicine and food that has been purported to color food, ferment, and lower cholesterol. In order to study the antioxidative capacity of red yeast rice and the effects on electrical potential difference (EPD) of 12 acupuncture meridians, the pH value, oxidation reduction potential (ORP), ABTS, FRAP, T-SOD, and particle size distribution of red yeast rice were analyzed. 20 volunteers were recruited and randomly divided into two groups, the red yeast rice group (10 g red yeast rice and 40 g water) and control CK group (50 g water). The left 12 acupuncture meridians' EPD was real-time monitored. Samples were taken at the 10th minutes. The whole procedure continued for 70 minutes. It is shown that the pH value of the red yeast rice was 4.22, the ORP was 359.63 mV, the ABTS was 0.48 mmol Trolox, the FRAP was 0.08 mmol FeSO4, the T-SOD was 4.71 U, and the average particle size was 108 nm (7.1%) and 398.1 nm (92.9%). The results of 12 acupuncture meridians' EPD showed that the red yeast rice can significantly affect the EPD of stomach, heart, small intestine, and liver meridians.

9.
Zhongguo Zhong Yao Za Zhi ; 46(3): 703-711, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645038

ABSTRACT

Network Meta-analysis was used to compare the efficacy and safety of Chinese patent medicines in the treatment of unstable angina pectoris. PubMed, Cochrane Library, CNKI, Wanfang, VIP and other databases were retrieved by computers from the establishment of the databases to June 2020. Randomized controlled trials(RCTs) of Chinese patent medicines for the treatment of unstable angina pectoris were collected. Two investigators independently screened out the literatures, and extracted data according to the inclusion and exclusion criteria. The quality of the included RCTs was evaluated according to the bias risk assessment tool recommended by the Cochrane System Reviewer Manual, and the Stata 13.0 software was used for data analysis and mapping. Through screening, 28 eligible studies were finally included, with the sample size of 2 885 cases, involving 8 Chinese patent medicines. The results of the network Meta-analysis showed that in terms of total effective rate for angina symptom improvement, the order was as follows: Shenshao Capsules > Naoxintong Capsules > Ginkgo Ketone Ester Dripping Pills > Compound Danshen Dripping Pills > Ginkgo Leaf Tablets > Shexiang Baoxin Pills > Tongxinluo Capsules > Yindan Xinnaotong Soft Capsules; in terms of total effective rate for ECG curative effect, the order was as follows: Ginkgo Ketone Ester Dripping Pills>Compound Danshen Dripping Pills > Tongxinluo Capsules > Shenshao Capsules > Shexiang Baoxin Pills > Yindan Xinnaotong Soft Capsules; in terms of hypersensitivity-C-reactive protein curative effect, the order was as follows: Tongxinluo Capsules > Shenshao Capsules > Ginkgo Leaf Tablets>Compound Danshen Dropping Pills> Shexiang Baoxin Pills > Naoxintong Capsules > Yindan Xinnaotong Soft Capsules > Ginkgo Ketone Ester Dropping Pills. Chinese patent medicine combined with conventional therapy can improve the clinical efficacy of unstable angina pectoris. Due to the differences in the quantity and quality of the included studies, the order results of Chinese patent medicines need to be further verified.


Subject(s)
Drugs, Chinese Herbal , Medicine, East Asian Traditional , Angina, Unstable/drug therapy , China , Humans , Network Meta-Analysis , Nonprescription Drugs
10.
Food Res Int ; 139: 109956, 2021 01.
Article in English | MEDLINE | ID: mdl-33509508

ABSTRACT

Lactobacillus paracasei FZU103, a probiotic previously isolated from the traditional brewing process of Hongqu rice wine, may have the beneficial effect of improving the disorder of lipid metabolism. This study aimed to determine the beneficial effects of L. paracasei FZU103 on improving hepatic lipid accumulation associated with hyperlipidemia. Results indicated that L. paracasei FZU103 intervention significantly inhibited the abnormal growth of body weight and epididymal white adipose tissue (eWAT), prevented the hypertrophy of epididymal adipocytes, ameliorated the biochemical parameters of serum and liver related to lipid metabolism in HFD-fed mice. Histological analysis also showed that the excessive accumulation oflipid dropletsin the livers induced by HFD-feeding was greatly alleviated by L. paracasei FZU103 intervention. In addition, L. paracasei FZU103 also promoted the excretion of bile acids (BAs) through feces. Metagenomic analysis revealed that oral supplementation with L. paracasei FZU103 significantly increased the relative abundance of Ruminococcus, Alistipes, Pseudoflavonifractor and Helicobacter, but decreased the levels of Blautia, Staphylococcos and Tannerella in HFD-fed mice. The relationships between lipid metabolic parameters and intestinal microbial phylotypes were also revealed by correlation heatmap and network. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS)-based liver metabolomics demonstrated that L. paracasei FZU103 had a significant regulatory effect on the metabolic pathways of glycerophospholipid metabolism, fatty acid degradation, fatty acid elongation, unsaturated fatty acids biosynthesis, riboflavin metabolism, glycerolipid metabolism, primary bile acid biosynthesis, arachidonic acid metabolism, etc. Additionally, L. paracasei FZU103 intervention regulated expression of hepatic genes involved in lipid metabolism and bile acid homeostasis, and promoted fecal excretion of intestinal BAs. These findings present new evidence supporting that L. paracasei FZU103 has the potential to improve lipid metabolism, and could be used as a potential functional food for the prevention of hyperlipidemia.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Lacticaseibacillus paracasei , Animals , Diet, High-Fat , Hyperlipidemias/prevention & control , Lipid Metabolism , Mice
11.
Article in Chinese | WPRIM | ID: wpr-878897

ABSTRACT

Network Meta-analysis was used to compare the efficacy and safety of Chinese patent medicines in the treatment of unstable angina pectoris. PubMed, Cochrane Library, CNKI, Wanfang, VIP and other databases were retrieved by computers from the establishment of the databases to June 2020. Randomized controlled trials(RCTs) of Chinese patent medicines for the treatment of unstable angina pectoris were collected. Two investigators independently screened out the literatures, and extracted data according to the inclusion and exclusion criteria. The quality of the included RCTs was evaluated according to the bias risk assessment tool recommended by the Cochrane System Reviewer Manual, and the Stata 13.0 software was used for data analysis and mapping. Through screening, 28 eligible studies were finally included, with the sample size of 2 885 cases, involving 8 Chinese patent medicines. The results of the network Meta-analysis showed that in terms of total effective rate for angina symptom improvement, the order was as follows: Shenshao Capsules > Naoxintong Capsules > Ginkgo Ketone Ester Dripping Pills > Compound Danshen Dripping Pills > Ginkgo Leaf Tablets > Shexiang Baoxin Pills > Tongxinluo Capsules > Yindan Xinnaotong Soft Capsules; in terms of total effective rate for ECG curative effect, the order was as follows: Ginkgo Ketone Ester Dripping Pills>Compound Danshen Dripping Pills > Tongxinluo Capsules > Shenshao Capsules > Shexiang Baoxin Pills > Yindan Xinnaotong Soft Capsules; in terms of hypersensitivity-C-reactive protein curative effect, the order was as follows: Tongxinluo Capsules > Shenshao Capsules > Ginkgo Leaf Tablets>Compound Danshen Dropping Pills> Shexiang Baoxin Pills > Naoxintong Capsules > Yindan Xinnaotong Soft Capsules > Ginkgo Ketone Ester Dropping Pills. Chinese patent medicine combined with conventional therapy can improve the clinical efficacy of unstable angina pectoris. Due to the differences in the quantity and quality of the included studies, the order results of Chinese patent medicines need to be further verified.


Subject(s)
Humans , Angina, Unstable/drug therapy , China , Drugs, Chinese Herbal , Medicine, East Asian Traditional , Network Meta-Analysis , Nonprescription Drugs
12.
Food Res Int ; 136: 109511, 2020 10.
Article in English | MEDLINE | ID: mdl-32846589

ABSTRACT

Monascus-fermented rice has been used to treat digestive disorder and promote blood circulation in China and other Asian countries for centuries. However, the effects and mechanisms of Monascus purpureus-fermented common buckwheat (HQ) on non-alcoholic fatty liver disease (NAFLD) and dyslipidemia are unclear. Here, oral supplementation of HQ significantly inhibited the abnormal growth of body weight and epididymal white adipose tissue (eWAT), prevented the hypertrophy of epididymal adipocytes, ameliorated some biochemical parameters of serum and liver related to lipid metabolism in mice fed a high-fat and high-cholesterol diet (HFD). Histological analysis also showed that the excessive accumulation of lipid droplets in the livers induced by HFD-feeding was greatly alleviated by HQ supplementation. Metagenomic analysis revealed that HQ supplementation made significant structural changes in the intestinal microflora of mice fed with HFD. The Spearman's correlation analysis revealed that physiological index, serum and liver lipid profiles were positively correlated with Bacteroidales S24-7, Streptococcus, Allobaculum, and Clostridiales XIII, but negatively associated with Lactobacillus, Ruminococcaceae_NK4A214 group, Ruminiclostridium, and Alistipes. UPLC-QTOF/MS-based liver metabolomics demonstrated that HQ intervention had significant regulatory effects on the metabolic pathways of primary bile acid biosynthesis, pyrimidine metabolism, ether lipid metabolism, glutathione metabolism, glycine, serine and threonine metabolism, and amino sugar and nucleotide sugar metabolism, etc. Additionally, HQ intervention regulated the mRNA levels of hepatic genes involved in hepatic lipid metabolism and bile acid homeostasis. Collectively, these findings present new evidence supporting that HQ has the potential to ameliorate dyslipidemia and NAFLD via modulating the intestinal microbial populations and hepatic metabolite profile in hyperlipidemic mice induced by HFD.


Subject(s)
Fagopyrum , Gastrointestinal Microbiome , Monascus , Non-alcoholic Fatty Liver Disease , Animals , Asia , China , Diet, High-Fat , Metabolome , Mice , Non-alcoholic Fatty Liver Disease/prevention & control
13.
Food Funct ; 11(8): 6818-6833, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32686808

ABSTRACT

Ganoderic acid A (GA) is one of the most abundant triterpenoids in Ganoderma lucidum, and has been proved to possess a wide range of beneficial health effects. The aim of the current study is to investigate the amelioration effects and mechanism of GA on improving hyperlipidemia in mice fed a high-fat diet (HFD). The results showed that GA intervention significantly inhibited the abnormal growth of body weight and epididymal white adipose tissue (eWAT), prevented the hypertrophy of epididymal adipocytes, and ameliorated the biochemical parameters of serum and liver related to lipid metabolism in HFD-fed mice. Histological analysis also showed that the excessive accumulation of lipid droplets in the liver induced by HFD-feeding was greatly alleviated by GA intervention. In addition, GA intervention also increased the level of short chain fatty acids (SCFAs) in the intestine and promoted the excretion of bile acids (BAs) through feces. High-throughput sequencing of bacterial full-length 16S rDNA revealed that daily supplementation with GA made significant structural changes in the gut microbial population of mice fed with HFD, in particular modulating the relative abundance of some function related microbial phylotypes. The relationships between lipid metabolic parameters and gut microbial phylotypes were also revealed by correlation analysis based on a heatmap and network. The result showed that 46 key gut microbial phylotypes (OTUs) were markedly correlated with at least one lipid metabolic parameter. Moreover, UPLC-QTOF/MS-based liver metabolomics showed that 111 biomarkers (47 up-regulated metabolites and 64 down-regulated metabolites) were significantly changed after high-dose GA intervention (75 mg kg-1 day-1), compared with the HFD-fed hyperlipidemic mice. Metabolic pathway enrichment analysis of the differential hepatic metabolites demonstrated that GA intervention had significant regulatory effects on primary bile acid biosynthesis, fatty acid biosynthesis, amino sugar and nucleotide sugar metabolism, inositol phosphate metabolism, and so on. In addition, GA intervention regulated the mRNA levels of hepatic genes involved in fatty acid metabolism and bile acid homeostasis. These findings present new evidence supporting that GA from G. lucidum has the potential to alleviate lipid metabolic disorders and ameliorate the imbalance of gut microflora in a positive way.


Subject(s)
Gastrointestinal Microbiome/drug effects , Heptanoic Acids/pharmacology , Hyperlipidemias/therapy , Lanosterol/analogs & derivatives , Lipid Metabolism/drug effects , Reishi/chemistry , Animals , Bile Acids and Salts/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Feces/chemistry , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Lanosterol/pharmacology , Liver/metabolism , Male , Metabolomics , Mice
14.
Oxid Med Cell Longev ; 2020: 7396801, 2020.
Article in English | MEDLINE | ID: mdl-32509152

ABSTRACT

It remains unknown how different glucose tolerance status affects the relationships between dietary intake of different tocopherol isoforms (α-, ß-, γ-, and δ-tocopherol) and cellular aging, oxidative stress, and inflammatory markers. The authors conducted a cross-sectional study among 582 Chinese adults with different glucose tolerance status to explore the association between dietary intake of different tocopherol isoforms and cellular aging, oxidative stress, and inflammatory markers. The inverse correlations between non-α-tocopherols and tumor necrosis factor-alpha (TNF-α) varied substantially across different glucose tolerance status, with the strongest observed in prediabetes (r = -0.33 for ß-/γ-tocopherol, r = -0.37 for δ-tocopherol, p < 0.01), followed by normal glucose tolerance (NGT). While such correlations were abolished in established diabetes. Furthermore, within prediabetes, the strongest inverse correlations between non-α-tocopherols and TNF-α were observed in impaired fasting glucose (IFG) (r = -0.42 for ß-/γ-tocopherol, r = -0.55 for δ-tocopherol, p < 0.01), while such correlations were significantly attenuated in individuals with impaired glucose tolerance (IGT) and IFG+IGT. And mediation model analysis displayed that TNF-α mediated the protective effect of non-α-tocopherols on leukocyte telomere length and mitochondrial DNA copy number, which was uniquely observed in prediabetes, while such mediation effect was statistically nonsignificant in NGT and established diabetes. In conclusion, our findings indicate that dietary intake of non-α-tocopherols might protect against cellular aging markers mediated by TNF-α in prediabetes. Individuals with prediabetes, especially for IFG, might benefit from increasing dietary intake of non-α-tocopherol in alleviating inflammation and cellular aging, which might provide a new dietary avenue for delaying diabetes onset.


Subject(s)
Cellular Senescence/physiology , Prediabetic State/therapy , Tocopherols/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Blood Glucose , China , Cross-Sectional Studies , DNA Copy Number Variations , Dietary Supplements , Humans , Middle Aged , Tumor Necrosis Factor-alpha/metabolism , Young Adult
15.
Comb Chem High Throughput Screen ; 23(10): 1100-1112, 2020.
Article in English | MEDLINE | ID: mdl-32436824

ABSTRACT

AIM AND OBJECTIVE: Myocardial infarction, cerebral infarction, and other diseases caused by vascular obstruction have always jeopardized human life and health. Several reports indicate that Rhei Radix et Rhizoma has a good clinical effect in the prevention and treatment of cardiovascular diseases. Owing to the complexity of herbal medicine, the pharmacodynamic mechanism of Rhei Radix et Rhizoma is still unclear. The objectives of this study were to explore the two-way adjustment mechanism of Rhei Radix et Rhizoma and provide a new solution for the prevention and treatment of cardiovascular disease. MATERIALS AND METHODS: This study used data mining, reverse pharmacophore matching, network construction, GO and KEGG Analysis, and molecular docking to investigate the two-way adjustment mechanism of Rhei Radix et Rhizoma. The methods used were based on systems pharmacology and big data analysis technology. RESULTS: The results suggest that Rhei Radix et Rhizoma uses a two-way adjustment of activating blood circulation, as well as blood coagulation in the prevention and treatment of cardiovascular diseases. The components involved in activating blood circulation are mainly anthraquinone components. The corresponding targets are NOS2, NOS3, CALM1, and the corresponding pathways are calcium signaling pathway, VEGF signaling pathway, platelet activation, and the PI3K-Akt signaling pathway. For blood coagulation, the components are mainly tannin components; the corresponding targets are F2, F10, ELANE, and the corresponding pathways are the neuroactive ligand-receptor interaction, complement and coagulation cascades. CONCLUSION: This study indicated that Rhei Radix et Rhizoma exerts the two-way adjustment of activating blood circulation and blood coagulation in the prevention and treatment of cardiovascular diseases. It can make up for the side effects of the existing blood circulation drugs for cardiovascular disease, only activating blood circulation, and the uncontrollable large-area bleeding due to the long-term use of the drugs. This study provides a material basis for the development of new blood-activating drugs based on natural medicine.


Subject(s)
Cardiovascular Diseases/drug therapy , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology , Rhizome/chemistry , Blood Coagulation/drug effects , Cardiovascular Diseases/blood , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Humans , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/isolation & purification
16.
J Agric Food Chem ; 68(24): 6530-6543, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32383865

ABSTRACT

This study aimed to investigate the protective mechanism of common buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease (NAFLD) associated with dyslipidemia in mice that were fed a high-fat and high-cholesterol diet (HFD). Results showed that oral supplementation of common buckwheat significantly improved physiological indexes and biochemical parameters related to dyslipidemia and NAFLD in mice fed with HFD. Furthermore, the HFD-induced reductions in fecal short-chain fatty acids were reversed by common buckwheat intervention, which also increased the fecal bile acid (BA) abundance compared with HFD-induced hyperlipidemic mice. Liver metabolomics based on ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry demonstrated that common buckwheat supplementation made significant regulatory effects on the pentose phosphate pathway, starch and sucrose metabolism, primary BA biosynthesis, and so forth. The results of high-throughput sequencing revealed that common buckwheat supplementation significantly altered the structure of the intestinal microbiota in mice fed with HFD. The correlations between lipid metabolic parameters and intestinal microbial phylotypes were also revealed by the heatmap and network. Additionally, common buckwheat intervention regulated the mRNA expressions of genes responsible for liver lipid metabolism and BA homeostasis, thus promoting BA synthesis and excretion. These findings confirmed that common buckwheat has the outstanding ability of improving lipid metabolism and could be used as a potential functional food for the prevention of NAFLD and hyperlipidemia.


Subject(s)
Cholesterol/metabolism , Fagopyrum/metabolism , Hyperlipidemias/diet therapy , Non-alcoholic Fatty Liver Disease/diet therapy , Animals , Bile Acids and Salts/metabolism , Cholesterol/adverse effects , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Humans , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Hyperlipidemias/microbiology , Liver/metabolism , Male , Mice , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology
17.
Comb Chem High Throughput Screen ; 23(8): 775-787, 2020.
Article in English | MEDLINE | ID: mdl-32160845

ABSTRACT

BACKGROUND: Stroke is ranked second among diseases that cause mortality worldwide. Owing to its complicated pathogenesis, no satisfactory treatment strategies for stroke are available. Dachengqi decoction (DCQD), a traditional Chinese herbal medicine, has been widely used in China for a long time, as it has a good effect on stroke. However, the molecular mechanism underlying this effect of DCQD is unclear. OBJECTIVE: In the present study, we aimed to reveal and explore the multi-pathway and multi-gene regulatory molecular mechanism of Dachengqi decoction in the treatment of stroke. METHODS: In this study, a network pharmacology method, in combination with oral bioavailability prediction and drug-likeness evaluation, was employed to predict the active ingredients of DCQD. The target genes of the active components and the traced pathways related to these target genes were predicted. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using clusterProfiler software package on the R platform and ClueGo+CluePedia plug-ins. Finally, the key DCQD targets were verified using the Gene Expression Omnibus (GEO) dataset. RESULTS AND DISCUSSION: According to the ADME model, 52 active components were screened from 296 active components of DCQD. After prediction and screening, 215 stroke-related targets were obtained and analyzed via GO and KEGG analyses. GO analysis showed that DCQD targets were mainly involved in the regulation of oxidative stress, lipid metabolism, inflammation, and other biological processes. KEGG pathway analysis further revealed pathways involved in stroke, such as arachidonic acid metabolic, HIF-1 signaling pathway, estrogen signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, platelet activation pathway, VEGF signaling pathway, and cAMP signaling pathway. Network analysis revealed that DCQD might be involved in the regulation of lipid metabolism, blood pressure, inflammation, angiogenesis, neuroprotection, platelet aggregation, apoptosis, and oxidation in stroke treatment. GEO dataset analysis showed that DCQD's therapeutic effects might be exerted via the bidirectional regulation principle. CONCLUSION: Based on the methods of network pharmacology and GEO analysis, it was found that, during stroke treatment, DCQD regulates and controls multiple genes and multiple pathways in a synergistic manner, providing a new strategy for stroke treatment.


Subject(s)
Computational Biology/methods , Models, Molecular , Plant Extracts/chemistry , Stroke/drug therapy , Apoptosis/drug effects , Blood Platelets/drug effects , Blood Platelets/metabolism , Blood Pressure/drug effects , Databases, Chemical , Gene Expression Regulation/drug effects , Gene Ontology , Humans , Inflammation/drug therapy , Lipid Metabolism/drug effects , Medicine, Chinese Traditional , Mitogen-Activated Protein Kinase Kinases/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
18.
Chin J Integr Med ; 26(9): 694-700, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31630358

ABSTRACT

OBJECTIVES: To investigate the effect on essential hypertension of the topical application of TAT-Cu, Zn-superoxide dismutase (TAT-SOD) at left acupoint Zusanli (ST 36), and to observe whether the change of electrical potential difference (EPD) can be related to the change of blood pressure. METHODS: Sixteen patients with essential hypertension and 16 healthy subjects were included in the study. EPD between the left acupoints of Yanglingquan (GB 34) and Qiuxu (GB 40) was firstly screened out for the EPD detection. An intracellular superoxide quenching enzyme, TAT-SOD, was topically applied to the acupoint ST 36 within an area of 1 cm2 once a day, and the influence on EPD was investigated. The dosage applied to TAT-SOD group (n=8) was 0.2 mL of 3000 U/mL TAT-SOD cream prepared by adding purified TAT-SOD to a vehicle cream, while placebo group (n=8) used the vehicle cream instead. The left acupoints of Yanglingquan (GB 34) and Qiuxu (GB 40) were selected for EPD measurement after comparing EPD readings between 5 acupoints on each of all 12 meridians. RESULTS: EPDs between the left acupoints of GB 34 and GB 40 for 16 patients of essential hypertension and 16 healthy subjects were 44.9±6.4 and 5.6±0.9 mV, respectively. Daily application of TAT-SOD for 15 days at ST 36 of essential hypertension patients significantly decreased systolic blood pressure (SBP) and diastolic blood pressure (DBP) of 179.6 and 81.5 mm Hg to 153.1 and 74.1 mm Hg, respectively. Responding to the change in blood pressure, EPD between the left acupoints of GB 34 and GB 40 also declined from 44.4 to 22.8 mV with the same trend. No change was observed with SBP, DBP and EPD between the left acupoints of GB 34 and GB 40 with the daily application of the placebo cream. CONCLUSION: Enzymatic scavenging of the intracellular superoxide at ST 36 proved to be effective in decreasing SBP and DBP. The results reconfirm the involvement of superoxide anions and its transportation along the meridians, and demonstrate that EPD between acupoints may be an indicator to reflect its functioning status. Moreover, preliminary results suggest a close correlation between EPD and blood pressure readings, implying a possibility of using EPD as a sensitive parameter for blood pressure and to monitor the effect of antihypertensive treatment.


Subject(s)
Action Potentials , Acupuncture Therapy/methods , Essential Hypertension/therapy , Meridians , Superoxide Dismutase/administration & dosage , Action Potentials/drug effects , Action Potentials/physiology , Acupuncture Points , Adult , Blood Pressure/drug effects , Blood Pressure/physiology , Combined Modality Therapy , Electric Conductivity , Essential Hypertension/metabolism , Essential Hypertension/physiopathology , Female , Humans , Male , Reactive Oxygen Species/metabolism
19.
Oxid Med Cell Longev ; 2019: 4935237, 2019.
Article in English | MEDLINE | ID: mdl-31814879

ABSTRACT

BACKGROUND: Given that the dysregulation of iron homeostasis leads to genomic instability, iron has been linked to cellular aging. However, epidemiological research on dietary iron intake and cellular aging markers is scarce. The aim of this study was to explore the relationship between dietary iron intake and cellular aging markers and to investigate whether tumor necrosis factor-α (TNFα) mediated this relationship. METHODS: We conducted a cross-sectional analysis with a total of 467 subjects. Detailed dietary data were obtained using 24 h food recalls. Peripheral blood leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNAcn) were assessed using real-time PCR assay. The association between dietary iron intake and cellular aging markers and TNFα and superoxide dismutase (SOD) was analyzed by Pearson correlation analysis and regression models adjusted by covariates. Simple mediation models were generated to examine whether TNFα mediated the association between iron intake and cellular aging markers using PROCESS macro Version 3.3. RESULTS: The study population contained more women than men, but their basic demographic and metabolic characteristics did not differ. After adjusting for age, LTL was the same for men and women, while mtDNAcn was lower in men. Multiple linear regression adjusted for confounding factors found that iron intake was negatively associated with LTL only in women and negatively associated with mtDNAcn only in men. Moreover, iron intake was positively associated with TNFα in both women and men but positively associated with SOD only in men. Path modeling showed that TNFα significantly mediated the indirect detrimental effect of iron intake on LTL only in women; in men, mediation of the indirect effect of iron intake on mtDNAcn by TNFα did not reach significance. CONCLUSIONS: The study found sex-specific negative associations between dietary iron intake and cellular aging markers in that iron intake had deleterious effects on LTL attrition in women and mtDNAcn in men; only the former was partly mediated by TNFα. Consequently, when dietary iron intake and iron supplementation is recommended, the effects of iron imbalance on genomic stability and cellular aging markers must be considered.


Subject(s)
Cellular Senescence/physiology , Iron/metabolism , Tumor Necrosis Factor-alpha/metabolism , Female , Humans , Male , Middle Aged , Sex Factors
20.
Article in English | MEDLINE | ID: mdl-31827549

ABSTRACT

Diabetic nephropathy (DN) is a major microvascular complication of diabetes. In addition to moderating hyperglycemia, Shenqi Jiangtang Granule (SJG) had a beneficial effect on kidney function in a clinical trial. However, the mechanism involved remains unclear. This study was conducted to identify the underlying molecular mechanisms. A diabetic rat model was generated by using a high-fat diet and streptozotocin (STZ) injection. Then, rats were given SJG at dosages of 400 mg/kg/d or 800 mg/kg/d by gavage for 8 weeks. After 8 weeks of treatment, blood glucose, serum creatinine, blood urea nitrogen (BUN), and 24-h urinary albumin were measured. Histochemical staining and TdT-mediated dUTP nick-end labeling (TUNEL) assays were performed in kidney. Kidney genomic expression in the SJG-treated group and diabetic group was detected by using a genome expression microarray. We found that SJG treatment reduced blood glucose, serum creatinine, BUN, and 24-h urinary albumin and affected kidney histology. The gene array revealed that the expression of 99 genes increased and the expression of 91 genes decreased in the HSJG group, compared with those of in the diabetic group. Pathway and gene ontology analysis of the differentially expressed genes showed an enrichment of the apoptosis pathway. SJG treatment reduced TUNEL- and caspase-3-positive cells in diabetic kidneys. SJG upregulated Bcl-2 and regucalcin expressions and reduced casp3 and Apaf1 expressions in diabetic rats. Our results suggest that SJG exerts a renal protective effect through the inhibition of cell apoptosis in a diabetic rodent model.

SELECTION OF CITATIONS
SEARCH DETAIL