Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
EBioMedicine ; 43: 370-379, 2019 May.
Article in English | MEDLINE | ID: mdl-31027918

ABSTRACT

BACKGROUND: Treatment and control of schistosomiasis, one of the most insidious and serious parasitic diseases, depend almost entirely on a single drug, praziquantel. Since the funding for drug development for poverty-associated diseases is very limited, drug repurposing is a promising strategy. In this study, 73 nonsteroidal anti-inflammatory drugs (NSAIDs) commonly used in medical and veterinary fields were evaluated for their anti-schistosomal properties. METHODS: The efficacy of NSAIDs was first tested against adult Schistosoma mansoni ex vivo using phenotypic screening strategy, effective drugs were further tested in a murine model of schistosomiasis. The disease parameters measured were worm and egg burden, hepato- and splenomegaly. FINDINGS: From 73 NSAIDs, five (mefenamic acid, tolfenamic acid, meclofenamic acid, celecoxib, and diclofenac) were identified to effectively kill schistosomes. These results were further supported by scanning electron microscopy analysis. In addition, the octanol-water partition coefficient, both for neutral and ionized species, revealed to be a critical property for the ex vivo activity profile. Compounds were then tested in vivo using both patent and a prepatent S. mansoni infection in a mouse model. The most effective NSAID was mefenamic acid, which highly reduced worm burden, egg production, and hepato- and splenomegaly. INTERPRETATION: The treatment regimen used in this study is within the range for which mefenamic acid has been used in clinical practice, thus, it is demonstrated the capacity of mefenamic acid to act as a potent anti-schistosomal agent suitable for clinical repurposing in the treatment of schistosomiasis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Mefenamic Acid/pharmacology , Parasitic Sensitivity Tests , Schistosoma/drug effects , Schistosomicides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Repositioning , Female , Humans , Mefenamic Acid/administration & dosage , Mice , Parasitic Sensitivity Tests/methods , Schistosoma mansoni/drug effects , Schistosomiasis/drug therapy , Schistosomiasis/parasitology , Schistosomicides/administration & dosage
2.
PLoS One ; 13(6): e0198476, 2018.
Article in English | MEDLINE | ID: mdl-29944674

ABSTRACT

Schistosomiasis affects million people and its control is widely dependent on a single drug, praziquantel. Computational chemistry has led to the development of new tools that predict molecular properties related to pharmacological potential. We conducted a theoretical study of the imizadole alkaloids of Pilocarpus microphyllus (Rutaceae) with schistosomicidal properties. The molecules of epiisopiloturine, epiisopilosine, isopilosine, pilosine, and macaubine were evaluated using theory models (B3lyp/SDD, B3lyp/6-31+G(d,p), B3lyp/6-311++G(d,p)). Absorption, distribution, metabolization, excretion, and toxicity (ADMET) predictions were used to determine the pharmacokinetic and pharmacodynamic properties of the alkaloids. After optimization, the molecules were submitted to molecular docking calculations with the purine nucleoside phosphorylase, thioredoxin glutathione reductase, methylthioadenosine phosphorylase, arginase, uridine phosphorylase, Cathepsin B1 and histone deacetylase 8 enzymes, which are possible targets of Schistosoma mansoni. The results showed that B3lyp/6-311++G(d,p) was the optimal model to describe the properties studied. Thermodynamic analysis showed that epiisopiloturine and epiisopilosine were the most stable isomers; however, the epiisopilosine ligand achieved a superior interaction with the enzymes studied in the molecular docking experiments, which corroborated the results of previous experimental studies on schistosomiasis.


Subject(s)
Alkaloids/pharmacology , Anthelmintics/pharmacology , Imidazoles/pharmacology , Pilocarpus/chemistry , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Alkaloids/chemistry , Animals , Anthelmintics/chemistry , Imidazoles/chemistry , Models, Molecular , Molecular Docking Simulation , Plant Extracts/pharmacology , Quantum Theory , Schistosoma mansoni/drug effects , Thermodynamics
3.
Phytother Res ; 31(4): 624-630, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28111828

ABSTRACT

Pilocarpus microphyllus Stapf ex Wardlew (Rutaceae), popularly known as jaborandi, is a plant native to the northern and northeastern macroregions of Brazil. Several alkaloids from this species have been isolated. There are few reports of antibacterial and anthelmintic activities for these compounds. In this work, we report the antibacterial and anthelmintic activity of five alkaloids found in P. microphyllus leaves, namely, pilosine, epiisopilosine, isopilosine, epiisopiloturine and macaubine. Of these, only anthelmintic activity of one of the compounds has been previously reported. Nuclear magnetic resonance, HPLC and mass spectrometry were combined and used to identify and confirm the structure of the five compounds. As regards the anthelmintic activity, the alkaloids were studied using in vitro assays to evaluate survival time and damaged teguments for Schistosoma mansoni adult worms. We found epiisopilosine to have anthelmintic activity at very low concentrations (3.125 µg mL-1 ); at this concentration, it prevented mating, oviposition, reducing motor activity and altered the tegument of these worms. In contrast, none of the alkaloids showed antibacterial activity. Additionally, alkaloids displayed no cytotoxic effect on vero cells. The potent anthelmintic activity of epiisopilosine indicates the potential of this natural compound as an antiparasitic agent. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Alkaloids/chemistry , Anthelmintics/chemistry , Anti-Bacterial Agents/chemistry , Imidazoles/chemistry , Pilocarpus/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , 4-Butyrolactone/analogs & derivatives , Animals , Imidazoles/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL