Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Gut ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38050079

ABSTRACT

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

2.
Environ Sci Technol ; 57(26): 9615-9626, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37350071

ABSTRACT

Uranium detection and extraction are necessary for the ecological environment as the growing demand for nuclear energy. Hence, exploring stable materials with excellent performance in uranium extraction and detection is highly desired. Herein, by amidoxime-functionalizing tetrafluoroterephthalonitrile (TFTPN) crosslinked hydroquinone (bP), phloroglucinol (tP), and 4,4',4″-trihydroxytriphenylmethane (tBP), three covalent organic polymers (COPs) bPF-AO, tPF-AO, and tBPF-AO with different crosslinked architectures are fabricated. Uranium extraction and detection related to the difference in molecule construction were systemically investigated, giving some reference for the rational design and fabrication of advanced materials for the removal and monitoring of uranium in the environment. The tPF-AO with a compact steric structure achieves the highest theoretical maximum adsorption capacity of 578.9 ± 15.2 mg g-1 and the best recyclability. The scattering electron center and U(VI) selective binding sites endow tBPF-AO with excellent capability in selective detection for U(VI), with a limit of detection of 24.2 nmol L-1, which is well below the standard for U(VI) in drinking water of the World Health Organization (WHO). Moreover, the COPs possess prominent physicochemical stability and recyclability, and more importantly, the PAE-based COPs are derived from inexpensive industry materials with easy processing methods, providing an efficient and economical way for the detection and adsorption of uranium.


Subject(s)
Uranium , Phloroglucinol , Adsorption , Binding Sites , Electrons , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL