Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Funct ; 10(12): 8208-8217, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31701990

ABSTRACT

Research supports the theory that the microbiome of plants and mushrooms produce potent activators of pathogen recognition receptors which are principal contributors to the stimulation of macrophages. We have previously reported that the in vitro macrophage stimulatory activity of water-soluble extracts from 13 different types of edible mushrooms is predominantly due to bacterial components originating from the naturally occurring bacterial communities within these materials. The purpose of the current study was to further investigate the bacterial-dependent activity of the water-soluble extracts and assess whether these 13 types of mushrooms contain water-insoluble beta glucans that activate the dectin-1b signaling pathway. Activity of the water-soluble extracts was predominantly due to Toll-like receptor 2 (TLR2) and TLR4 agonists. For dectin-1b-dependent activity (indicative of water-insoluble beta glucans), culinary mushrooms (Agaricus bisporus varieties) were essentially inactive, whereas most of the medicinal mushrooms (Lentinula edodes, Grifola frondosa, Hypsizygus marmoreus varieties, Flammulina velutipes) exhibited potent activation. A. bisporus samples with no detectable dectin-1b-dependent activity had yeast colony forming units that were 687 times lower than L. edodes exhibiting high activity, indicating that the active insoluble beta glucans are derived from colonizing yeast. In addition, co-stimulation of macrophages with the TLR agonists and insoluble beta glucan was found to result in a synergistic enhancement of in vitro cytokine production. Taken together, these findings indicate that the in vitro macrophage activating potential of edible mushrooms is due to the collaborative interaction of water-soluble TLR agonists (derived from colonizing bacteria) and water-insoluble beta glucans (derived from colonizing yeast).


Subject(s)
Agaricales/chemistry , Bacteria/chemistry , Lectins, C-Type/immunology , Macrophage Activation/drug effects , Macrophages/immunology , Plant Extracts/pharmacology , Toll-Like Receptors/immunology , Vegetables/microbiology , Yeasts/chemistry , beta-Glucans/pharmacology , Agaricales/classification , Animals , Bacteria/growth & development , Bacteria/metabolism , Lectins, C-Type/genetics , Macrophages/drug effects , Mice , Plant Extracts/chemistry , RAW 264.7 Cells , Toll-Like Receptors/agonists , Toll-Like Receptors/genetics , Vegetables/chemistry , Vegetables/classification , Yeasts/growth & development , Yeasts/metabolism , beta-Glucans/metabolism
2.
Sci Rep ; 9(1): 136, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644442

ABSTRACT

We previously demonstrated that extracts from Echinacea purpurea material varied substantially in their ability to activate macrophages in vitro and that this variation was due to differences in their content of bacterial components. The purpose of the current study was to identify soil conditions (organic matter, nitrogen, and moisture content) that alter the macrophage activation potential of E. purpurea and determine whether these changes in activity correspond to shifts in the plant-associated microbiome. Increased levels of soil organic matter significantly enhanced macrophage activation exhibited by the root extracts of E. purpurea (p < 0.0001). A change in soil organic matter content from 5.6% to 67.4% led to a 4.2-fold increase in the macrophage activation potential of extracts from E. purpurea. Bacterial communities also differed significantly between root materials cultivated in soils with different levels of organic matter (p < 0.001). These results indicate that the level of soil organic matter is an agricultural factor that can alter the bacterial microbiome, and thereby the activity, of E. purpurea roots. Since ingestion of bacterial preparation (e.g., probiotics) is reported to impact human health, it is likely that the medicinal value of Echinacea is influenced by cultivation conditions that alter its associated bacterial community.


Subject(s)
Echinacea/microbiology , Macrophage Activation/immunology , Microbiota/immunology , Soil/chemistry , Plant Extracts/immunology , Plant Extracts/therapeutic use , Plant Roots/immunology , Plant Roots/microbiology , Soil Microbiology
3.
Food Funct ; 7(10): 4213-4221, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27711863

ABSTRACT

Recent studies have indicated that a major contributor to the innate immune enhancing properties of some medicinal plants is derived from the cell wall components of bacteria colonizing these plants. The purpose of the current study was to assess if the bacteria present within edible and medicinal mushrooms substantially contribute to the innate immune stimulating potential of these mushrooms. Whole mushrooms from thirteen types of edible fungi and individual parts from Agaricus bisporus were analyzed for in vitro macrophage activation as well as bacterial lipopolysaccharides (LPS) content, cell load, and community composition. Substantial variation between samples was observed in macrophage activation (over 500-fold), total bacterial load (over 200-fold), and LPS content (over 10 million-fold). Both LPS content (ρ = 0.832, p < 0.0001) and total bacterial load (ρ = 0.701, p < 0.0001) correlated significantly with macrophage activation in the whole mushroom extracts. Extract activity was negated by treatment with NaOH, conditions that inactivate LPS and other bacterial components. Significant correlations between macrophage activation and total bacterial load (ρ = 0.723, p = 0.0001) and LPS content (ρ = 0.951, p < 0.0001) were also observed between different tissues of Agaricus bisporus. Pseudomonas and Flavobacterium were the most prevalent genera identified in the different tissue parts and these taxa were significantly correlated with in vitro macrophage activation (ρ = 0.697, p < 0.0001 and ρ = 0.659, p = 0.0001, respectively). These results indicate that components derived from mushroom associated bacteria contribute substantially to the innate immune enhancing activity exhibited by mushrooms and may result in similar therapeutic actions as reported for ingestion of bacterial preparations such as probiotics.


Subject(s)
Agaricales/chemistry , Bacteria/chemistry , Complex Mixtures/chemistry , Macrophages/drug effects , Animals , Bacteria/genetics , Mice , RAW 264.7 Cells , RNA, Ribosomal, 16S/genetics
4.
Planta Med ; 82(14): 1258-65, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27286330

ABSTRACT

Evidence supports the theory that bacterial communities colonizing Echinacea purpurea contribute to the innate immune enhancing activity of this botanical. Previously, we reported that only about half of the variation in in vitro monocyte stimulating activity exhibited by E. purpurea extracts could be accounted for by total bacterial load within the plant material. In the current study, we test the hypothesis that the type of bacteria, in addition to bacterial load, is necessary to fully account for extract activity. Bacterial community composition within commercial and freshly harvested (wild and cultivated) E. purpurea aerial samples was determined using high-throughput 16S rRNA gene pyrosequencing. Bacterial isolates representing 38 different taxa identified to be present within E. purpurea were acquired, and the activity exhibited by the extracts of these isolates varied by over 8000-fold. Members of the Proteobacteria exhibited the highest potency for in vitro macrophage activation and were the most predominant taxa. Furthermore, the mean activity exhibited by the Echinacea extracts could be solely accounted for by the activities and prevalence of Proteobacteria members comprising the plant-associated bacterial community. The efficacy of E. purpurea material for use against respiratory infections may be determined by the Proteobacterial community composition of this plant, since ingestion of bacteria (probiotics) is reported to have a protective effect against this health condition.


Subject(s)
Echinacea/microbiology , Macrophage Activation , Plant Extracts/immunology , Proteobacteria/immunology , Animals , Echinacea/immunology , Mice , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL