Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Affiliation country
Publication year range
1.
Front Immunol ; 14: 1188757, 2023.
Article in English | MEDLINE | ID: mdl-37180172

ABSTRACT

Rotavirus A (RVA) causes ~200,000 diarrheal deaths annually in children <5yrs, mostly in low- and middle-income countries. Risk factors include nutritional status, social factors, breastfeeding status, and immunodeficiency. We evaluated the effects of vitamin A (VA) deficiency/VA supplementation and RVA exposure (anamnestic) on innate and T cell immune responses in RVA seropositive pregnant and lactating sows and passive protection of their piglets post-RVA challenge. Sows were fed VA deficient (VAD) or sufficient (VAS) diets starting at gestation day (GD)30. A subset of VAD sows received VA supplementation from GD|76 (30,000IU/day, VAD+VA). Sows (6 groups) were inoculated with porcine RVA G5P[7] (OSU strain) or Minimal Essential Medium (mock) at GD~90: VAD+RVA; VAS+RVA; VAD+VA+RVA; VAD-mock; VAS-mock; and VAD+VA-mock. Blood, milk, and gut-associated tissues were collected from sows at several time points to examine innate [natural killer (NK), dendritic (DC) cells], T cell responses and changes in genes involved in the gut-mammary gland (MG)-immunological axis trafficking. Clinical signs of RVA were evaluated post inoculation of sows and post-challenge of piglets. We observed decreased frequencies of NK cells, total and MHCII+ plasmacytoid DCs, conventional DCs, CD103+ DCs and CD4+/CD8+ and T regulatory cells (Tregs) and NK cell activity in VAD+RVA sows. Polymeric Ig receptor and retinoic acid receptor alpha (RARα) genes were downregulated in mesenteric lymph nodes and ileum of VAD+RVA sows. Interestingly, RVA-specific IFN-γ producing CD4+/CD8+ T cells were increased in VAD-Mock sows, coinciding with increased IL-22 suggesting inflammation in these sows. VA supplementation to VAD+RVA sows restored frequencies of NK cells and pDCs, and NK activity, but not tissue cDCs and blood Tregs. In conclusion, similar to our recent observations of decreased B cell responses in VAD sows that led to decreased passive immune protection of their piglets, VAD impaired innate and T cell responses in sows, while VA supplementation to VAD sows restored some, but not all responses. Our data reiterate the importance of maintaining adequate VA levels and RVA immunization in pregnant and lactating mothers to achieve optimal immune responses, efficient function of the gut-MG-immune cell-axis and to improve passive protection of their piglets.


Subject(s)
Rotavirus Infections , Rotavirus , Vitamin A Deficiency , Pregnancy , Swine , Animals , Female , Vitamin A/pharmacology , CD8-Positive T-Lymphocytes/metabolism , Lactation , Dietary Supplements , Immunity
2.
Viruses ; 14(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36366453

ABSTRACT

The aim of this study was to determine the impact of vitamin A deficiency (VAD)/supplementation (±VA) and group A RV (RVA) maternal immunization of RVA seropositive multiparous pregnant sows, on their immune responses (anamnestic response) and on passive protection of their piglets against RVA challenge. Our results showed that VAD- mock sows had increased RVA RNA shedding at 1-5 days post piglet RVA challenge, and their litters had increased RVA shedding and diarrhea frequency throughout the experiment. VAD decreased memory B cell frequencies while VA supplementation increased RVA specific IgA/IgG antibody (Ab) secreting cell (ASC) numbers in blood, milk, and tissues of RVA inoculated VAD sows. The increased numbers of RVA specific IgA/IgG ASCs in blood, milk/colostrum, intestinal contents, and tissues in VA supplemented VAD sows, suggest a role of VA in B cell immunity and trafficking to tissues. We also observed that RVA inoculated sows had the highest viral neutralizing Ab titers in serum and milk while VA supplementation of VAD sows and RVA inoculation increased IgA+ B cell frequencies in sow colostrum. In summary, we demonstrated that daily oral VA-supplementation (2nd trimester-throughout lactation) to RVA inoculated VAD sows improved the function of their gut-mammary-IgA immunological axis, reducing viral RNA shedding, diarrhea, and increasing weight gain in suckling piglets.


Subject(s)
Rotavirus , Pregnancy , Swine , Animals , Female , Vitamin A , Adaptive Immunity , Milk , Immunoglobulin A , Dietary Supplements , Diarrhea/prevention & control
3.
mSphere ; 7(5): e0027022, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36073800

ABSTRACT

Human rotavirus (HRV) is a major cause of childhood diarrhea in developing countries where widespread malnutrition contributes to the decreased oral vaccine efficacy and increased prevalence of other enteric infections, which are major concerns for global health. Neonatal gnotobiotic (Gn) piglets closely resemble human infants in their anatomy, physiology, and outbred status, providing a unique model to investigate malnutrition, supplementations, and HRV infection. To understand the molecular signatures associated with immune enhancement and reduced diarrheal severity by Escherichia coli Nissle 1917 (EcN) and tryptophan (TRP), immunological responses and global nontargeted metabolomics and lipidomics approaches were investigated on the plasma and fecal contents of malnourished pigs transplanted with human infant fecal microbiota and infected with virulent (Vir) HRV. Overall, EcN + TRP combined (rather than individual supplement action) promoted greater and balanced immunoregulatory/immunostimulatory responses associated with greater protection against HRV infection and disease in malnourished humanized piglets. Moreover, EcN + TRP treatment upregulated the production of several metabolites with immunoregulatory/immunostimulatory properties: amino acids (N-acetylserotonin, methylacetoacetyl-CoA), lipids (gamma-butyrobetaine, eicosanoids, cholesterol-sulfate, sphinganine/phytosphingosine, leukotriene), organic compound (biliverdin), benzenoids (gentisic acid, aminobenzoic acid), and nucleotides (hypoxathine/inosine/xanthine, cytidine-5'-monophosphate). Additionally, the levels of several proinflammatory metabolites of organic compounds (adenosylhomocysteine, phenylacetylglycine, urobilinogen/coproporphyrinogen) and amino acid (phenylalanine) were reduced following EcN + TRP treatment. These results suggest that the EcN + TRP effects on reducing HRV diarrhea in neonatal Gn pigs were at least in part due to altered metabolites, those involved in lipid, amino acid, benzenoids, organic compounds, and nucleotide metabolism. Identification of these important mechanisms of EcN/TRP prevention of HRV diarrhea provides novel targets for therapeutics development. IMPORTANCE Human rotavirus (HRV) is the most common cause of viral gastroenteritis in children, especially in developing countries, where the efficacy of oral HRV vaccines is reduced. Escherichia coli Nissle 1917 (EcN) is used to treat enteric infections and ulcerative colitis while tryptophan (TRP) is a biomarker of malnutrition, and its supplementation can alleviate intestinal inflammation and normalize intestinal microbiota in malnourished hosts. Supplementation of EcN + TRP to malnourished humanized gnotobiotic piglets enhanced immune responses and resulted in greater protection against HRV infection and diarrhea. Moreover, EcN + TRP supplementation increased the levels of immunoregulatory/immunostimulatory metabolites while decreasing the production of proinflammatory metabolites in plasma and fecal samples. Profiling of immunoregulatory and proinflammatory biomarkers associated with HRV perturbations will aid in the identification of treatments against HRV and other enteric diseases in malnourished children.


Subject(s)
Escherichia coli Infections , Fecal Microbiota Transplantation , Malnutrition , Rotavirus Infections , Tryptophan , Animals , Humans , Infant , Aminobenzoates , Biliverdine/metabolism , Cholesterol , Coenzyme A/metabolism , Coproporphyrinogens , Cytidine/metabolism , Diarrhea , Escherichia coli/metabolism , Germ-Free Life , Inosine/metabolism , Lipids , Malnutrition/therapy , Malnutrition/complications , Metabolome , Microbiota , Nucleotides/metabolism , Phenylalanine/metabolism , Rotavirus , Sulfates , Swine , Tryptophan/pharmacology , Urobilinogen/metabolism , Xanthines
4.
mSphere ; 6(2)2021 03 31.
Article in English | MEDLINE | ID: mdl-33789939

ABSTRACT

Human rotavirus (HRV) infection is a major cause of gastroenteritis in children worldwide. Broad-spectrum antibiotic-induced intestinal microbial imbalance and the ensuing immune-metabolic dysregulation contribute to the persistence of HRV diarrhea. Escherichia coli Nissle 1917 (EcN), a Gram-negative probiotic, was shown to be a potent immunostimulant and alleviated HRV-induced diarrhea in monocolonized gnotobiotic (Gn) piglets. Our goal was to determine how EcN modulates immune responses in ciprofloxacin (Cipro)-treated Gn piglets colonized with a defined commensal microbiota (DM) and challenged with virulent HRV (VirHRV). Cipro given in therapeutic doses for a short term reduced serum and intestinal total and HRV-specific antibody titers, while EcN treatment alleviated this effect. Similarly, EcN treatment increased the numbers of total immunoglobulin-secreting cells, HRV-specific antibody-secreting cells, activated antibody-forming cells, resting/memory antibody-forming B cells, and naive antibody-forming B cells in systemic and/or intestinal tissues. Decreased levels of proinflammatory but increased levels of immunoregulatory cytokines and increased frequencies of Toll-like receptor-expressing cells were evident in the EcN-treated VirHRV-challenged group. Moreover, EcN treatment increased the frequencies of T helper and T cytotoxic cells in systemic and/or intestinal tissues pre-VirHRV challenge and the frequencies of T helper cells, T cytotoxic cells, effector T cells, and T regulatory cells in systemic and/or intestinal tissues postchallenge. Moreover, EcN treatment increased the frequencies of systemic and mucosal conventional and plasmacytoid dendritic cells, respectively, and the frequencies of systemic natural killer cells. Our findings demonstrated that Cipro use altered immune responses of DM-colonized neonatal Gn pigs, while EcN supplementation rescued these immune parameters partially or completely.IMPORTANCE Rotavirus (RV) is a primary cause of malabsorptive diarrhea in children and is associated with significant morbidity and mortality, especially in developing countries. The use of antibiotics exacerbates intestinal microbial imbalance and results in the persistence of RV-induced diarrhea. Probiotics are now being used to treat enteric infections and ulcerative colitis. We showed previously that probiotics partially protected gnotobiotic (Gn) piglets against human RV (HRV) infection and decreased the severity of diarrhea by modulating immune responses. However, the interactions between antibiotic and probiotic treatments and HRV infection in the context of an established gut microbiota are poorly understood. In this study, we developed a Gn pig model to study antibiotic-probiotic-HRV interactions in the context of a defined commensal microbiota (DM) that mimics aspects of the infant gut microbiota. Our results provide valuable information that will contribute to the treatment of antibiotic- and/or HRV-induced diarrhea and may be applicable to other enteric infections in children.


Subject(s)
Adaptive Immunity , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/therapeutic use , Escherichia coli/immunology , Gastrointestinal Microbiome/drug effects , Immunity, Innate , Probiotics/administration & dosage , Rotavirus Infections/prevention & control , Age Factors , Animals , Cytokines/immunology , Disease Models, Animal , Escherichia coli/classification , Humans , Rotavirus/immunology , Rotavirus Infections/immunology , Swine
5.
Vet Res ; 50(1): 101, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31783923

ABSTRACT

Vitamin A (VA) has pleiotropic effects on the immune system and is critical for mucosal immune function and intestinal lymphocyte trafficking. We hypothesized that oral VA supplementation of porcine epidemic diarrhea virus (PEDV)-infected pregnant gilts would enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge. Gilts received daily oral retinyl acetate (30 000 IU) starting at gestation day 76 throughout lactation. At 3-4 weeks pre-partum, VA-supplemented (PEDV + VA) and non-supplemented (PEDV) gilts were PEDV or mock inoculated (mock + VA and mock, respectively). PEDV + VA gilts had decreased mean PEDV RNA shedding titers and diarrhea scores. To determine if lactogenic immunity correlated with protection, all piglets were PEDV-challenged at 3-5 days post-partum. The survival rate of PEDV + VA litters was 74.2% compared with 55.9% in PEDV litters. Mock and mock + VA litter survival rates were 5.7% and 8.3%, respectively. PEDV + VA gilts had increased PEDV IgA antibody secreting cells and PEDV IgA antibodies in serum pre-partum and IgA+ß7+ (gut homing) cells in milk post piglet challenge compared with PEDV gilts. Our findings suggest that oral VA supplementation may act as an adjuvant during pregnancy, enhancing maternal IgA and lactogenic immune protection in nursing piglets.


Subject(s)
Immunity, Maternally-Acquired/immunology , Immunoglobulin A/immunology , Sus scrofa/immunology , Vitamin A/metabolism , Vitamins/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Porcine epidemic diarrhea virus/immunology , Random Allocation , Vitamin A/administration & dosage , Vitamins/administration & dosage
6.
Vaccine ; 32(7): 816-24, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24380684

ABSTRACT

Vitamin A deficiency (VAD) is associated with increased childhood mortality and morbidity in impoverished Asian and African countries, but the impact of VAD on rotavirus (RV) vaccine or infection is poorly understood. We assessed effects of gestational and dietary induced pre- and post-natal VAD and vitamin A supplementation on immune responses to a pentavalent rotavirus vaccine, RotaTeq(®) in a neonatal gnotobiotic pig model. Vaccine efficacy was assessed against virulent G1P[8] human rotavirus (HRV) challenge. VAD and vitamin A sufficient (VAS) piglets were derived from dietary VAD and VAS sows, respectively. VAD piglets had significantly lower levels of hepatic vitamin A compared to that of VAS piglets. RotaTeq(®)-vaccinated VAD piglets had 350-fold higher fecal virus shedding titers compared to vaccinated VAS piglets post-challenge. Only 25% of vaccinated non-vitamin A supplemented VAD piglets were protected against diarrhea compared with 100% protection rate in vaccinated non-supplemented VAS piglets post-challenge. Intestinal HRV specific immune responses were compromised in VAD piglets. Vaccinated VAD piglets had significantly lower ileal HRV IgG antibody secreting cell (ASC) responses (pre-challenge) and duodenal HRV IgA ASC responses (post-challenge) compared to vaccinated VAS piglets. Also, intestinal HRV IgA antibody titers were 11-fold lower in vaccinated VAD compared to vaccinated VAS piglets post-challenge. Persistently elevated levels of IL-8, a pro-inflammatory mediator, and lower IL-10 responses (anti-inflammatory) in vaccinated VAD compared to VAS piglets suggest more severe inflammatory responses in VAD piglets post-challenge. Moreover higher IFN-γ responses pre-challenge were observed in VAD compared to VAS piglets. The impaired vaccine-specific intestinal antibody responses and decreased immunoregulatory cytokine responses coincided with reduced protective efficacy of the RV vaccine against virulent HRV challenge in VAD piglets. In conclusion, VAD impaired antibody responses to RotaTeq(®) and vaccine efficacy. Oral supplementation of 100,000 IU vitamin A concurrent with RV vaccine failed to increase the vaccine efficacy in VAD piglets.


Subject(s)
Adaptive Immunity , Rotavirus Infections/prevention & control , Rotavirus Vaccines/immunology , Vitamin A Deficiency/complications , Animals , Animals, Newborn/immunology , Antibodies, Viral/immunology , Diarrhea/prevention & control , Diarrhea/virology , Dietary Supplements , Disease Models, Animal , Female , Germ-Free Life , Immunoglobulin A/immunology , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-8/immunology , Intestines/immunology , Rotavirus Infections/immunology , Swine , Vaccines, Attenuated/immunology , Vitamin A/administration & dosage , Vitamin A Deficiency/immunology
7.
PLoS One ; 8(12): e82966, 2013.
Article in English | MEDLINE | ID: mdl-24312675

ABSTRACT

Rotaviruses (RV) are a major cause of gastroenteritis in children. Widespread vitamin A deficiency is associated with reduced efficacy of vaccines and higher incidence of diarrheal infections in children in developing countries. We established a vitamin A deficient (VAD) gnotobiotic piglet model that mimics subclinical vitamin A deficiency in children to study its effects on an oral human rotavirus (HRV) vaccine and virulent HRV challenge. Piglets derived from VAD and vitamin A sufficient (VAS) sows were orally vaccinated with attenuated HRV or mock, with/without supplemental vitamin A and challenged with virulent HRV. Unvaccinated VAD control piglets had significantly lower hepatic vitamin A, higher severity and duration of diarrhea and HRV fecal shedding post-challenge as compared to VAS control pigs. Reduced protection coincided with significantly higher innate (IFNα) cytokine and CD8 T cell frequencies in the blood and intestinal tissues, higher pro-inflammatory (IL12) and 2-3 fold lower anti-inflammatory (IL10) cytokines, in VAD compared to VAS control pigs. Vaccinated VAD pigs had higher diarrhea severity scores compared to vaccinated VAS pigs, which coincided with lower serum IgA HRV antibody titers and significantly lower intestinal IgA antibody secreting cells post-challenge in the former groups suggesting lower anamnestic responses. A trend for higher serum HRV IgG antibodies was observed in VAD vs VAS vaccinated groups post-challenge. The vaccinated VAD (non-vitamin A supplemented) pigs had significantly higher serum IL12 (PID2) and IFNγ (PID6) compared to vaccinated VAS groups suggesting higher Th1 responses in VAD conditions. Furthermore, regulatory T-cell responses were compromised in VAD pigs. Supplemental vitamin A in VAD pigs did not fully restore the dysregulated immune responses to AttHRV vaccine or moderate virulent HRV diarrhea. Our findings suggest that that VAD in children in developing countries may partially contribute to more severe rotavirus infection and lower HRV vaccine efficacy.


Subject(s)
B-Lymphocytes/immunology , Rotavirus Vaccines/immunology , Rotavirus/immunology , T-Lymphocytes/immunology , Vitamin A Deficiency/immunology , Vitamin A Deficiency/physiopathology , Animals , CD8-Positive T-Lymphocytes/metabolism , Humans , Interferon-alpha/metabolism , Interleukin-10/metabolism , Interleukin-12/metabolism , Rotavirus/pathogenicity , Swine , Vitamin A Deficiency/metabolism
8.
Am J Vet Res ; 74(10): 1353-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24066921

ABSTRACT

OBJECTIVE: To investigate effects of low dietary vitamin A content on antibody responses in feedlot calves inoculated with an inactivated bovine coronavirus (BCoV) vaccine. ANIMALS: 40 feedlot calves. PROCEDURES: Calves were fed diets containing high (3,300 U/kg) or low (1,100 U/kg) amounts of vitamin A beginning on the day of arrival at a feedlot (day 0) and continuing daily until the end of the study (day 140). Serum retinol concentrations were evaluated in blood samples obtained throughout the study. Calves were inoculated IM with an inactivated BCoV vaccine on days 112 and 126. Blood samples obtained on days 112 and 140 were used for assessment of BCoV-specific serum IgG1, IgG2, IgM, and IgA titers via an ELISA. RESULTS: The low vitamin A diet reduced serum retinol concentrations between days 112 and 140. After the BCoV inoculation and booster injections, predominantly serum IgG1 antibodies were induced in calves fed the high vitamin A diet; however, IgG1 titers were compromised at day 140 in calves fed the low vitamin A diet. Other isotype antibodies specific for BCoV were not affected by the low vitamin A diet. CONCLUSIONS AND CLINICAL RELEVANCE: Dietary vitamin A restriction increases marbling in feedlot cattle; however, its effect on antibody responses to vaccines is unknown. A low vitamin A diet compromised the serum IgG1 responses against inactivated BCoV vaccine, which suggested suppressed T-helper 2-associated antibody (IgG1) responses. Thus, low vitamin A diets may compromise the effectiveness of viral vaccines and render calves more susceptible to infectious disease.


Subject(s)
Antibodies, Viral/drug effects , Cattle/immunology , Coronavirus, Bovine/immunology , Dietary Supplements , Vaccines, Inactivated/immunology , Vitamin A/pharmacology , Animals , DNA Primers/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , Immunoglobulin G/blood , Injections, Intramuscular/veterinary , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Statistics, Nonparametric , Vaccines, Inactivated/administration & dosage , Vitamin A/blood
9.
Vaccine ; 31(15): 1916-23, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23453730

ABSTRACT

Breast milk (colostrum [col]/milk) components and gut commensals play important roles in neonatal immune maturation, establishment of gut homeostasis and immune responses to enteric pathogens and oral vaccines. We investigated the impact of colonization by probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) with/without col/milk (mimicking breast/formula fed infants) on B lymphocyte responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine in a neonatal gnotobiotic pig model. Col/milk did not affect probiotic colonization in AttHRV vaccinated pigs. However, unvaccinated pigs fed col/milk shed higher numbers of probiotic bacteria in feces than non-col/milk fed colonized controls. In AttHRV vaccinated pigs, col/milk feeding with probiotic treatment resulted in higher mean serum IgA HRV antibody titers and intestinal IgA antibody secreting cell (ASC) numbers compared to col/milk fed, non-colonized vaccinated pigs. In vaccinated pigs without col/milk, probiotic colonization did not affect IgA HRV antibody titers, but serum IgG HRV antibody titers and gut IgG ASC numbers were lower, suggesting that certain probiotics differentially impact HRV vaccine responses. Our findings suggest that col/milk components (soluble mediators) affect initial probiotic colonization, and together, they modulate neonatal antibody responses to oral AttHRV vaccine in complex ways.


Subject(s)
Animals, Newborn/immunology , Colostrum/immunology , Immunity, Humoral/immunology , Milk, Human/immunology , Probiotics/pharmacology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Rotavirus/immunology , Administration, Oral , Animals , Animals, Newborn/microbiology , B-Lymphocytes/immunology , Bifidobacterium/immunology , Bifidobacterium/physiology , Colony Count, Microbial , Colostrum/chemistry , Feces/microbiology , Female , Germ-Free Life , Humans , Immunoglobulin A/analysis , Immunoglobulin A/immunology , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Intestines/immunology , Intestines/microbiology , Lacticaseibacillus rhamnosus/immunology , Lacticaseibacillus rhamnosus/physiology , Milk, Human/chemistry , Models, Animal , Probiotics/administration & dosage , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Sus scrofa/immunology , Sus scrofa/microbiology , Transforming Growth Factor beta/blood , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
10.
J Immunol ; 190(9): 4742-53, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23536630

ABSTRACT

We examined how prenatally acquired vitamin A deficiency (VAD) modulates innate immune responses and human rotavirus (HRV) vaccine efficacy in a gnotobiotic (Gn) piglet model of HRV diarrhea. The VAD and vitamin A-sufficient (VAS) Gn pigs were vaccinated with attenuated HRV (AttHRV) with or without concurrent oral vitamin A supplementation (100,000 IU) and challenged with virulent HRV (VirHRV). Regardless of vaccination status, the numbers of conventional and plasmacytoid dendritic cells (cDCs and pDCs) were higher in VAD piglets prechallenge, but decreased substantially postchallenge as compared with VAS pigs. We observed significantly higher frequency of CD103 (integrin αEß7) expressing DCs in VAS versus VAD piglets postchallenge, indicating that VAD may interfere with homing (including intestinal) phenotype acquisition. Post-VirHRV challenge, we observed longer and more pronounced diarrhea and higher VirHRV fecal titers in nonvaccinated VAD piglets. Consistent with higher VirHRV shedding titers, higher IFN-α levels were induced in control VAD versus VAS piglet sera at postchallenge day 2. Ex vivo HRV-stimulated mononuclear cells (MNCs) isolated from spleen and blood of VAD pigs prechallenge also produced more IFN-α. In contrast, at postchallenge day 10, we observed reduced IFN-α levels in VAD pigs that coincided with decreased TLR3(+) MNC frequencies. Numbers of necrotic MNCs were higher in VAD pigs in spleen (coincident with splenomegaly in other VAD animals) prechallenge and intestinal tissues (coincident with higher VirHRV induced intestinal damage) postchallenge. Thus, prenatal VAD caused an imbalance in innate immune responses and exacerbated VirHRV infection, whereas vitamin A supplementation failed to compensate for these VAD effects.


Subject(s)
Germ-Free Life/immunology , Immunity, Innate/immunology , Rotavirus Infections/immunology , Rotavirus/immunology , Vitamin A Deficiency/congenital , Vitamin A Deficiency/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Apoptosis/immunology , Diarrhea/immunology , Diarrhea/metabolism , Diarrhea/virology , Disease Models, Animal , Female , Humans , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Intestinal Mucosa/metabolism , Intestines/immunology , Intestines/virology , Liver/immunology , Liver/metabolism , Liver/virology , Pregnancy , Receptors, Retinoic Acid/immunology , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha , Retinol-Binding Proteins, Plasma/immunology , Retinol-Binding Proteins, Plasma/metabolism , Rotavirus Infections/metabolism , Rotavirus Infections/virology , Spleen/immunology , Spleen/metabolism , Spleen/virology , Swine , Vitamin A Deficiency/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL