Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Environ Monit Assess ; 196(4): 371, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489120

ABSTRACT

Crop cultivation suitability plays a vital role in determining the distribution, quality, and production of crop and can be greatly affected by climate change. Therefore, evaluating crop cultivation suitability under climate change and identifying the factors influencing it can optimize crop cultivation layout and improve production and quality. Based on comprehensive datasets including geographical distribution points, climate data, soil characteristics, and topography, our study employed the MaxEnt model to simulate the potential distribution of Pu'er tea (Camellia sinensis var. assamica) cultivation suitability in Yunnan Province from 1961 to 2020. Furthermore, we assessed the consistency between the simulated suitable areas and the actual production of Pu'er tea. The results showed that precipitation of the warmest quarter, precipitation of the driest month, and average temperature in January were the three dominant environmental variables affecting the cultivation distribution of Pu'er tea. The high suitable areas for Pu'er tea cultivation in Yunnan Province were mainly distributed in the western and southern regions, accounting for 13.89% of the total area of Yunnan Province. The medium suitable areas are mainly distributed in the central and western regions of Yunnan Province, accounting for 20.07% of the total area of Yunnan Province. Over the past 60 years, the unsuitable area for Pu'er tea has increased, while the suitable area has shown a trend of migration to the southwest. Changes in precipitation and temperature were found to be the main drivers of the changes in the distribution of suitable areas for Pu'er tea. We also found a mismatch between the cultivation suitability and the actual production of Pu'er tea. Our study provides an accurate assessment and zoning analysis of the suitability of Pu'er tea cultivation in Yunnan Province, which can help optimize the layout of Pu'er tea cultivation and reduce potential climate risks.


Subject(s)
Camellia sinensis , Tea , China , Environmental Monitoring , Temperature
2.
Food Sci Nutr ; 12(3): 2104-2114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455174

ABSTRACT

This study (ISRCTN17174559) aimed to explore the efficacy and safety of a kind of herbal porridge (Hou Gu Mi Xi) on the clinical symptoms of functional dyspepsia (FD). This was a single-center, single-dose, prospective, double-blind, randomized controlled trial involving 64 participants with FD (35 cases and 29 controls) for 2 months of intervention and 1 month of follow-up. The 7-point Global Overall Symptom Scale (GOSS), 36-Item Short Form Survey (SF-36), and other indicators were assessed at baseline (day 0), at days 15, 30, and 60 of treatment, and at follow-up 1 month after the end of the intervention. Many participants with FD achieved remission of their epigastric symptoms at follow-up on the 90th day after treatment with herbal porridge compared to the placebo group (45.71% vs. 20.69%, p = .036). Furthermore, herbal porridge appeared to be effective in improving the quality of life of participants with FD, which was reflected in the rising SF-36 scores for physical role, bodily pain, emotional role, and mental health. Although adverse events were reported, there was no overall difference in the number of adverse events between the two groups (p = .578). Herbal porridge is another effective and safe method for improving the symptoms and quality of life in patients with FD.

3.
J Nutr Biochem ; 125: 109563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38176622

ABSTRACT

Selenomethionine (SeMet) as the main form of daily dietary selenium, occupies essential roles in providing antioxidant and anti-inflammatory properties, which alleviates inflammatory liver damage. N6-methyladenosine (m6A) is one of the most prevalent and abundant internal transcriptional modifications that regulate gene expression. To investigate the protective mechanism of SeMet on liver injury and the regulatory effect of m6A methylation modification, we established the model by supplementing dietary SeMet, and LPS as stimulus in laying hens. LMH cells were intervened with SeMet (0.075 µM) and/or LPS (60 µg/mL). Subsequently, histopathology and ultrastructure of liver were observed. Western Blot, qRT-PCR, colorimetry, MeRIP-qPCR, fluorescent probe staining and AO/EB were used to detect total m6A methylation level, m6A methylation level of Nrf2, ROS, inflammatory and necroptosis factors. Studies showed that SeMet suppressed LPS-induced upregulation of total m6A methylation levels and METTL3 expression. Interestingly, SeMet reduced the m6A methylation level of Nrf2, activated antioxidant pathways and alleviated oxidative stress. LMH cells were transfected with 50 µm siMETTL3. SeMet/SiMETTL3 reversed the LPS-induced reduction in Nrf2 mRNA stability, slowed down its degradation rate. Moreover, LPS induced oxidative stress, led to necroptosis and activated NF-κB to promote the expression of inflammatory factors. SeMet/SiMETTL3 alleviated LPS-induced necroptosis and inflammation. Altogether, SeMet enhanced antioxidant and anti-inflammatory capacity by reducing METTL3-mediated m6A methylation levels of Nrf2, ultimately alleviating liver damage. Our findings provided new insights and therapeutic target for the practical application of dietary SeMet in the treatment and prevention of liver inflammation, and supplied a reference for comparative medicine.


Subject(s)
Antioxidants , Selenomethionine , Animals , Female , Selenomethionine/pharmacology , Antioxidants/metabolism , Signal Transduction , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/metabolism , Chickens , Necroptosis , Oxidative Stress , Liver/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Methylation
4.
Biol Trace Elem Res ; 202(4): 1722-1740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37422542

ABSTRACT

Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.


Subject(s)
Benzhydryl Compounds , MicroRNAs , Phenols , Selenium , Animals , Apoptosis , Chickens/metabolism , Inflammation/chemically induced , MicroRNAs/genetics , MicroRNAs/metabolism , Necroptosis , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Tumor Necrosis Factor , Receptors, Tumor Necrosis Factor, Type I/metabolism , Selenium/metabolism
5.
Sci Total Environ ; 913: 169730, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160834

ABSTRACT

Bisphenol A (BPA) is a phenolic organic synthetic compound that is used as the raw material of polycarbonate plastics, and its safety issues have recently attracted wide attention. Selenium (Se) deficiency has gradually developed into a global disease affecting intestinal function via oxidative stress and apoptosis. However, the toxic effects and potential mechanisms of BPA exposure and Se deficiency in the chicken intestines have not been studied. In this study, BPA exposure and/or Se deficiency models were established in vivo and in vitro to investigate the effects of Se deficiency and BPA on chicken jejunum. The results showed that BPA exposure and/or Se deficiency increased jejunum oxidative stress and DNA damage, activated P53 pathway, led to mitochondrial dysfunction, and induced apoptosis and cell cycle arrest. Using protein-protein molecular docking, we found a strong binding ability between P53 and peroxisome proliferator-activated receptor γ coactivator-1, thereby regulating mitochondrial dysfunctional apoptosis. In addition, we used N-acetyl-L-cysteine and pifithrin-α for in vitro intervention and found that N-acetyl-L-cysteine and pifithrin-α intervention reversed the aforementioned adverse effects. This study clarified the potential mechanism by which Se deficiency exacerbates BPA induced intestinal injury in chickens through reactive oxygen species/P53, which provides a new idea for the study of environmental combined toxicity of Se deficiency, and insights into animal intestinal health from a new perspective.


Subject(s)
Benzhydryl Compounds , Benzothiazoles , Phenols , Selenium , Toluene/analogs & derivatives , Animals , Reactive Oxygen Species/metabolism , Selenium/toxicity , Selenium/metabolism , Chickens/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylcysteine/pharmacology , Molecular Docking Simulation , Oxidative Stress , Intestines , Apoptosis , Cell Cycle Checkpoints
6.
Phytomedicine ; 123: 155242, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100922

ABSTRACT

BACKGROUND: This study employed a meta-analysis to evaluate the efficacy and safety of adjunctive treatment with injectable Lentinan (LNT) in combination with chemotherapy for gastric cancer (GC). METHODS: Computer-based searches of 6 databases were performed to identify randomized controlled trials (RCTs) relevant to the treatment of GC with LNT through mid-March 2023. Two independent researchers performed risk of bias assessment and trial sequential analysis(TSA), extracted the data and used Revman 5.3 software for data analysis. The certainty of evidence was graded based on the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. RESULTS: A total of 31 RCTs with 2729 patients were included in the analysis. The results revealed that adjunctive therapy with LNT was associated with improved treatment efficacy (RR = 1.48, 95%CI: 1.36 ∼ 1.61, p < 0.00001), improvement in clusters of differentiation (CD3+, CD4+, and CD4+/CD8+), natural killer (NK) cells, and quality of life assessment (RR = 1.32, 95%CI: 1.20 ∼ 1.45, p < 0.00001) compared to using chemotherapy alone. In addition, there was a reduction in CD8+ levels, incidence of white blood cell decline, gastrointestinal reactions, and platelet decline. TSA results indicated that there was sufficient evidence to draw firm conclusions about these outcomes, and the GRADE scores showed 'high' or 'moderate' quality of evidence for these outcomes. CONCLUSION: The efficacy of treatment of GC with LNT in combination with chemotherapy was found to be better than chemotherapy alone. And no serious adverse effects were observed. However, further RCTs are needed to further validate the results of this study.


Subject(s)
Lentinan , Stomach Neoplasms , Humans , Lentinan/pharmacology , Stomach Neoplasms/drug therapy , Treatment Outcome
7.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5707-5718, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114167

ABSTRACT

Sleep occupies one-third of a person's lifetime and is a necessary condition for maintaining physiological function and health. With the increase in social and economic pressures, the growing use of electronic devices and the accelerated aging process of the population, insufficient sleep and its hazards have drawn widespread attention from researchers in China and abroad. Sleep deprivation refers to a decrease in sleep or a severe lack of sleep due to various reasons. Previous studies have found that sleep deprivation can cause extensive damage to the body, including an increased incidence and mortality rate of neuropathic diseases in the brain, cardiovascular diseases, imbalances in the gut microbiota, and other multi-organ diseases. The mechanisms underlying the occurrence of multi-system and multi-organ diseases due to sleep deprivation mainly involve oxidative stress, inflammatory responses, and impaired immune function in the body. According to traditional Chinese medicine(TCM), sleep deprivation falls into the category of sleepiness, and long-term sleepiness leads to Yin-Yang imbalance, resulting in the consumption of Qi and damage to the five Zang-organs. The appropriate treatment should focus on tonifying deficiency, reinforcing healthy Qi, and harmonizing Yin and Yang. TCM is characterized by a wide variety and abundant resources, and it has minimal side effects and a broad range of applications. Numerous studies have shown that TCM drugs and prescriptions not only improve sleep but also have beneficial effects on liver nourishment, intelligence enhancement, and kidney tonification, effectively preventing and treating the body injury caused by sleep deprivation. Given the increasing prevalence of sleep deprivation and its significant impact on body health, this article reviewed sleep deprivation-mediated body injury and its mechanism, summarized and categorized TCM compound prescriptions and single drugs for preventing and treating body injury, with the aim of laying the foundation for researchers to develop effective drugs for preventing and treating body injury caused by sleep deprivation and providing references for further exploration of the molecular mechanisms underlying the body injury caused by sleep deprivation.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Sleepiness , Yin-Yang , China , Drugs, Chinese Herbal/therapeutic use
8.
Sci Total Environ ; 899: 165521, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37467994

ABSTRACT

The molecular and metabolic mechanisms of foliar selenium (Se) nanoparticles (SeNPs) application in mitigating cadmium (Cd) toxicity in crops have not been well studied. Herein, hydroponically cultured maize seedlings were exposed to Cd (20 µM) and treated without and with foliar SeNPs application. Effects of SeNPs on Cd transporter genes and plant metabolism were also explored. Results showed that compared to control plants without Cd exposure, Cd exposure decreased shoot height (16.8 %), root length (17.7 %), and fresh weight of root (24.2 %), stem (28.8 %), and foliar-applied leaves (Se-leaves) (15.0 %) via oxidative damage. Compared to Cd exposure alone, foliar SeNPs application at 20 mg/L (0.25 mg/plant) significantly alleviated the Cd toxicity by promoting photosynthesis and antioxidant capacity and fixing Cd in cell wall. Meanwhile, the mineral concentration of Ca (26.0 %), Fe (55.4 %), Mg (27.0 %), Na (28.6 %), and Zn (10.1 %) in Se-leaves was improved via foliar SeNPs application at 20 mg/L. QRT-PCR analysis further revealed that down- and up-regulation of the expression of ZmHMA2 and ZmHMA3 gene in Se-leaves contributed to reduced translocation of Cd in plants and enhanced Cd sequestration in the vacuole, respectively. Metabolomic results further indicated that metabolic pathways including carbohydrate metabolism, membrane transport, translation, amino acid metabolism, and energy metabolism were significantly affected by foliar SeNPs application. In conclusion, foliar SeNPs application at 20 mg/L could be a prospective strategy to mitigate Cd toxicity in maize.


Subject(s)
Nanoparticles , Selenium , Soil Pollutants , Antioxidants/metabolism , Selenium/metabolism , Cadmium/analysis , Seedlings , Zea mays/metabolism , Metabolomics , Gene Expression , Soil Pollutants/analysis
9.
Medicine (Baltimore) ; 102(29): e34030, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37478234

ABSTRACT

BACKGROUND: To investigate the potential active ingredients and possible mechanisms of Shujin Tongluo granules (SJTLG) in the treatment of cervical spondylosis (CS) by network pharmacology and molecular docking. METHODS: The active ingredients and potential targets of SJTLG were obtained through databases such as traditional Chinese medicine system (TCMSP) and BATMAN-traditional Chinese medicine (TCM), and the relevant human targets of CS were identified through databases such as OMIM, GeneCards, and DisGeNET. The intersection targets were imported into STRING for protein-protein interaction (PPI) analysis. The obtained data were imported into Cytoscape 3.9.0 software for visualization, and module analysis was performed using the MCODE plug-in. The representative targets were screened through the Metascape website for pathway enrichment analysis in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Cytoscape software was used to build networks such as "drug-compound-target" and "drug-compound-target-pathway." Finally, the key targets were selected for molecular docking with the corresponding compounds by Autodock Tools 1.5.7 and visualized by PyMol. RESULTS: A total of 132 active compounds and 996 targets from SJTLG and 678 targets from CS were screened with 116 intersection targets. The key targets were AKT1, GAPDH, ALB, IL-6, TP53, TNF, VEGFA, IL-1ß, EGFR, HSP90AA1, ESR1, and JUN. The results of GO and KEGG enrichment analysis showed that the treatment of CS was mainly related to biological processes such as cellular response to nitrogen compound, cellular response to organonitrogen compound, and positive regulation of locomotion, and the targets were mainly focused on pathways in cancer, Kaposi sarcoma-associated herpesvirus infection, PI3K-Akt signaling pathway, lipid, and atherosclerosis. Molecular docking results showed that the minimum binding energy between the core targets and the corresponding compound was <-5.0 kcal·mol-1. CONCLUSION: This study preliminarily elucidates the potential active ingredients and mechanism of anti-inflammatory, analgesic, microcirculation improvement, vasodilation, osteoporosis inhibition and nerve nutrition effects of SJTLG in the treatment of CS and provides a reference for its clinical application.


Subject(s)
Drugs, Chinese Herbal , Spondylosis , Humans , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Network Pharmacology , Spondylosis/drug therapy
10.
Ann Transl Med ; 11(6): 250, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37082661

ABSTRACT

Background: Platelets play important roles in several physiological and pathological processes. Multiple antiplatelet drugs have been developed for clinical practice. The active components of traditional Chinese medicine with antithrombotic effects are promising drugs to modulate platelet function. In our study, the antiplatelet effect of isoliquiritigenin (ILTG) and its mechanisms were examined. Methods: Human platelet-rich plasma and a washed platelet suspension were prepared. Platelets were stimulated using collagen, thrombin, or adenosine diphosphate (ADP). The platelet lumi-aggregometer was applied to detect the aggregation of platelets and the release of adenosine triphosphate (ATP). The expression of P-selectin and the activation of integrin αIIbß3 were detected using flow cytometry. The spreading of platelets on a fibrinogen-coated surface was visualized using immunofluorescent staining. The mechanisms of the antiplatelet effect were investigated using Western blotting. Results: In this study, ILTG inhibited collagen- and thrombin-induced platelet aggregation, the release of dense granules and α-granules, and the activation of integrin αIIbß3 in a dose-dependent manner. In addition, ILTG suppressed the spreading of platelets on immobilized fibrinogen. In collagen-activated platelets, ILTG markedly inhibited the expression of phosphorylation of phospholipase C gamma-2 (PLCγ2) and protein kinase B (Akt). Conclusions: These results indicated that ILTG could inhibit the collagen- and thrombin-induced platelet aggregation and granule release via the glycoprotein VI-mediated signal pathway in vitro.

11.
Sci Total Environ ; 863: 161031, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36549534

ABSTRACT

A variety of chemicals discharged into the aquatic environment by the wastewater treatment plant (WWTP), which is a potential source of hazard to the ecological environment and human health. This study established a novel analytical method for all compounds using non-targeted screening to comprehensively explore the fate and transport of organic compounds from WWTP to aquatic environment. 3967 and 3636 features were detected in WWTP samples and river samples, respectively. Multi-level classification was applied to all identified compounds, and results showed that aliphatics were dominant in both abundance and response, accounting for an average of 35.49 % and 74.10 %, respectively. A total of 88 Emerging Contaminants (ECs), including 22 endocrine disrupting chemicals (EDCs), 12 pharmaceuticals and personal care products (PPCPs), 12 pesticides, 10 volatile organic compounds (VOCs), 5 persistent organic pollutants (POPs) and 27 chemicals with other uses, were identified from all compounds, and their traceability analysis was performed. Furthermore, the contribution rate of organic compounds from WWTP effluent to river was calculated to be 33.60 % by the analysis of source-sink relationship. An in-depth and comprehensive exploration of the fate and transport of all organic compounds will help to provide guidelines for the treatment technologies and achieve the traceability of pollutants.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Organic Chemicals , Water Purification/methods , Wastewater , Environmental Monitoring/methods , Pharmaceutical Preparations
12.
J Ethnopharmacol ; 302(Pt A): 115878, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36341814

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qian Yang Yu Yin granules (QYYYG) have a long history in the treatment of hypertensive renal damage (HRD) in China. Clinical studies have found that QYYYG stabilizes blood pressure and prevents early renal damage. However, the exact mechanism is not entirely clear. AIM OF THE STUDY: To evaluate the therapeutic effect and further explore the therapeutic mechanism of QYYYG against HRD. MATERIALS AND METHODS: The efficacy of QYYYG in treating HRD was assessed in spontaneous hypertension rats (SHR). Renal autophagy and the TRPC6-CaMKKß-AMPK pathway in rats were evaluated. The regulatory role of QYYYG in angiotensin II (Ang II) induced abnormal autophagy in rat podocytes was determined by detecting autophagy-related proteins, intracellular Ca2+ content, and the TRPC6-CaMKKß-AMPK-mTOR pathway expressions. Finally, we established a stable rat podocyte cell line overexpressing TRPC6 and used the cells to verify the regulatory effects of QYYYG. RESULTS: QYYYG alleviated HRD and reversed the abnormal expression of autophagy-related genes in the SHR. In vitro, QYYYG protected against Ang II-induced podocyte damage. Furthermore, treatment of podocytes with QYYYG reversed Ang II-induced autophagy and inhibited Ang II-stimulated TRPC6 activation, Ca2+ influx and activation CaMKKß-AMPK pathway. Overexpression of TRPC6 resulted in pronounced activation of CaMKKß, AMPK, and autophagy induction in rat podocytes, which were significantly attenuated by QYYYG. CONCLUSIONS: The present study suggested that QYYYG may exert its HRD protective effects in part by regulating the abnormal autophagy of podocytes through the TRPC6-CaMKKß-AMPK-mTOR pathway.


Subject(s)
Hypertension , Podocytes , Animals , Rats , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , TRPC6 Cation Channel/metabolism , AMP-Activated Protein Kinases/metabolism , Calcium/metabolism , Autophagy , TOR Serine-Threonine Kinases/metabolism , Angiotensin II/metabolism , Hypertension/drug therapy , Hypertension/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , TRPC Cation Channels/pharmacology
13.
J Integr Med ; 20(6): 477-487, 2022 11.
Article in English | MEDLINE | ID: mdl-36182651

ABSTRACT

Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thousands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and examination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM by constructing the heterogeneous network relationship of "herb-compound-target-pathway," which corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network pharmacology, the efficiency and accuracy of active compound screening and target fishing have been improved at an unprecedented pace. This review dissects the core innovations to the network pharmacology approach that were developed in the years since 2015 and highlights how this tool has been applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Network Pharmacology , Medicine, Chinese Traditional/methods , Treatment Outcome
14.
Acta Biomater ; 148: 218-229, 2022 08.
Article in English | MEDLINE | ID: mdl-35705171

ABSTRACT

Triple negative breast cancer (TNBC) is highly malignant and prone to recurrence and metastasis. Patients with TNBC usually have poor prognosis. Hence, it is urgent to develop new comprehensive treatments for TNBC. The combination of heat shock protein (HSP) inhibitor and the photothermal agent can reduce the temperature required to kill tumor cells, thus achieving mild-temperature photothermal therapy (PTT). Compared with traditional PTT, mild-temperature PTT not only decreases tumor thermoresistance introduced by the overexpression of HSP, but also reduces the damage to normal tissues. Meanwhile, Azo initiator 2,2-azobis[2-(2-imidazolin-2-yl) propane]-dihydroch-loride (AIPH) can be thermally decomposed to generate oxygen-independent free radicals. Herein, a new therapeutic multifunctional nanoplatform (M-17AAG-AIPH) by loading heat shock protein 90 (HSP90) inhibitor (17AAG) and AIPH incorporated into mesoporous polydopamine (MPDA) was successfully constructed for mild-temperature PTT combined with oxygen-independent cytotoxic free radicals against TNBC. Under 808 nm laser irradiation, the mild-temperature PTT arising from the combined effects of 17AAG and MPDA induced a rapid release and decomposition of AIPH, promoting the apoptosis of cancer cells in hypoxic microenvironments. Both in vitro and in vivo results showed that the designed nanoplatform can significantly inhibit tumor growth and provided an efficient new therapeutic strategy for TNBC. STATEMENT OF SIGNIFICANCE: There is still an urgent need for new strategies for the treatment of triple negative breast cancer (TNBC). In this work, we successfully constructed a new therapeutic multifunctional nanoplatform (M-17AAG-AIPH) by co-carrying heat shock protein 90 (HSP90) inhibitor (17AAG) and AIPH on mesoporous polydopamine (MPDA). MPDA owned good biocompatibility and outstanding photothermal-conversion ability. The loading of 17AAG can reduce the heat resistance of tumor cells via specifically inhibiting the activity of HSP90, so as to achieve mild-temperature PTT. Meanwhile, 17AAG and MPDA mediated mild-temperature PTT promoted the decomposition of AIPH into oxygen-independent cytotoxic free radicals. Both in vitro and in vivo results showed that M-17AAG-AIPH can significantly inhibit tumor growth and provided an efficient new therapeutic strategy for TNBC.


Subject(s)
Antineoplastic Agents , Hyperthermia, Induced , Nanoparticles , Triple Negative Breast Neoplasms , Cell Line, Tumor , Free Radicals , Heat-Shock Proteins , Humans , Hyperthermia, Induced/methods , Nanoparticles/chemistry , Oxygen , Phototherapy/methods , Photothermal Therapy , Temperature , Triple Negative Breast Neoplasms/therapy , Tumor Microenvironment
15.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1754-1764, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534246

ABSTRACT

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-ß-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Flavonoids , Plant Roots
16.
J Ovarian Res ; 15(1): 40, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379295

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproduction. The Cuscuta-Salvia formula has been widely used to treat for PCOS in clinic. However, its chemical and pharmacological properties remain unclear. We identified the active components and related targets of Cuscuta-Salvia using UHPLC-ESI-Q-TOF-MS and TCMSP database. Disease targets were obtained from the DisGeNET and GeneCards databases. Subsequently, common targets between Cuscuta-Salvia and PCOS were identified using a Venn diagram. PPI network was established. Core genes were selected using a Cytoscape software plugin. GO and KEGG enrichment analyses were performed for common targets using the "pathview" package in R. Several core targets were verified using molecular and Immunological methods. By combining UHPLC-ESI-Q-TOF-MS with a network pharmacology study, 14 active components and a total of 80 common targets were obtained. Ten core genes were regulated by Cuscuta-Salvia in PCOS, including IL6, AKT1, VEGFA, TP53, TNF, MAPK1, JUN, EGF, CASP3, and EGFR. GO results showed that cellular response to drugs, response to oxygen levels, response lipopolysaccharides, and response to molecule of bacterial origin in BP category; membrane, transcription regulator complex, nuclear chromatin, postsynaptic membrane, and vesicle lumen in CC category; DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, DNA-binding transcription activator activity, RNA polymerase II-specific, DNA-binding transcription activator activity, and cytokine receptor binding in MF terms. The KEGG enrichment pathway was mainly involved in the PI3K - Akt, MAPK, TNF, IL-17 signalling pathways, and in cellular senescence. Furthermore, the results of the experimental study showed that Cuscuta-Salvia ameliorated the pathological changes in the ovaries, liver and adipose tissue. And it improved the expressions of the genes or proteins. Our results demonstrate that Cuscuta-Salvia may provide a novel pharmacological basis in an experimental model of PCOS by regulating gene expression. This study provides a basis for future research and clinical applications.


Subject(s)
Cuscuta , Polycystic Ovary Syndrome , Salvia , Gene Expression Regulation , Network Pharmacology , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism
17.
Proc Natl Acad Sci U S A ; 119(11): e2119415119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35259018

ABSTRACT

SignificanceHosts often target the relatively conserved regions in rapidly mutating retroviruses to inhibit their replication. One of these regions is called a primer binding site (PBS), which has to be complementary to the host tRNA to initiate reverse transcription. By analyzing endogenous retroviral elements, we found that host cells use this sequence as a target in efforts to block the expression of viral elements. A specific type of zinc finger protein targets the PBS in a host genome, which not only inhibits the transcription of endogenous viruses but also inhibits the replication of exogenous retroviruses with the same PBS. Thus, our study sheds light on a strategy for searching for host restriction factors targeting retroviruses.


Subject(s)
Gene Expression Regulation, Viral , Host-Pathogen Interactions , RNA, Viral/genetics , RNA, Viral/metabolism , Repressor Proteins/metabolism , Retroviridae/physiology , Zinc Fingers , Base Sequence , Binding Sites , Chromosome Mapping , Endogenous Retroviruses , Genome-Wide Association Study , Humans , Nucleotide Motifs , Retroviridae/classification , Transcription, Genetic , Virus Replication
18.
Micromachines (Basel) ; 13(3)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35334662

ABSTRACT

In the theory of traditional Chinese medicine, acupoints refer to special points and areas on the meridian line of the human body. Traditional Chinese medicine believes that the application of unique techniques such as pressing, kneading, rubbing, pushing, and patting to acupoints or massage with the help of specific tools has the effects of promoting blood circulation, dredging meridians, and eliminating fatigue. At present, most automatic massage devices are for large-area massage of the trunk, and few are specifically for acupoint massage of the limbs. First, this paper analyzes the characteristics of traditional Chinese medical acupoint massage and then obtains the design index of an automatic acupoint massage device. After that, based on the principle of a series elastic actuating mechanism, a flexible uni-acupoint massage device and control system, imitating the acupoint massage technique of traditional Chinese medicine, were designed. In order to analyze the massage force of the massage device, the man-machine contact dynamic model of the massage device was established, and the force of the massage device was simulated and analyzed. Finally, an experimental platform was built to verify the massage force and massage process of the massage device. The experimental results show that the massage device designed in this paper meets the indexes of traditional Chinese medical massage, in terms of the massage process and massage force, and verify the rationality of the design.

19.
Eur Heart J ; 43(17): 1652-1664, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35139535

ABSTRACT

AIMS: Tetrahydrobiopterin (BH4) is a critical determinant of the biological function of endothelial nitric oxide synthase. The present study was to investigate the role of valvular endothelial cell (VEC)-derived BH4 in aortic valve calcification. METHODS AND RESULTS: Plasma and aortic valve BH4 concentrations and the BH4:BH2 ratio were significantly lower in calcific aortic valve disease patients than in controls. There was a significant decrease of the two key enzymes of BH4 biosynthesis, guanosine 5'-triphosphate cyclohydrolase I (GCH1) and dihydrofolate reductase (DHFR), in calcified aortic valves compared with the normal ones. Endothelial cell-specific deficiency of Gch1 in Apoe-/- (Apoe-/-Gch1fl/flTie2Cre) mice showed a marked increase in transvalvular peak jet velocity, calcium deposition, runt-related transcription factor 2 (Runx2), dihydroethidium (DHE), and 3-nitrotyrosine (3-NT) levels in aortic valve leaflets compared with Apoe-/-Gch1fl/fl mice after a 24-week western diet (WD) challenge. Oxidized LDL (ox-LDL) induced osteoblastic differentiation of valvular interstitial cells (VICs) co-cultured with either si-GCH1- or si-DHFR-transfected VECs, while the effects could be abolished by BH4 supplementation. Deficiency of BH4 in VECs caused peroxynitrite formation increase and 3-NT protein increase under ox-LDL stimulation in VICs. SIN-1, the peroxynitrite generator, significantly up-regulated alkaline phosphatase (ALP) and Runx2 expression in VICs via tyrosine nitration of dynamin-related protein 1 (DRP1) at Y628. Finally, folic acid (FA) significantly attenuated aortic valve calcification in WD-fed Apoe-/- mice through increasing DHFR and salvaging BH4 biosynthesis. CONCLUSION: The reduction in endothelial-dependent BH4 levels promoted peroxynitrite formation, which subsequently resulted in DRP1 tyrosine nitration and osteoblastic differentiation of VICs, thereby leading to aortic valve calcification. Supplementation of FA in diet attenuated hypercholesterolaemia-induced aortic valve calcification by salvaging BH4 bioavailability.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/prevention & control , Apolipoproteins E/metabolism , Biopterins/analogs & derivatives , Calcinosis/metabolism , Calcinosis/prevention & control , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Endothelial Cells/metabolism , GTP Cyclohydrolase/metabolism , Humans , Mice , Peroxynitrous Acid/metabolism , Tyrosine/metabolism
20.
Food Chem ; 377: 131853, 2022 May 30.
Article in English | MEDLINE | ID: mdl-34990948

ABSTRACT

Osmanthus fragrans (Thunb.) Lour. has been cultivated in China for over 2500 years. Due to the unique and strong fragrance, O. fragrans flowers have long been added into food, tea, and beverages. Not only the O. fragrans flowers, but also leaves, barks, roots, and fruits possess some beneficial effects such as relieving pain and alleviating cough in Traditional Chinese Medicine. Modern pharmacological researches demonstrated that O. fragrans possesses a broad spectrum of biological activities including antioxidant, neuroprotective, antidiabetic and anticancer activities etc. A large number of phytochemicals identified in O. fragrans are responsible for its health promoting and disease preventing effects. The components of volatile compounds in O. fragrans are complex but the content is less abundant. The present review mainly focuses on the bioactive ingredients identified from O. fragrans, the therapeutic effects of O. fragrans and its applications in food, cosmetics and medicines.


Subject(s)
Oleaceae , Dietary Supplements , Flowers , Odorants , Phytochemicals
SELECTION OF CITATIONS
SEARCH DETAIL