Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5900-5907, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472009

ABSTRACT

This study was designed to determine the inhibitory effect of astragaloside Ⅳ(AS-Ⅳ), a principal bioactive component extracted from the Chinese medicinal Astragali Radix, on the inflammatory response of vascular endothelial cells induced by angiotensin Ⅱ(Ang Ⅱ), the most major pathogenic factor for cardiovascular diseases, and to clarify the role of calcium(Ca~(2+))/phosphatidylinosi-tol-3-kinase(PI3K)/protein kinase B(Akt)/endothelial nitric oxide synthase(eNOS)/nitric oxide(NO) pathway in the process. To be specific, human umbilical vein endothelial cells(HUVECs) were cultured in the presence of AS-Ⅳ with or without the specific inhibitor of NO synthase(NG-monomethyl-L-arginine, L-NMMA), inhibitor of PI3K/Akt signaling pathway(LY294002), or Ca~(2+)-chelating agent(ethylene glycol tetraacetic acid, EGTA) prior to Ang Ⅱ stimulation. The inhibitory effect of AS-Ⅳ on Ang Ⅱ-induced inflammatory response and the involved mechanism was determined with enzyme-linked immunosorbent assay(ELISA), cell-based ELISA assay, Western blot, and monocyte adhesion assay which determined the fluorescently labeled human monocytic cell line(THP-1) adhered to Ang Ⅱ-stimulated endothelial cells. AS-Ⅳ increased the production of NO by HUVECs in a dose-and time-dependent manner(P<0.05) and raised the level of phosphorylated eNOS(P<0.05). The above AS-Ⅳ-induced changes were abolished by pretreatment with L-NMMA, LY294002, or EGTA. Compared with the control group, Ang Ⅱ obviously enhanced the production and release of cytokines(tumor necrosis factor-α, interleukin-6), chemokines(monocyte chemoattractant protein-1) and adhesion molecules(intercellular adhesion molecule-1, vascular cellular adhesion molecule-1), and the number of monocytes adhered to HUVECs(P<0.05), which were accompanied by the enhanced levels of phosphorylated inhibitor of nuclear factor-κBα protein and activities of nuclear factor-κB(NF-κB)(P<0.05). This study also demonstrated that Ang Ⅱ-induced inflammatory response was inhibited by pretreatment with AS-Ⅳ(P<0.05). In addition, the inhibitory effect of AS-Ⅳ was abrogated by pretreatment with L-NMMA, LY294002, or EGTA(P<0.05). This study provides a direct link between AS-Ⅳ and Ca~(2+)/PI3K/Akt/eNOS/NO pathway in AS-Ⅳ-mediated anti-inflammatory actions in endothelial cells exposed to Ang Ⅱ. The results indicate that AS-Ⅳ attenuates endothelial cell-mediated inflammatory response induced by Ang Ⅱ via the activation of Ca~(2+)/PI3K/Akt/eNOS/NO signaling pathway.


Subject(s)
Angiotensin II , Proto-Oncogene Proteins c-akt , Humans , Angiotensin II/metabolism , Angiotensin II/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , omega-N-Methylarginine/metabolism , omega-N-Methylarginine/pharmacology , Egtazic Acid/metabolism , Egtazic Acid/pharmacology , Human Umbilical Vein Endothelial Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide/metabolism , Cells, Cultured
2.
Curr Ther Res Clin Exp ; 97: 100683, 2022.
Article in English | MEDLINE | ID: mdl-35989981

ABSTRACT

Background: Endothelial inflammation triggered by oxidized LDL (ox-LDL) is a crucial mechanism involved in atherosclerosis. Triptolide (TP), a primary active ingredient of the traditional Chinese medicine Tripterygium wilfordii Hook F, possesses antioxidant and anti-inflammatory properties in vivo. However, limited information is available regarding these effects on endothelial inflammation occurring in atherosclerosis. Objectives: This study investigated the effects and possible mechanisms of action of TP on ox-LDL-induced inflammatory responses in human umbilical vein endothelial cells. Methods: Human umbilical vein endothelial cells were preincubated with TP at the indicated concentrations for 1 hour and then incubated with ox-LDL (50 µg/mL) for the indicated times. Results: Preincubation of cultured human umbilical vein endothelial cells with TP inhibited ox-LDL-induced cytokine and chemokine production, adhesion molecule expression, and monocyte adhesion in a concentration-dependent manner. The concentrations of 8-isoprostane, malondialdehyde, and superoxide increased after human umbilical vein endothelial cells were exposed to ox-LDL, which were associated with decreased activities of total superoxide dismutase and its isoenzyme (ie, CuZn- superoxide dismutase). Preincubation with TP reversed ox-LDL-induced effects in all events. Moreover, preincubation with TP also attenuated ox-LDL-induced nuclear factor-kappa B transcriptional activation in a concentration-dependent manner, via the suppression of inhibitor of kappa Balpha (IκBα) phosphorylation and subsequent nuclear factor-kappa B DNA binding. Conclusions: These data indicate that TP inhibits ox-LDL-induced endothelial inflammation, possibly via suppression of the oxidative stress-dependent activation of the nuclear factor-kappa B signaling pathway.

3.
Front Plant Sci ; 12: 781236, 2021.
Article in English | MEDLINE | ID: mdl-34956277

ABSTRACT

Secondary metabolites (SMs) found in medicinal plants are one of main sources of drugs, cosmetics, and health products. With the increase in demand for these bioactive compounds, improving the content and yield of SMs in medicinal plants has become increasingly important. The content and distribution of SMs in medicinal plants are closely related to environmental factors, especially light. In recent years, artificial light sources have been used in controlled environments for the production and conservation of medicinal germplasm. Therefore, it is essential to elucidate how light affects the accumulation of SMs in different plant species. Here, we systematically summarize recent advances in our understanding of the regulatory roles of light quality, light intensity, and photoperiod in the biosynthesis of three main types of SMs (polyphenols, alkaloids, and terpenoids), and the underlying mechanisms. This article provides a detailed overview of the role of light signaling pathways in SM biosynthesis, which will further promote the application of artificial light sources in medicinal plant production.

4.
Article in English | MEDLINE | ID: mdl-33564318

ABSTRACT

Shenfuyixin granule (SFYXG, i.e., Xinshuaikang granule) is a prescription, commonly used in the clinical experience, which plays a significant role in the treatment of heart failure. The purpose of this present research was to investigate the protective effect of SFYXG, and the mechanism about anti-H2O2-induced oxidative stress and apoptosis in the neonatal rat cardiomyocytes. Myocardial cells, as is well known, were divided into 4 groups: normal, model, SFYXG, and coenzyme Q10 group, respectively. Cells viability was determined by MTT assay. Flow cytometry and AO/EB staining were implemented to test the apoptosis rate and intracellular reactive oxygen species (ROS) level. Mitochondrion membrane potential (MMP) was evaluated by JC-1 fluorescence probe method. The myocardial ultrastructure of mitochondrion was measured by electron microscope. The related mRNA expression levels of Bax, Bcl-2, Caspase-3, caspase-8, and caspase-9 were detected by real-time polymerase chain reaction (PCR). Also, the expression levels of Bax and Bcl-2 protein were detected by Western blot, and the expression levels of caspase-3, caspase-8, and caspase-9 protein were tested by caspase-Glo®3 Assay, caspase-Glo®8 Assay, and caspase-Glo®9 Assay, respectively. GAPDH was used as the internal reference gene/protein. The results revealed that SFYXG (0.5 mg/ml) raised the viability of myocardial cell, weakened the apoptosis rate and ROS level, corrected the mitochondrion membrane potential stability, and improved cell morphology and ultrastructure of myocardial mitochondrion. Furthermore, SFYXG upregulated the antiapoptosis gene of Bcl-2, but downregulated the proapoptosis genes of Bax, caspase-3, and caspase-9. In conclusion, SFYXG could appear to attenuate myocardial injury by its antioxidative and antiapoptosis effect.

5.
Int Immunopharmacol ; 89(Pt A): 107035, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33045566

ABSTRACT

BACKGROUND: Triptolide (TP), a principal bioactive component of traditional Chinese medicine Tripterygium wilfordii Hook. F., has been shown to have immunosuppressive/anti-inflammatory actions in vitro. Moreover, it is well established that inflammatory mechanisms contribute to the progression of hypertension-induced renal injury. Therefore, this study was performed to determine the protective effects of TP on renal injury in salt-sensitive hypertension and to identify the possible mechanisms for TP-induced protection. METHODS: Ten-week-old male C57BL/6 mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment with or without intraperitoneal administration of various concentrations of TP. RESULTS: Five weeks after the treatment, systolic blood pressure measured by tail-cuff plethysmography increased in DOCA-salt-treated mice, but no difference was found between DOCA-salt-treated mice with or without TP treatment. Treatment with TP dose-dependently attenuated increments in urinary albumin and 8-isoprostane excretion, and glomerulosclerosis and tubulointerstitial injury and fibrosis in DOCA-salt-treated mice. Moreover, our data showed that treatment with TP dose-dependently inhibited DOCA-salt-induced interstitial monocyte/macrophage infiltration associated with decreases in renal levels of proinflammatory cytokine/chemokine and adhesion molecule, as well as renal activated NF-κB concentrations. Our results also demonstrated that suppression of inflammatory responses with dexamethasone, an immunosuppressive agent, alleviated DOCA-salt hypertension-induced renal injury. CONCLUSIONS: TP treatment induced renal protection associated with inhibition of monocyte/macrophage-mediated inflammatory responses without lowering blood pressure. Thus, our data for the first time indicate that TP treatment ameliorates renal injury possibly via attenuating inflammatory responses in salt-sensitive hypertension.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Hypertension/drug therapy , Kidney Diseases/prevention & control , Kidney/drug effects , Phenanthrenes/pharmacology , Animals , Cell Adhesion Molecules/metabolism , Cytokines/metabolism , Desoxycorticosterone Acetate , Disease Models, Animal , Epoxy Compounds/pharmacology , Hypertension/etiology , Hypertension/immunology , Hypertension/metabolism , Inflammation Mediators/metabolism , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/immunology , Kidney Diseases/metabolism , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Nephrectomy , Signal Transduction , Sodium Chloride, Dietary
6.
BMC Complement Altern Med ; 19(1): 198, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375092

ABSTRACT

BACKGROUND: Endothelial cell inflammation is a central event in the pathogenesis of numerous cardiovascular diseases, including sepsis and atherosclerosis. Triptolide, a principal bioactive ingredient of Traditional Chinese Medicine Tripterygium wilfordii Hook.F., displays anti-inflammatory actions in vivo. However, the mechanisms underlying these beneficial effects remain undetermined. The present study investigated the effects and possible mechanisms of triptolide on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs). METHODS: The effects of triptolide on the LPS-induced production and expression of inflammatory molecules, monocyte adhesion and activation of nuclear factor (NF)-κB pathway were examined in cultured HUVECs. RESULTS: In cultured HUVECs, pre-treatment with triptolide dose-dependently attenuated LPS-induced cytokine and chemokine production, adhesion molecule expression and monocyte adhesion. Mechanistically, triptolide was found to dose-dependently inhibit the LPS-induced increases in the DNA binding activity of NF-κB p65 associated with attenuating IκBα phosphorylation and its degradation. Additionally, the present study revealed that triptolide inhibited LPS-triggered NF-κB transcriptional activation in a dose-dependent manner. CONCLUSIONS: The results of the present study indicated that triptolide suppresses the inflammatory response of endothelial cells possibly via inhibition of NF-κB activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Drugs, Chinese Herbal/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , NF-kappa B/immunology , Phenanthrenes/pharmacology , Tripterygium/chemistry , Epoxy Compounds/pharmacology , Human Umbilical Vein Endothelial Cells/immunology , Humans , Lipopolysaccharides/adverse effects , Monocytes/drug effects , Monocytes/immunology , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/immunology , NF-kappa B/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
7.
Article in English | MEDLINE | ID: mdl-30800167

ABSTRACT

Guizhi Gancao Decoction (GGD) is a well-known traditional Chinese herbal medicine for the treatment of various cardiovascular diseases, such as myocardial ischemia-reperfusion (I/R) injury and arrhythmia. However, the mechanism by which GGD contributes to the amelioration of cardiac injury remains unclear. The aim of this study was to investigate the potential protective role of GGD against myocardial I/R injury and its possible mechanism. Consistent with the effect of the positive drug (Trimetazidine, TMZ), we subsequently validated that GGD could ameliorate myocardial I/R injury as evidenced by histopathological examination and triphenyltetrazolium chloride (TTC) staining. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated that GGD suppressed myocardial apoptosis, which may be related to the upregulation of Bcl-2, PPARα, and PPARγ and downregulation of Bax, caspase-3, and caspase-9. Pretreatment with GGD attenuated the levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 6, and IL-1ß in serum by inhibiting Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. These results indicated that GGD exhibits cardioprotective effects on myocardial I/R injury through inhibition of the TLR4/NF-κB signaling pathway, which led to reduced inflammatory response and the subsequent cardiomyocyte apoptosis.

8.
Molecules ; 23(7)2018 Jul 21.
Article in English | MEDLINE | ID: mdl-30037115

ABSTRACT

Brassica napus L. is rich in phenolic components and it has natural antioxidant characteristics which are important to human health. In the present study, the total phenolic and flavonoid contents of developing seeds of yellow- and black-seeded B. napus were compared. Both phenolic and flavonoid contents were significantly higher at 5 weeks after flowering (WAF) in black seeds (6.44 ± 0.97 mg EE/g phenolics and 3.78 ± 0.05 mg EE/g flavonoids) than yellow seeds (2.80 ± 0.13 mg/g phenolics and 0.83 ± 0.01 mg/g flavonoids). HPLC⁻DAD⁻ESI/MS analysis revealed different content of 56 phenolic components between yellow and black-seeded B. napus, including kaempferol-3-O-glucoside, isorhamnetin-3-O-glucoside, quercetin-3-O-sophoroside, procyanidin B2 ([DP 2]), which were significantly reduced in yellow seeds compared with black seeds. Applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical assay, we found maximum clearance of DPPH and ABTS in the late developmental stages of yellow and black seeds. Additionally, the ferric reducing antioxidant power (FRAP) value maximized at 5 WAF in black seeds (432.52 ± 69.98 µmol Fe (II)/g DW) and 6 WAF in yellow seeds (274.08 ± 2.40 µmol Fe (II)/g DW). Generally, antioxidant ability was significantly reduced in yellow-seeded B. napus compared to black rapeseed, and positive correlations between antioxidation and flavonoid content were found in both yellow- and black-seeded B. napus.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Brassica napus/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Spectrometry, Mass, Electrospray Ionization
9.
Mol Med Rep ; 14(2): 1610-6, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27315199

ABSTRACT

Jia-Shen decoction (JSD) is a traditional Chinese medicine, which is used widely to treat chronic heart failure. However, the underlying mechanism remains to be elucidated. The present study aimed to investigate the mechanism underlying the effects of JSD on cardiac fibroblast (CF) proliferation and differentiation. The CFs were obtained from the hearts of neonatal (1­3­day old) Sprague­Dawley rats and treated with JSD-medicated serum (JSDS) with or without angiotensin II (Ang II). Cell proliferation was assessed using Cell Counting Kit­8 reagent. In addition, the mRNA expression levels of transforming growth factor­ß1 (TGF­ß1) and phosphorylated small mothers against decapentaplegic (p­Smad)2/3 and their protein expression levels were analyzed. CF proliferation was significantly increased in the Ang II­treated group, compared with the control group (P<0.05). The expression levels of collagen, α­smooth muscle actin, TGF­ß1 and p­Smad2/3 were also increased in the Ang II­treated group (P<0.05). Following JSDS treatment, the increased levels of collagen and cell proliferation were inhibited, and the increased expression levels of p­Smad2 and p­Smad3 were also inhibited (P<0.05). These data suggested that JSDS may inhibit CF proliferation via attenuating the TGF­ß1/Smad signaling pathway.


Subject(s)
Angiotensin II/metabolism , Drugs, Chinese Herbal/pharmacology , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Animals, Newborn , Cell Proliferation/drug effects , Cells, Cultured , Collagen/metabolism , Gene Expression Regulation/drug effects , Rats , Smad Proteins/genetics , Transforming Growth Factor beta1/genetics
10.
Chin J Integr Med ; 21(6): 417-22, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24817316

ABSTRACT

OBJECTIVE: To evaluate the effects of Jiashen Prescription (, JSP) on myocardial infarction (MI) size and cardiac function at the early stage of MI in rats. METHODS: One hundred male Sprague-Dawley rats were subjected to sham-operation or MI induced by ligating the left anterior descending coronary artery. The rats with MI were treated with vehicle, JSP 3 and 6 g/(kg·d), or losartan 10 mg/(kg·d) for 1 week. RESULTS: Compared with the vehicle-treated MI rats, 6 g/(kg·d) JSP reduced MI size 3 days after MI (P<0.05), and attenuated the MI-induced increases in left ventricular end-diastolic and end-systolic dimension and decreases in fractional shortening and ejection fraction 1 week after MI (P<0.05). In addition, 6 g/(kg·d) JSP and losartan were equally effective in reducing MI size and enhancing cardiac functional recovery. CONCLUSION: JSP reduces MI size and improves cardiac function after MI, suggesting that JSP has potential as a therapy for MI.


Subject(s)
Cardiotonic Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Myocardial Infarction/drug therapy , Animals , Body Weight , Heart Function Tests , Male , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Organ Size , Rats, Sprague-Dawley , Survival Analysis , Ultrasonography
11.
J Agric Food Chem ; 62(46): 11254-63, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25373551

ABSTRACT

High-amylose cereal starches usually have heterogeneous starch granules in morphological structure. In the present study, the polygonal, aggregate, elongated, and hollow starch granules were separated from different regions of the kernels of high-amylose rice, and their structures were investigated. The results showed that the polygonal starch granules had low amylose content and high short branch-chain and branching degree of amylopectin, and exhibited A-type crystallinity. The aggregate starch granules had high long branch-chain of amylopectin, relative crystallinity, and double helix content, and exhibited C-type crystallinity. The elongated starch granules had high amylose content and low branching degree of amylopectin and relative crystallinity, and exhibited C-type crystallinity. The hollow starch granules had very high amylose content, proportion of amorphous conformation, and amylose-lipid complex, and very low branch-chain of amylopectin, branching degree of amylopectin, and double helix content, and exhibited no crystallinity. The different structures of heterogeneous starch granules from high-amylose rice resulted in significantly different thermal properties.


Subject(s)
Amylose/chemistry , Oryza/chemistry , Plant Extracts/chemistry , Crystallization , Starch/chemistry , X-Ray Diffraction
12.
J Agric Food Chem ; 62(13): 2935-45, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24620834

ABSTRACT

A comprehensive description of flavonoids and hydroxycinnamic acid derivatives in Brassica napus L. var. napus seeds is important to improve rapeseed quality. HPLC-PDA-ESI(-)-MS(n)/HRMS has been broadly applied to study phenolic compounds in plants. In the present study, crude phenolic compounds extracted from rapeseed were subjected to column chromatography, alkaline hydrolysis, and HPLC-PDA-ESI(-)-MS(n)/HRMS analysis. A total of 91 flavonoids and hydroxycinnamic acid derivatives were detected, including 39 kaempferol derivatives, 11 isorhamnetin derivatives, 5 quercetin derivatives, 6 flavanols and their oligomers, and 30 hydroxycinnamic acid derivatives. A total of 78 of these compounds were tentatively identified; of these, 55 were reported for the first time in B. napus L. var. napus and 24 were detected for the first time in the genus Brassica. This research enriches our knowledge of the phenolic composition of rapeseed and provides a reliable guide for the selection of rapeseed with valuable breeding potential.


Subject(s)
Brassica napus/chemistry , Coumaric Acids/chemistry , Flavonoids/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
13.
Curr Microbiol ; 67(4): 431-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23680974

ABSTRACT

Patchouli alcohol (PA) is a kind of methanol extracted from traditional Chinese medicine Pogostemonis Herba. Our research aimed to observe the anti-influenza virus role of PA in vitro. 16HBE (human respiratory epithelial cell) was infected by H1N1 (A/FM1/1/47) to set the cell model. Then the 16HBE was co-cultivated with three kinds of immune cells: dendritic cells, macrophages, and monocytes, PA (the concentration is 10 µg/mL) was added as a treatment intervention for 24 h. The immune cells and the supernate were collected for RT-PCR and ELISA detection related to RLH (RIG-1-like helicases) pathway. Results showed that the IL-4 and IFN-γ in supernate were increased after H1N1 infection, and the PA treatment suppressed the expression of cytokines and the mRNA of RLH pathway. PA anti-influenza virus may through regulate the RLH singal pathway.


Subject(s)
Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Immunologic Factors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/immunology , RNA Helicases/immunology , Sesquiterpenes/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/drug therapy , Influenza, Human/enzymology , Influenza, Human/virology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Macrophages/drug effects , Macrophages/immunology , RNA Helicases/genetics , Signal Transduction/drug effects
14.
Article in English | MEDLINE | ID: mdl-17346127

ABSTRACT

Hypertension is a major risk factor leading to devastating cardiovascular events such as myocardial infarction, stroke, heart failure, and renal failure. Despite intensive research in this area, mechanisms underlying essential hypertension remain to be defined. Accumulating evidence indicates that neural components including both sympathetic and sensory nerves innervating the cardiovascular and renal tissues play a key role in regulating water and sodium homeostasis and blood pressure, and that abnormalities in these nervous systems contribute to increased salt sensitivity and development of hypertension. In contrast to relatively well-defined sympathetic nervous system, the role of sensory nerves in the control of cardiovascular homeostasis is largely unknown. Data from our laboratory show that degeneration of capsaicin-sensitive sensory nerves renders a rat salt sensitive in terms of blood pressure regulation. Evidence is also available indicating that sensory nerves, in interacting with other neurohormonal systems including the sympathetic nervous system, the renin-angiotensin aldosterone system, the endothelin system, and superoxide, regulate cardiovascular and renal function in such that they play a counter-balancing role in preventing salt-induced increases in blood pressure under pathophysiological conditions. Altered activity of the sensory nervous system, a condition existed in both genetic and experimental models of hypertension, contributes to the development of hypertension. This article focuses on reviewing the current knowledge regarding the possible role of sensory nerves in regulating blood pressure homeostasis as well as the function and regulation of novel molecules expressed in sensory nerves.


Subject(s)
Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Capsaicin/pharmacology , Hypertension/drug therapy , Neurons, Afferent/drug effects , Animals , Arachidonic Acids/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Endocannabinoids , Endothelins/physiology , Humans , Hypertension/physiopathology , Polyunsaturated Alkamides/pharmacology , Reactive Oxygen Species/metabolism , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Sodium, Dietary/adverse effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , TRPV Cation Channels/drug effects , TRPV Cation Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL