Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Chem Biodivers ; 21(6): e202301858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608202

ABSTRACT

Limeum indicum has been widely utilized in traditional medicine but no experimental work has been done on this herb. The primary objective of this study was to conduct a phytochemical analysis and assess the multifunctional capabilities of aforementioned plant in dual therapy for Alzheimer's disease (AD) and Type 2 diabetes (T2D). The phytochemical screening of ethanol, methanol extract, and their derived fractions of Limeum indicum was conducted using GC-MS, HPLC, UV-analysis and FTIR. The antioxidant capacity was evaluated by DPPH method. The inhibitory potential of the extracts/fractions against α-, ß-glucosidase acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoaminine oxidases (MAO-A & B) was evaluated. Results revealed that acetonitrile fraction has highest inhibitory potential against α-glucosidase (IC50=68.47±0.05 µg/mL), methanol extract against ß-glucosidase (IC50=91.12±0.07 µg/mL), ethyl acetate fraction against AChE (IC50=59.0±0.02 µg/mL), ethanol extract against BChE (28.41±0.01 µg/mL), n-hexane fraction against MAO-A (IC50=150.5±0.31 µg/mL) and methanol extract for MAO-B (IC50=75.95±0.13 µg/mL). The docking analysis of extracts\fractions suggested the best binding scores within the active pocket of the respective enzymes. During the in-vivo investigation, ethanol extract produced hypoglycemic effect (134.52±2.79 and 119.38±1.40 mg/dl) after 21 days treatment at dose level of 250 and 500 mg/Kg. Histopathological findings further supported the in-vivo studies.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Butyrylcholinesterase , Gas Chromatography-Mass Spectrometry , Hypoglycemic Agents , Molecular Docking Simulation , Monoamine Oxidase , Phytochemicals , Plant Extracts , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Monoamine Oxidase/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Male , alpha-Glucosidases/metabolism , Rats , beta-Glucosidase/antagonists & inhibitors , beta-Glucosidase/metabolism , Humans
2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004418

ABSTRACT

The presence of ammonium ions in urine, along with basic pH in the presence of urease-producing bacteria, promotes the production of struvite stones. This causes renal malfunction, which is manifested by symptoms such as fever, nausea, vomiting, and blood in the urine. The involvement of urease in stone formation makes it a good target for finding urease enzyme inhibitors, which have the potential to be developed as lead drugs against kidney stones in the future. The documented ethnopharmacology of coumarin 2-one against bacterial, fungal and viral strains encouraged us to synthesize new derivatives of coumarins by reacting aromatic aldehydes with 4-aminocoumarin. The synthesized compounds (2a to 11a) were evaluated for their antimicrobial, in vitro, and in silico properties against the urease enzyme. The study also covers in vivo determination of the synthesized compounds with respect to different types of induced ulcers. The molecular docking study along with extended MD simulations (100 ns each) and MMPBSA study confirmed the potential inhibitory candidates as evident from computed ∆Gbind (3a = -11.62 and 5a = -12.08 Kcal/mol) against the urease enzyme. The in silico analyses were augmented by an enzymatic assay, which revealed that compounds 3a and 5a had strong inhibitory action, with IC50 of 0.412 µM (64.0% inhibition) and 0.322 µM (77.7% inhibition), respectively, compared to standard (Thiourea) with 82% inhibition at 0.14 µM. Moreover, the most active compound, 5a, was further tested in vivo for antiulcer activity by different types of induced ulcers, including pyloric ligation-, ethanol-, aspirin-, and histamine-induced ulcers. Compound 5a effectively reduced gastric acidity, lipid peroxidation, and ulceration in a rat model while also inhibiting gastric ATPase activity, which makes it a promising candidate for ulcer treatment. As a result of the current research, 3a and 5a may be used as new molecules for developing potent urease inhibitors. Additionally, the compound 3a showed antibacterial activity against Staphylococcus aureus and Salmonella typhimurium, with zones of inhibition of 41 ± 0.9 mm and 35 ± 0.9 mm, respectively. Compound 7a showed antibacterial activity against Staphylococcus aureus and Salmonella typhimurium, with zones of inhibition of 30 ± 0.8 mm and 42 ± 0.8 mm, respectively. These results prove that the synthesized compounds also possess good antibacterial potential against Gram-positive and Gram-negative bacterial strains.

3.
RSC Adv ; 13(41): 28773-28784, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37790109

ABSTRACT

Cassia occidentalis L. is widely used in indigenous and traditional medicine, but its impact on multi-drug resistant (MDR) bacterial infections mostly remains unknown. Therefore, this study aimed to evaluate the in vitro antibacterial efficiency of methanol and ethyl acetate extracts of C. occidentalis L. leaves (MECOL and EAECOL) against multi-drug resistant Pseudomonas aeruginosa and to identify potential antibacterial agents through computational studies targeting the LasR protein. Initially, 82 compounds were identified using GC-MS analysis, and the functional groups were determined through FT-IR analysis. Both extracts of the plant exhibited dose-dependent antibacterial activity, with MICs of 104.16 ± 36.08 µg mL-1 for MECOL and 83.33 ± 36.08 µg mL-1 for EAECOL, and an MBC of 125 µg mL-1. Among the 82 compounds, 12 potential compounds were identified based on binding scores using molecular docking with the LasR protein and MM-GBSA analysis. Furthermore, screening for ADME properties, including physicochemical features, water solubility, lipophilicity, RO5 compliance, and toxicity, identified the top three compounds: methyl dihydrojasmonate, methyl benzoate, and 4a-methyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone, which also demonstrated binding affinity with the active site residues of the LpxC protein of the bacteria. Additionally, molecular dynamics (MD) simulations confirmed the binding reliability of these three phytochemicals to LasR's active pocket, comparable to the protein native inhibitory ligands (C12-HSL). The study offers scientific support for the traditional use of C. occidentalis in treating bacterial infections, highlighting the potential of the three compounds as leads for developing LasR inhibitors to combat multi-drug resistant P. aeruginosa.

4.
Molecules ; 27(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35956953

ABSTRACT

(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1-3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1-3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 µΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 µΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 µΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1-3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard.


Subject(s)
Achillea , Urease , Achillea/metabolism , Acrylates , Canavalia , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Plant Extracts/pharmacology , Saccharomyces cerevisiae/metabolism , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Thiourea/chemistry , alpha-Glucosidases/metabolism
5.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209054

ABSTRACT

The interaction between erlotinib (ERL) and bovine serum albumin (BSA) was studied in the presence of quercetin (QUR), a flavonoid with antioxidant properties. Ligands bind to the transport protein BSA resulting in competition between different ligands and displacing a bound ligand, resulting in higher plasma concentrations. Therefore, various spectroscopic experiments were conducted in addition to in silico studies to evaluate the interaction behavior of the BSA-ERL system in the presence and absence of QUR. The quenching curve and binding constants values suggest competition between QUR and ERL to bind to BSA. The binding constant for the BSA-ERL system decreased from 2.07 × 104 to 0.02 × 102 in the presence of QUR. The interaction of ERL with BSA at Site II is ruled out based on the site marker studies. The suggested Site on BSA for interaction with ERL is Site I. Stability of the BSA-ERL system was established with molecular dynamic simulation studies for both Site I and Site III interaction. In addition, the analysis can significantly help evaluate the effect of various quercetin-containing foods and supplements during the ERL-treatment regimen. In vitro binding evaluation provides a cheaper alternative approach to investigate ligand-protein interaction before clinical studies.


Subject(s)
Carrier Proteins/chemistry , Drug Interactions , Erlotinib Hydrochloride/chemistry , Erlotinib Hydrochloride/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quercetin/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Carrier Proteins/antagonists & inhibitors , Models, Molecular , Molecular Conformation , Protein Binding , Quercetin/pharmacology , Spectrum Analysis , Structure-Activity Relationship
6.
Saudi J Biol Sci ; 28(8): 4191-4200, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34354399

ABSTRACT

In the field of nano-biotechnology, silver nanoparticles (AgNPs) share a status of high repute owing to their remarkable medicinal values. Biological synthesis of environment-friendly AgNPs using plant extracts has emerged as the beneficial alternative approach to chemical synthesis. In the current study, we have synthesized biogenic silver nanoparticles (PG-AgNPs) using the peel extract of Punica granatum as a reducing and stabilizing agent. The as-synthesized PG-AgNPs were characterized and evaluated for their antibacterial and anticancer potential. UV-Visible spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of biogenic PG-AgNPs. The antibacterial potential was assessed against the biofilm of Listeria monocytogenes. The PG-AgNPs were efficacious against sessile bacteria and their biofilm as well. The as-synthesized nanoparticles at sub-MIC values showed dose-dependent inhibition of biofilm formation. Corroborating results were observed under crystal violet assay, Congo red staining, Confocal microscopy and SEM analysis. The anticancer ability of the nanoparticles was evaluated against MDA-MB-231 metastatic breast cancer cells. As evident from the MTT results, PG-AgNPs significantly reduced the cell viability in a dose-dependent manner. Exposure of MDA-MB-231 cells led to the accumulation of reactive oxygen species (ROS). Morphological changes and DNA fragmentation showed the strong positive effect of PG-AgNPs on the induction of apoptosis. Collectively, the as-synthesized PG-AgNPs evolved with synergistically emerged attributes that were effective against L. monocytogenes and also inhibited its biofilm formation; moreover, the system displayed lower cytotoxic manifestation towards mammalian cells. In addition, the PG-AgNPs embodies intriguing anticancer potential against metastatic breast cancer cells.

7.
Biomed Res Int ; 2019: 9096404, 2019.
Article in English | MEDLINE | ID: mdl-31032366

ABSTRACT

Tartrazine, an azo dye used in food, cosmetics, and pharmaceuticals with the effects on cell cycle, is not well understood. Therefore, we investigated the toxicity of tartrazine in rat brain with high-dose aspirin. Male Wistar rats (n = 24) were divided into (C) control, (T) tartrazine (700 mg/kg body weight [BW] at weeks 1 and 2), (A) aspirin (150 mg/kg [BW] at weeks 1, 2, and 3), and (TA) aspirin + tartrazine (150 mg/kg [BW] aspirin at weeks 1, 2, and 3 and 700 mg/kg [BW] tartrazine at weeks 1 and 2) groups. The expression of p53, B cell lymphoma-2 extra-large (Bcl-xL), cyclin-dependent kinase 2 (CDK2), p27, and Ki67 was evaluated by quantitative reverse-transcription PCR. A histopathological analysis of brain tissue and oxidative stress level was assessed based on reduced glutathione (GSH), ascorbic acid (AA), and malondialdehyde levels. We found that Bcl-xL, Ki67, CDK2, and p27 were upregulated and p53 was downregulated in the tartrazine-treated group as compared to the control group. Aspirin administration reversed these changes except P53 expression. Tartrazine had no effect on lipid peroxidation but altered AA and GSH levels with no reversal by aspirin treatment. Histopathological analysis revealed that aspirin prevented tartrazine-induced damage including increased perivascular space and hemorrhage. These results indicate that aspirin protects the brain from tartrazine-induced toxicity independent of p53 signaling and antioxidant mechanisms.


Subject(s)
Aspirin/administration & dosage , Cell Cycle/drug effects , Oxidative Stress/drug effects , Tumor Suppressor Protein p53/genetics , Animals , Antioxidants/administration & dosage , Brain/drug effects , Brain/metabolism , Brain/pathology , Cyclin-Dependent Kinase 2/genetics , Dose-Response Relationship, Drug , Gene Expression Regulation , Glutathione/genetics , Humans , Ki-67 Antigen/genetics , Lipid Peroxidation/drug effects , Malondialdehyde , Rats , Rats, Wistar , Signal Transduction/drug effects , Tartrazine/toxicity , bcl-X Protein/genetics
8.
BMC Complement Altern Med ; 18(1): 106, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29566693

ABSTRACT

BACKGROUND: Dependence on antipsycotic drugs like aripriprazole (ARI) is increasing at alarming rate, hence, this study was undertaken to support the hypothesis that supplementation of Citrus paradisi (Grapefruit) juice having high concentration of polyphenols might potentiate and synergize the therapeutic effect of ARI, by increasing its bioavailability and inherent antioxidant potential. These benefits together might decrease the daily dosage of the ARI and thus alleviate the possible side effects of drug. METHODS: In this study the antioxidant and anti-inflammatory potential of ARI alone and in combination with GFJ was evaluated for hydrogen peroxide (H2O2) induced oxidative stress in mice. Seventy mice (4 weeks old), were randomly divided into seven groups. Group I: Control; Group II: H2O2 treated; Group III; ARI treated; Group IV GFJ treated; Group V: GFJ and H2O2 treated; Group VI; ARI and H2O2 treated; Group VII; ARI, GFJ and H2O2 treated. Serum levels of alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine kinase (CK), creatinine and total protein were measured. Furthermore, pro-inflammatory cytokines Interleukin (IL)-1α, IL-2, IL-10 and tumor necrosis factor-α (TNF-α) concentrations were also measured. RESULTS: The mice group that was treated with ARI, GFJ or combination of the two showed significant improvement in the H2O2 altered parameters with the combination group showing more significant improvement than the ARI and GFJ alone groups indicating a synergistic and potentiating effect of the antioxidant and anti-inflammatory potential of GFJ on ARI. CONCLUSION: Supplementing GFJ to ARI might increase an anti-oxidative potential of ARI due to inherent antioxidant and anti-inflammatory activity of GFJ and thus could alleviate the possible dosage dependent side effects of ARI.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Aripiprazole , Citrus paradisi/chemistry , Fruit and Vegetable Juices , Hydrogen Peroxide/adverse effects , Oxidative Stress/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Aripiprazole/chemistry , Aripiprazole/pharmacology , Cytokines/analysis , Cytokines/metabolism , Drug Synergism , Fruit and Vegetable Juices/analysis , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL