Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38570055

ABSTRACT

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Subject(s)
Cartilage, Articular , Emodin , Osteoporosis , Rats, Sprague-Dawley , X-Ray Microtomography , Animals , Emodin/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Rats , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Female , Disease Models, Animal , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology
2.
Article in English | MEDLINE | ID: mdl-38430150

ABSTRACT

Objective: Gaucher disease (GD) is a clinically rare single-gene recessive lysosomal storage disease mainly divided into three subtypes I to III. This report aims to present a case of type IIIb GD in a Chinese child with a focus on the manifestation of hearing loss and the importance of early diagnosis and monitoring. Methods: The patient underwent a routine physical examination upon admission, followed by CT scans of the chest and abdomen, MRI of the brain, and bone marrow smear examination. The patient's GBA enzyme activity, Lyso-GL-1 levels, and GBA gene expression were analyzed using tandem mass spectrometry (MS/MS) and next-generation sequencing technology. Finally, auditory brainstem response (ABR) testing was conducted. Results: This report presented a case of a Chinese boy with hematological manifestations as the first symptom, followed by hepatosplenomegaly, and the bilateral femurs showed obvious Erlenmeyer flask-like changes. Combined with GBA enzyme activity, Lyso-GL-1 and GBA genotype analysis results, the boy was initially diagnosed as type I GD. During the follow-up, the boy developed nystagmus, bilateral ABR V wave threshold increased, V/I amplitude ratio <0.5, accompanied by delayed growth and development, and finally diagnosed as type IIIb. Conclusions: This case suggests the necessity of neuropathy monitoring in patients with type I GD during the early stages of the disease. This includes EEG, neuro-ophthalmological examination, and auditory function assessment, which can help reflect the progression of neuropathy and facilitate the early diagnosis of type III GD.

3.
Theor Appl Genet ; 137(3): 54, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381205

ABSTRACT

KEY MESSAGE: Integrated phenomics, ionomics, genomics, transcriptomics, and functional analyses present novel insights into the role of pectin demethylation-mediated cell wall Na+ retention in positively regulating salt tolerance in oilseed rape. Genetic variations in salt stress tolerance identified in rapeseed genotypes highlight the complicated regulatory mechanisms. Westar is ubiquitously used as a transgenic receptor cultivar, while ZS11 is widely grown as a high-production and good-quality cultivar. In this study, Westar was found to outperform ZS11 under salt stress. Through cell component isolation, non-invasive micro-test, X-ray energy spectrum analysis, and ionomic profile characterization, pectin demethylation-mediated cell wall Na+ retention was proposed to be a major regulator responsible for differential salt tolerance between Westar and ZS11. Integrated analyses of genome-wide DNA variations, differential expression profiling, and gene co-expression networks identified BnaC9.PME47, encoding a pectin methylesterase, as a positive regulator conferring salt tolerance in rapeseed. BnaC9.PME47, located in two reported QTL regions for salt tolerance, was strongly induced by salt stress and localized on the cell wall. Natural variation of the promoter regions conferred higher expression of BnaC9.PME47 in Westar than in several salt-sensitive rapeseed genotypes. Loss of function of AtPME47 resulted in the hypersensitivity of Arabidopsis plants to salt stress. The integrated multiomics analyses revealed novel insights into pectin demethylation-mediated cell wall Na+ retention in regulating differential salt tolerance in allotetraploid rapeseed genotypes. Furthermore, these analyses have provided key information regarding the rapid dissection of quantitative trait genes responsible for nutrient stress tolerance in plant species with complex genomes.


Subject(s)
Arabidopsis , Brassica napus , Brassica rapa , Salt Tolerance/genetics , Brassica napus/genetics , Pectins , Salt Stress , Cell Wall , Demethylation
4.
J Environ Manage ; 352: 120059, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38218167

ABSTRACT

Deep fertilization strategy has been proven to be an important fertilizer management method for improving fertilizer utilization efficiency and crop yield. However, the relationship between soil chemical and biochemical characteristics and crop productivity under different fertilization depth patterns still needs comprehensive evaluation. Field tests on spring maize were therefore carried out in the Loess Plateau of China for two successive growing seasons from 2019 to 2020. Four distinct fertilization depths of 5 cm, 15 cm, 25 cm, and 35 cm were used to systematically investigate the effects of fertilization depth on soil physicochemical parameters, enzyme activity, and biochemical properties. The findings demonstrated that although adjusting fertilization depths (D15, D25) did not significantly affect the soil organic carbon content, they did significantly improve the soil chemical and biochemical characteristics in the root zone (10-30 cm), with D25 having a greater influence than D15. Compared with D5, the total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), Olsen-P, dissolved organic carbon, and nitrogen (DOC and DON) in the root zone of D25 significantly increased by 12.02%, 7.83%, 22.21%, 9.56%, 22.29%, and 26.26%, respectively. Similarly, the urease, invertase, phosphatase, and catalase in the root zone of D25 significantly increased by 9.56%, 13.20%, 11.52%, and 18.05%, while microbial biomass carbon, nitrogen, and phosphorus (MBC, MBN, and MBP) significantly increased by 18.91%, 32.01% and 26.50%, respectively, compared to D5. By optimizing the depth of fertilization, the distribution ratio of Ca2-P and Ca8-P in the inorganic phosphorus components of the root zone can also be increased. Therefore, optimizing fertilization depth helps to improve soil chemical and biochemical characteristics and increase crop yield. The results of this study will deepen our understanding of how fertilization depth influence soil properties and crop responses.


Subject(s)
Agriculture , Soil , Soil/chemistry , Agriculture/methods , Zea mays , Fertilizers/analysis , Seasons , Carbon/analysis , Nitrogen/analysis , China , Phosphorus/analysis , Fertilization
5.
Food Chem ; 441: 138237, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38176137

ABSTRACT

A reliable, simple, and sensitive method capable of quantifying six organosulfur compounds (OSCs) was established. The samples were extracted by water containing 3 % formic acid with a simple vortex, ultrasound, and centrifugation step, and the solutions were analyzed by ultra-high-performance liquid chromatography separation system coupled with a triple-quadrupole mass spectrometry (UHPLC - MS/MS). Then the method was applied for the analysis of six OSCs in five varieties of two types Welsh onions in China, and the moisture content, reducing sugar, total polyphenols, and 21 free amino acids were also analyzed to study the characters of these Welsh onions intensively. Multivariate statistical analysis was used to investigate the differences in OSCs and free amino acids profiles among the samples. This study showed that enzymatic inhibition method combined with UHPLC - MS/MS is an effective technique to analyze OSCs in Welsh onion, and could be valuable for the routine quantitation of OSCs in other foods.


Subject(s)
Onions , Tandem Mass Spectrometry , Onions/chemistry , Chromatography, High Pressure Liquid/methods , Amino Acids/chemistry , China , Sulfur Compounds/chemistry
6.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38056458

ABSTRACT

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Subject(s)
Acetaminophen , Liver Failure, Acute , Humans , Mice , Animals , Acetaminophen/adverse effects , Acetaminophen/metabolism , Magnesium/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Liver/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/metabolism
7.
J Ethnopharmacol ; 321: 117483, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38008273

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a recurring chronic intestinal disease that can be debilitating and in severe cases, may further lead to cancer. However, all these treatment techniques still suffer from drug dependence, adverse effects and poor patient compliance. Therefore, there is an urgent need to seek new therapeutic strategies. In traditional Chinese medicine, Rabdosia rubescens (Hemsl.) H.Hara has the effects of clearing heat-toxin and promoting blood circulation to relieve pain, it is wildly used for treating inflammatory diseases such as sore throats and tonsillitis. Ponicidin is an important molecule for the anti-inflammatory effects of Rabdosia rubescens, but it has not been studied in the treatment of colitis. HSP90 is the most critical regulator in the development and progression of inflammatory diseases such as UC. AIM OF THE STUDY: The aim of this study was to explore the anti-inflammatory activity of ponicidin and its mechanism of effect in vitro and in vivo, as well as to identify the target proteins on which ponicidin may interact. MATERIAL AND METHODS: 2.5% (w/v) dextran sulfate sodium (DSS) was used to induce C57BL/6 mice to form an ulcerative colitis model, and then 5 mg/kg and 10 mg/kg ponicidin was given for treatment, while the Rabdosia rubescens extract group and Rabdosia rubescens diterpene extract group were set up for comparison of the efficacy of ponicidin. At the end of modeling and drug administration, mouse colon tissues were taken, and the length of colon was counted, inflammatory factors and inflammatory signaling pathways were detected. RAW264.7 cells were induced to form cell inflammation model with 1 µg/mL Lipopolysaccharide (LPS) for 24 h. 1 µM, 2 µM and 4 µM ponicidin were given at the same time, and after the end of the modeling and administration of the drug, the inflammatory factors and inflammatory signaling pathways were detected by qRT-PCR, western blotting, immunofluorescence and other methods. In vitro, target angling and combined with mass spectrometry were used to search for relevant targets of ponicidin, while isothermal titration calorimetry (ITC), protease degradation experiments and molecular dynamics simulations were used for further confirmation of the mode of action and site of action between ponicidin and target proteins. RESULTS: Ponicidin can alleviate DSS and LPS-induced inflammation by inhibiting the MAPK signaling pathway at the cellular and animal levels. In vitro, we confirmed that ponicidin can interact with the middle domain of HSP90 and induce the conformational changes in the N-terminal domain. CONCLUSION: These innovative efforts identified the molecular target of ponicidin in the treatment of UC and revealed the molecular mechanism of its interaction with HSP90.


Subject(s)
Colitis, Ulcerative , Colitis , Diterpenes , Animals , Mice , Humans , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Diterpenes/pharmacology , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Dextran Sulfate/toxicity , Disease Models, Animal , Colon , Colitis/drug therapy , NF-kappa B/metabolism
8.
J Environ Radioact ; 270: 107286, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37633243

ABSTRACT

The sorption behavior of U(VI) on Tamusu clay sampled from a pre-selected high-level radioactive waste (HLW) disposal site in Inner Mongolia (China) was studied systematically in the U(VI)-CO3 solution at pH 7.8 by batch experiments. The results demonstrated that the distribution coefficients (Kd) decreased with the increasing values of pHinitial, [U(VI)]initial, and ionic strength, but increased with the extended time and the rising temperature. The sorption was a pH-dependent, heterogeneous, spontaneous, and endothermic chemical process, which could be better described by Freundlich isothermal model and pseudo-second-order kinetic model. The presence of humic acid (HA) or fulvic acid (FA) significantly inhibited the U(VI) sorption, due to the enhanced electrostatic repulsion between the negatively charged HA/FA adsorbed on the clay surface and the negative U(VI) species, as well as the well dispersed HA/FA aggregates in solution wrapping the U(VI) species. The FTIR and XPS spectra indicated that the HCO3- groups on the surface of Tamusu clay after hydroxylation and the ‒OH groups in HA/FA were involved in the U(VI) sorption. The results reported here provide valuable insights into the further understanding of U(VI) migration in geological media.


Subject(s)
Radiation Monitoring , Uranium , Clay , Adsorption , Hydrogen-Ion Concentration , Uranium/chemistry , Humic Substances
9.
Food Chem ; 429: 136874, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37454616

ABSTRACT

This study addresses the limitations of konjac glucomannan (KGM) films in mechanical properties, hydrophobicity and antibacterial activities. For the first time, a zein-pectin nanoparticle-stabilized corn germ oil-oregano essential oil Pickering emulsion (ZPCEO) was incorporated into KGM, with the resulting film being further ionically crosslinked with Ca2+, Cu2+ or Fe3+. FTIR, SEM and EDS results showed that the metal ions were crosslinked with the hydroxyl and carbonyl groups of polysaccharides and uniformly distributed throughout the films (degree of crosslinking: Fe3+ > Cu2+ > Ca2+). Compared with pure KGM films, the ionic crosslinked ZPCEO/KGM (IL-ZPCEO/KGM) films have superior water resistance mechanical properties, and exhibit unique UV-blocking properties, antioxidant and antibacterial activities. The ZPCEO/KGM-Fe3+ film offered the best all-round properties, including the highest tensile strength, water resistance, UV-blocking capacity, and antimicrobial activity. Thus, ionic crosslinking of ZPCEO/KGM films can be applied to the preparation of food packaging for use in high humidity environments.


Subject(s)
Nanoparticles , Origanum , Zein , Food Packaging , Zea mays , Pectins , Emulsions , Water , Mannans , Anti-Bacterial Agents/pharmacology
10.
J Sep Sci ; 46(16): e2300060, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37344982

ABSTRACT

Gandouling tablets are used in a clinical agent for the treatment of hepatocellular degeneration; however, their chemical constituents have not been elucidated. Here, we screened and identified the chemical constituents of Gandouling tablets using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time of flight/mass spectrometry. A method for the quality evaluation of Gandouling tablets was developed by combining the UHPLC fingerprints and the simultaneous quantitative analysis of multiple active ingredients. For fingerprint analysis, 20 shared peaks were identified to assess the similarities among the 10 batches of Gandouling tablets and the similarity was >0.9. The levels of nine representative active ingredients were simultaneously determined to ensure consistency in quality. A total of 99 chemical components were identified, including 18 alkaloids, 20 anthraquinones, 13 flavonoids, 11 phenolic acids, 9 polyphenols, 7 phenanthrenes, 5 sesquiterpenes, 3 curcuminoids, 2 lignans, 2 isoflavones, 2 dianthranones, and 7 other components. The retention times, molecular formulae, and secondary fragmentation information of these compounds were analyzed, and the cleavage pathways and characteristic fragments of some of the representative compounds were elucidated. This systematic analysis used to identify the chemical components of Gandouling tablets lays the foundation for its further quality control and research on their pharmacodynamic substances.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/analysis , Alkaloids/chemistry , Tablets
11.
J Food Sci ; 88(7): 3075-3089, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37282793

ABSTRACT

Bioactive packaging can improve the shelf-life of food products and enhance consumer health. It can also alleviate environmental stress on the planet by reducing food waste. Here, the electrospinning of tea tree oil-loaded 2-hydroxypropyltrimethyl ammonium chloride chitosan nanofibers was investigated. The fabricated nanofiber films were characterized by scanning electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and contact angle meter analysis. The prepared nanofibers have a well-defined diameter of about 200 nm and a smooth shape. They have good antibacterial properties against Staphylococcus aureus and Escherichia coli in vitro. Tea tree oil-loaded chitosan-based nanofibers were found to be effective in delaying spoilage and extending the shelf life of salmon by sensory evaluation, texture analysis, color, total viable counts, thiobarbituric acid, and total volatile basic nitrogen during storage in the freshness experiments, thus indicating their health benefits in bioactive packaging.


Subject(s)
Chitosan , Nanofibers , Refuse Disposal , Tea Tree Oil , Animals , Tea Tree Oil/pharmacology , Nanofibers/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Salmon , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Seafood , Life Expectancy
12.
J Ethnopharmacol ; 317: 116706, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37301305

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY: This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS: Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS: Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION: IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.


Subject(s)
Lipopolysaccharides , MAP Kinase Signaling System , Rats , Animals , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Macrophages, Peritoneal , Cyclooxygenase 2/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
13.
Front Med (Lausanne) ; 10: 1193132, 2023.
Article in English | MEDLINE | ID: mdl-37250630

ABSTRACT

Background: Traditional Chinese medicine (TCM) is widely used in the clinical treatment of hepatolenticular degeneration (HLD) and liver fibrosis (LF). In the present study, the curative effect was assessed using meta-analysis. The possible mechanism of TCM against LF in HLD was investigated using network pharmacology and molecular dynamics simulation. Methods: For literature collection, we searched several databases, including PubMed, Embase, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure (CNKI), VIP Database for Chinese Technical Periodicals (VIP) and Wan Fang database until February 2023, and the Review Manager 5.3 was used to analyze the data. Network pharmacology and molecular dynamics simulation were used to explore the mechanism of TCM in treating LF in HLD. Results: The results of the meta-analysis revealed that the addition of Chinese herbal medicine (CHM) in treating HLD resulted in a higher total clinical effective rate than western medicine alone [RR 1.25, 95% CI (1.09, 1.44), p = 0.002]. It not only has a better effect on liver protection [Alanine aminotransferase: SMD = -1.20, 95% CI (-1.70, -0.70), p < 0.00001; Aspartate aminotransferase: SMD = -1.41, 95% CI (-2.34, -0.49), p = 0.003; Total bilirubin: SMD = -1.70, 95% CI (-3.36, -0.03), p = 0.05] but also had an excellent therapeutic effect on LF through four indexes [Hyaluronic acid: SMD = -1.15, 95% CI (-1.76, -0.53), p = 0.0003; Procollagen peptide III: SMD = -0.72, 95% CI (-1.29, -0.15), p = 0.01; Collagen IV: SMD = -0.69, 95% CI (-1.21, -0.18), p = 0.008; Laminin: SMD = -0.47, 95% CI (-0.95, 0.01), p = 0.06]. Concurrently, the liver stiffness measurement decreased significantly [SMD = -1.06, 95% CI (-1.77, -0.36), p = 0.003]. The results of network pharmacological experiments and molecular dynamics simulation indicate that the three high-frequency TCMs (Rhei Radix Et Rhizoma-Coptidis Rhizoma-Curcumae Longae Rhizoma, DH-HL-JH) primarily act on the core targets (AKT1, SRC, and JUN) via the core components (rhein, quercetin, stigmasterol, and curcumin), regulate the signal pathway (PI3K-Akt, MAPK, EGFR, and VEGF signaling pathways), and play a role of anti-LF. Conclusion: Meta-analysis indicates that TCM is beneficial in treating HLD patients and improving LF. The present study successfully predicts the effective components and potential targets and pathways involved in treating LF for the three high-frequency CHMs of DH-HL-JH. The findings of the present study are hoped to provide some evidence support for clinical treatment. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier: CRD42022302374.

14.
J Ethnopharmacol ; 311: 116445, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37015279

ABSTRACT

ETHNOPHARMACOLOGIC SIGNIFICANCE: Wilson's disease (WD) hepatic fibrosis is the result of chronic liver injury induced by Cu2+ deposition in the liver. Gandouling (GDL) is a hospital preparation of the First Affiliated Hospital of Anhui University of Chinese Medicine. Previous studies have found that GDL can play an anti-inflammatory, anti-oxidation, and promote Cu2+ excretion, which has a clear anti-WD effect. AIM OF THE STUDY: We found that Wnt-1 was significantly up-regulated in the liver tissue of toxic-milk (TX) mouse in the WD gene mutant model, and the monomer components of GDL could combine well with Wnt-1. Therefore, in this work, we used RT-qPCR, Western blot, immunofluorescence, network pharmacology, molecular docking, and related methods to study the effects of GDL on hepatic stellate cell (HSC) activation and Wnt-1/ß-catenin pathway in TX mice to clarify the effect of GDL on WD hepatic fibrosis. RESULTS: GDL could alleviate hepatic fibrosis, improve liver function, and inhibit the activation of HSC in TX mice. Network pharmacology predicted that the Wnt-1/ß-catenin was the target of GDL, and molecular dynamics further revealed that GDL has a good binding ability with Wnt-1 and inhibits the Wnt/ß-catenin signaling pathway through Wnt-1. Furthermore, we found that GDL blocked the Wnt-1/ß-catenin signaling pathway in the liver of TX mice in vivo. In vitro, serum containing GDL blocked the Cu2+ ion-induced Wnt-1/ß-catenin signaling pathway in LX-2 cells. Therefore, GDL blocked the Wnt-1/ß-catenin signaling pathway, inhibited HSC activation, and improved WD hepatic fibrosis by binding to Wnt-1. CONCLUSION: GDL improves hepatic fibrosis in WD model mice by blocking the Wnt-1/ß-catenin signaling pathway, and Wnt-1 may be a new target for the diagnosis and treatment of WD. This reveals a new mechanism of GDL against WD, and promotes the clinical promotion of GDL.


Subject(s)
Hepatolenticular Degeneration , Mice , Animals , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Hepatolenticular Degeneration/pathology , Wnt Signaling Pathway , beta Catenin/metabolism , Molecular Docking Simulation , Cell Proliferation , Liver Cirrhosis/metabolism , Hepatic Stellate Cells
15.
Environ Sci Pollut Res Int ; 30(20): 58436-58449, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36991205

ABSTRACT

Ganoderma lucidum is widely cultivated and used as traditional medicine in China and other Asian countries. As a member of macrofungi, Ganoderma lucidum is also prone to bioaccumulation of cadmium and other heavy metals in a polluted environment, which affects the growth and production of Ganoderma lucidum, as well as human health. N-Acetyl-L-cysteine (NAC) is considered a general antioxidant and free radical scavenger that is involved in the regulation of various stress responses in plants and animals. However, whether NAC could regulate cadmium stress responses in macrofungi, particularly edible fungi, is still unknown. In this work, we found that the exogenous NAC could alleviate Cd-induced growth inhibition and reduce the cadmium accumulation in Ganoderma lucidum. The application of the NAC cloud also inhibit cadmium-induced H2O2 production in the mycelia. By using transcriptome analysis, 2920 and 1046 differentially expressed unigenes were identified in "Cd100 vs CK" and "NAC_Cd100 vs Cd100," respectively. These differential unigenes were classified into a set of functional categories and pathways, which indicated that various biological pathways may play critical roles in the protective effect of NAC against Cd­induced toxicity in Ganoderma lucidum. Furthermore, it suggested that the ATP-binding cassette transporter, ZIP transporter, heat shock protein, glutathione transferases, and Cytochrome P450 genes contributed to the increased tolerance to cadmium stress after NAC application in Ganoderma lucidum. These results provide new insight into the physiological and molecular response of Ganoderma lucidum to cadmium stress and the protective role of NAC against cadmium toxicity.


Subject(s)
Ganoderma , Polyporaceae , Polyporales , Reishi , Humans , Animals , Reishi/genetics , Reishi/metabolism , Acetylcysteine/pharmacology , Cadmium/metabolism , Polyporaceae/genetics , Polyporaceae/metabolism , Polyporales/genetics , Polyporales/metabolism , Hydrogen Peroxide/metabolism , Gene Expression Profiling , Ganoderma/metabolism
16.
Crit Rev Food Sci Nutr ; 63(19): 3386-3419, 2023.
Article in English | MEDLINE | ID: mdl-34637646

ABSTRACT

The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.


Subject(s)
Food , Pectins , Humans , Molecular Structure , Molecular Weight , Pharmaceutical Preparations
17.
Food Chem ; 405(Pt B): 134985, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36442238

ABSTRACT

This study explores cherry waste valorization through sustainable green approaches. Two low-methoxy rhamnogalacturonan I (RG-I) enriched pectins were produced via mild aqueous extraction from cherry pomaces before and after yeast fermentation (RCUP and RCFP: RG-I, 52.02% and 48.81%; methylation degree, 44.71% and 37.55%). Both pectins contained galacturonic acid, arabinose, galactose, rhamnose and glucose. Compared with RCFP, RCUP was a more linear pectin with higher Mw, wider Mw distribution, longer homogalacturonans (HGs) and shorter side chains. Fermentation increased protein, mannose, glucose and galactose contents, and decreased pectin yield, total phenolic/anthocyanin and rhamnose contents, melting temperature and enthalpy, degradation enthalpy, viscosity, storage and loss moduli. Fermentation induced a much greater loss of HG (from 43.55% to 14.65%) than RG-I (from 52.02% to 48.81%). RCUP and RCFP possessed significant antioxidant activities and exhibited satisfactory emulsifying effects at 2%. RCUP was a more effective emulsifier. RCFP had a higher hydroxyl radical scavenging capacity.


Subject(s)
Galactose , Rhamnose , Pectins , Glucose
18.
Nutrients ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501055

ABSTRACT

Pre-eclampsia (PE) is a serious pregnancy complication, and gut dysbiosis is an important cause of it. Puerariae lobatae Radix (PLR) is a medicine and food homologous species; however, its effect on PE is unclear. This study aimed to investigate the efficacy of PLR in alleviating PE and its mechanisms. We used an NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model to examine the efficacy of preventive and therapeutic PLR supplementation. The results showed that both PLR interventions alleviated hypertension and proteinuria, increased fetal and placental weights, and elevated the levels of VEGF and PlGF. Moreover, PLR protected the placenta from oxidative stress via activating the Nrf2/HO-1/NQO1 pathway and mitigated placental damage by increasing intestinal barrier markers (ZO-1, Occludin, and Claudin-1) expression and reducing lipopolysaccharide leakage. Notably, preventive PLR administration corrected gut dysbiosis in PE mice, as evidenced by the increased abundance and positive interactions of beneficial bacteria including Bifidobacterium, Blautia, and Turicibacter. Fecal microbiota transplantation confirmed that the gut microbiota partially mediated the beneficial effects of PLR on PE. Our findings revealed that modulating the gut microbiota is an effective strategy for the treatment of PE and highlighted that PLR might be used as an intestinal nutrient supplement in PE patients.


Subject(s)
Gastrointestinal Microbiome , Pre-Eclampsia , Humans , Animals , Female , Mice , Pregnancy , Pre-Eclampsia/metabolism , Placenta/metabolism , Dysbiosis/metabolism , Proteinuria
19.
Front Cell Infect Microbiol ; 12: 966004, 2022.
Article in English | MEDLINE | ID: mdl-36250064

ABSTRACT

Background: Microbiota play essential roles in the pathogenesis of prostatitis and depression. However, the changes in prostate microbiota have not yet been explored in rats with prostatitis/depression. This study aimed to investigate the changes of prostate microbiota in rats with prostatitis/depression. Methods: Rats with experimental autoimmune prostatitis (EAP) complicated with depression were constructed through injection of rat prostate antigen with immunoadjuvants followed by application of chronic unpredictable mild stress (CUMS). The rats were subjected to inflammatory factor detection and behavioral testing to confirm the establishment of the model. Subsequently, the prostate microbiota was assayed in the rats and compared by 16S rRNA gene sequencing. Results: A rat model of EAP complicated with depression was established and confirmed by increases in IL-1ß, IL-6, and TNF-α as well as the occurrence of depressive-like behaviors. EAP/CUMS significantly altered the richness, evenness, and composition of prostate microbiota. Forty-six taxonomic biomarkers for prostate microbiota were enriched in rats with EAP/depression and exhibited statistically significant and biologically consistent differences. Metabolomics profiling revealed that EAP/depression was associated with reductive acetyl coenzyme A pathway, L-lysine fermentation to acetate and butanoate, protein N-glycosylation and purine nucleobases degradation I, which is regulated by DCE29, Nocardioes, Helicobacter and Dorea. Conclusion: Findings from the study demonstrate the existence of abnormal prostate microbiota in EAP complicated with depression and may be helpful in the treatment of comorbid diseases of prostatitis and depression.


Subject(s)
Autoimmune Diseases , Microbiota , Prostatitis , Acetyl Coenzyme A , Adjuvants, Immunologic , Animals , Autoimmune Diseases/complications , Depression , Disease Models, Animal , Humans , Interleukin-6 , Lysine , Male , Pelvic Pain/complications , Pelvic Pain/pathology , Prostate/pathology , Prostatitis/complications , Prostatitis/pathology , RNA, Ribosomal, 16S/genetics , Rats , Tumor Necrosis Factor-alpha
20.
Biomater Sci ; 10(21): 6267-6281, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36128848

ABSTRACT

Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.


Subject(s)
Dendrimers , Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Indocyanine Green/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Epithelial Cell Adhesion Molecule , Doxorubicin/pharmacology , Delayed-Action Preparations , Precision Medicine , Disulfiram , Drug Delivery Systems/methods , Neoplasms/therapy , Lactic Acid , Hyperthermia, Induced/methods , Drug Liberation , Theranostic Nanomedicine/methods , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL