Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Growth Horm IGF Res ; 60-61: 101429, 2021.
Article in English | MEDLINE | ID: mdl-34507253

ABSTRACT

The hormone secretion of GHRH-GH-IGF-1 axis in animals was decreased as aging. These hormones play an important role in maintaining bone mass and bone structure, and also affect the normal structure and function of the skin. We used plasmid-based technology to deliver growth hormone releasing hormone (GHRH) to elderly mice. In the current study, 80 and 120 µg/kg pVAX-GHRH plasmid expression plasmid were injected into old mice, the serum GHRH and insulin-like growth factor-1(IGF-1) content were increased within three weeks (P < 0.05). In the groups of 80 and 120 µg/kg plasmid, the content of procollagen type I N-terminal pro-peptide (PINP) in the serum was increased(P < 0.05), and the content of C-terminal telopeptides of type I collagen (CTX-1) in the serum was reduced significantly (P < 0.05). Furthermore, the expression of osteoprotegerin (OPG) and osteocalcin (OCN) in the femur also was increased(P < 0.05). The bone mineral density(BMD)、trabecular bone volume (BV/TV) and trabecular number(Tb.N) of mouse femur were increased significantly (P < 0.05) and trabecular separation(Tb.Sp) was decreased(P < 0.05). There were more trabecular bones in the bone marrow cavity and the trabecular bones are thicker in the groups of 80 and 120 µg/kg plasmid relative to control. The superoxide dismutase (SOD) content in the skin was increased(P < 0.05), and the malondialdehyde (MDA) content was reduced significantly (P < 0.05). Meanwhile, the skin moisture content also increased significantly(P < 0.05). Moreover, the expression of matrix metalloproteinase 3(MMP3) and matrix metalloproteinase 9(MMP9) was decreased in the skin(P < 0.05). The thickness of the dermis and epidermis of the skin had increased significantly(P < 0.05). Skin structure is more dense and complete in the two groups. These results indicate that 80 and 120 µg/kg plasmid-mediated GHRH supplementation can improve osteoporosis and skin aging in aged mice.


Subject(s)
Growth Hormone-Releasing Hormone/administration & dosage , Hormones/administration & dosage , Osteoporosis/drug therapy , Plasmids/administration & dosage , Skin Diseases/prevention & control , Animals , Bone Density , Female , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Hormones/genetics , Hormones/metabolism , Mice , Mice, Inbred C57BL , Osteoporosis/metabolism , Osteoporosis/pathology , Plasmids/genetics
2.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 291-299, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31663169

ABSTRACT

Moringa oleifera has been considered as a potential functional feed or food, since it contains multiple components beneficial to animal and human. However, little is known about the effects of Moringa oleifera supplementation on productive performances in sows. In the current study, the results showed that dietary Moringa oleifera significantly decreased the farrowing length and the number of stillborn (p < .05), while had an increasing trend in the number of live-born (0.05 < p < .10). Furthermore, 8% Moringa oleifera supplementation significantly elevated protein levels in the colostrum (p < .05); 4% Moringa oleifera lowed serum urea nitrogen of sows after 90 days of gestation (p < .05) and significantly decreased serum glucose on 10 days of lactation (p < .05). Both groups showed significant elevation in serum T-AOC activity (p < .05). The serum malondialdehyde (MDA) of sows declined significantly in 4% Moringa oleifera addition group (p < .05). 8% Moringa oleifera meal significantly elevated serum CAT activity after 60 days of gestation (p < .05), while decreased the serum MDA level and increased the serum GSH-Px activity of sows at 10 days of lactation (p < .05). Of piglets, both two dosages of Moringa oleifera supplementation essentially reduced the serum urea nitrogen (p < .05), and 4% Moringa oleifera meal increased serum total protein (p < .05). In addition, piglets that received 8% Moringa oleifera had the highest serum CAT and SOD activities among all groups (p < .05). The present study indicated that Moringa oleifera supplementation could enhance the reproduction performances, elevate protein levels in the colostrum and improve the serum antioxidant indices in both sows and piglets.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Moringa oleifera/chemistry , Swine/physiology , Animal Nutritional Physiological Phenomena , Animals , Colostrum/chemistry , Dietary Supplements , Female , Maternal Nutritional Physiological Phenomena , Pregnancy , Swine/blood
3.
EMBO Rep ; 20(9): e47892, 2019 09.
Article in English | MEDLINE | ID: mdl-31318145

ABSTRACT

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.


Subject(s)
Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Succinic Acid/pharmacology , Animals , Citric Acid Cycle/drug effects , Male , Mice , Mice, Inbred C57BL , Muscle Contraction/drug effects , Muscle Fatigue/drug effects , Muscle, Skeletal/drug effects , Myosin Heavy Chains/metabolism , Oxygen Consumption/drug effects , Signal Transduction/drug effects
4.
J Dairy Sci ; 102(8): 6726-6737, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31155266

ABSTRACT

Previous studies have demonstrated that bovine milk contains mRNA and microRNA that are largely encapsulated in milk-derived exosomes. However, little information is available about long noncoding RNAs (lncRNA) in bovine milk. Increasing evidence suggests that lncRNA are of particular interest given their key role in gene expression and development. We performed a comprehensive analysis of lncRNA in bovine milk exosomes by RNA sequencing. We used a validated human in vitro digestion model to investigate the stability of lncRNA encapsulated in bovine milk exosomes during the digestion process. We identified 3,475 novel lncRNA and 6 annotated lncRNA. The lncRNA shared characteristics with those of other mammals in terms of length, exon number, and open reading frames. However, lncRNA showed higher expression than mRNAs. We selected 12 lncRNA of high-expression abundance and identified them by PCR. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that lncRNA regulate immune function, osteoblastogenesis, neurodevelopment, reproduction, cell proliferation, and cell-cell communication. We also investigated the 12 lncRNA using quantitative real-time PCR to reveal their expression profiles in milk exosomes during different stages of lactation (colostrum 2 d, 30 d, 150 d, and 270 d); their resulting expression levels in milk exosomes showed variations across the stages. A digestion experiment showed that bovine milk exosome lncRNA was resistant to in vitro digestion with different digestive juices, including saliva, gastric juice, pancreatic juice, and bile juice. Taken together, these results show for the first time that cow milk contains lncRNA, and that their abundance varied at different stages of lactation. As expected, bovine milk exosomal lncRNA were stable during in vitro digestion. These findings provide a basis for further understanding of the physiological role of milk lncRNA.


Subject(s)
Milk/chemistry , RNA, Long Noncoding/analysis , Animals , Cattle , Colostrum/metabolism , Digestion , Drug Stability , Exosomes/chemistry , Exosomes/metabolism , Female , Gene Expression , Genome , Humans , Lactation/physiology , MicroRNAs/genetics , Pregnancy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , RNA, Messenger/genetics , Sequence Analysis, RNA/veterinary
5.
Anim Sci J ; 88(6): 863-872, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27758021

ABSTRACT

There are many reports that dietary supplementation with plant polysaccharides in pigs might promote their growth, but little is known about the maternal effect of ginseng polysaccharides (GPS) on piglets' growth by dietary supplementation to pregnant and lactating sows. In the current study, the effects of dietary supplementation with GPS on the immunity of sows and growth of their piglets were investigated. Results showed no significant difference among the four groups in the total number of piglets, live piglets, weak piglets and birth weight of piglets, indicating the GPS-treatment has no adverse effect on reproduction. Furthermore, the weaning weight of the GPS-treated groups was higher than that of control group (P < 0.05); among them, the addition of 200 mg/kg dose has the best effect. Interestingly, GPS increased the total immunoglobulin G concentration in milk and serum of sows (P < 0.05). The concentrations of interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α, and interferon-γ in milk and serum of sows were also increased in the experimental groups relative to the control (P < 0.05). Meanwhile, maternal supplementation of GPS significantly increased IL-2 and TNF-α concentration in the piglets' serum of the experimental groups relative to control (P < 0.05). GPS (200 mg/kg) significantly increased the glutathione peroxidase activity in milk and serum (P < 0.05), while the concentrations of malondialdehyde were significantly reduced (P < 0.05). The present results indicated that GPS supplementation during late pregnancy and lactation improved immunity-related bio-molecular levels in sow serum and milk, which may be further beneficial to piglet health and growth through biological transmission effects.


Subject(s)
Animal Feed , Diet/veterinary , Dietary Supplements , Lactation/physiology , Maternal-Fetal Exchange/physiology , Panax/chemistry , Polysaccharides/administration & dosage , Pregnancy, Animal/physiology , Swine/growth & development , Swine/immunology , Animals , Cytokines/blood , Cytokines/metabolism , Female , Glutathione Peroxidase/blood , Glutathione Peroxidase/metabolism , Immunoglobulin G/blood , Immunoglobulin G/metabolism , Male , Malondialdehyde/blood , Malondialdehyde/metabolism , Milk/metabolism , Polysaccharides/adverse effects , Polysaccharides/pharmacology , Pregnancy , Reproduction/drug effects
6.
Transgenic Res ; 26(1): 1-11, 2017 02.
Article in English | MEDLINE | ID: mdl-27995503

ABSTRACT

ß-Glucan is the predominant anti-nutritional factors in monogastric animal feed. Although ß-glucanase supplementation in diet can help to eliminate the adverse effects, enzyme stability is substantially modified during the feed manufacturing process. To determine whether the expression of endogenous ß-glucanase gene (GLU) in vivo can improve digestibility of dietary ß-glucan and absorption of nutrients, we successfully produced transgenic pigs via nuclear transfer which express the GLU from Paenibacillus polymyxa CP7 in the parotid gland. In three live transgenic founders, ß-glucanase activities in the saliva were 3.2, 0.07 and 0.03 U/mL, respectively, and interestingly the enzyme activities increased in the pigs from 178 days old to 789 days old. From the feed the amount of gross energy, crude protein and crude fat absorbed by the transgenic pigs was significantly higher than the non-transgenic pigs. Meanwhile the moisture content of the feces was significantly reduced in transgenic pigs compared with the non-transgenic pigs. Furthermore, in all positive G1 pigs, ß-glucanase activity was detectable and the highest enzyme activity reached 3.5 U/mL in saliva. Also, crude protein digestion was significantly higher in G1 transgenic pigs than in control pigs. Taken together, our data showed that the transgenic ß-glucanase exerted its biological catalytic function in vivo in the saliva, and the improved performance of the transgenic pigs could be accurately passed on to the offspring, indicating a promising alternative approach to improving nutrient availability was established to improve utilization of livestock feed through transgenic animals.


Subject(s)
Animals, Genetically Modified/metabolism , Dietary Supplements , Glycoside Hydrolases/genetics , Paenibacillus polymyxa/genetics , Animal Feed , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Feces/chemistry , Glycoside Hydrolases/metabolism , Paenibacillus polymyxa/enzymology , Parotid Gland/metabolism , Swine/genetics , Swine/growth & development
7.
PLoS One ; 8(1): e53142, 2013.
Article in English | MEDLINE | ID: mdl-23326391

ABSTRACT

Serotonin (5-HT) is a central inhibitor of food intake in mammals. Thus far, the intracellular mechanisms for the effect of serotonin on appetite regulation remain unclear. It has been recently demonstrated that reactive oxygen species (ROS) in the hypothalamus are a crucial integrative target for the regulation of food intake. To investigate the role of ROS in the serotonin-induced anorexigenic effects, conscious mice were treated with 5-HT alone or combination with Trolox (a ROS scavenger) or Apocynin (an NADPH oxidase inhibitor) by acute intracerebroventricular injection. Both Trolox and Apocynin reversed the anorexigenic action of 5-HT and the 5-HT-induced hypothalamic ROS elevation. The mRNA and protein expression levels of pro-opiomelanocortin (POMC) were dramatically increased after ICV injection with 5-HT. The anorexigenic action of 5-HT was accompanied by markedly elevated hypothalamic MDA levels and GSH-Px activity, while the SOD activity was decreased. Moreover, 5-HT significantly increased the mRNA expression of UCP-2 but reduced the levels of UCP-3. Both Trolox and Apocynin could block the 5-HT-induced changes in UCP-2 and UCP-3 gene expression. Our study demonstrates for the first time that the anorexigenic effect of 5-HT is mediated by the generation of ROS in the hypothalamus through an NADPH oxidase-dependent pathway.


Subject(s)
Eating/drug effects , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Serotonin/pharmacology , Acetophenones/pharmacology , Animals , Antioxidants/pharmacology , Blotting, Western , Chromans/pharmacology , Gene Expression/drug effects , Glutathione Peroxidase/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Injections, Intraventricular , Ion Channels/genetics , Ion Channels/metabolism , Male , Malondialdehyde/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Serotonin/administration & dosage , Serotonin Receptor Agonists/administration & dosage , Serotonin Receptor Agonists/pharmacology , Superoxide Dismutase/metabolism , Uncoupling Protein 2 , Uncoupling Protein 3
8.
Fish Shellfish Immunol ; 30(2): 495-500, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21129487

ABSTRACT

The immunostimulatory effects of orally administered Panax ginseng root or its polysaccharides (GSP) in white shrimp, Litopenaeus vannamei, were investigated in this study. Shrimp were fed a diet containing 0.4 g kg⁻¹ GSP over a period of 84 days, during which the activities of total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), acid phosphatase (ACP), and alkaline phosphatase (AKP), as well as malondialdehyde (MDA) content, and expressions of cytosolic superoxide dismutase (cyt-SOD), CAT, GSH-Px, and peroxiredoxin (Prx) genes were determined in various tissues of the shrimp. Results showed that the shrimp fed the GSP diet had significantly increased ACP and AKP activities in the gills. The GSP-fed shrimp also displayed significantly increased T-SOD and GSH-Px activities in the gills and hepatopancreas of the shrimp; meanwhile there was enhanced CAT activity in the gills, but decreased MDA content in the gills, hepatopancreas and muscle. The mRNA expressions of cyt-SOD, CAT, GSH-Px and Prx were significantly elevated in the gills and hepatopancreas of the shrimp fed the GSP diet for 84 days, compared with that of the control. Therefore, GSP can be used as an immunostimulant for shrimp through dietary administration to increase immune enzyme activity and modify expression of immune genes in shrimp.


Subject(s)
Adjuvants, Immunologic/pharmacology , Dietary Supplements , Immune System/drug effects , Panax/chemistry , Penaeidae/drug effects , Plant Extracts/pharmacology , Animals , Diet , Gene Expression Profiling , Gene Expression Regulation, Enzymologic/drug effects , Gills/drug effects , Gills/enzymology , Hepatopancreas/drug effects , Hepatopancreas/enzymology , Polysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL