Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38460576

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Subject(s)
Hyperuricemia , Panax , Renal Insufficiency, Chronic , Mice , Animals , Hyperuricemia/drug therapy , Hyperuricemia/pathology , Transforming Growth Factor beta1 , Uric Acid , Creatinine , Ki-67 Antigen , Obesity/drug therapy , Fibrosis , Panax/chemistry , Cadherins , Nitrogen , Lipids , Urea
2.
Microsc Res Tech ; 86(9): 1197-1205, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37515361

ABSTRACT

Panax ginseng, a slow-growing perennial herb, is the most praised and popular traditional medicinal herb. Mountain-cultivated ginseng (MCG) and cultivated ginseng (CG) both belong to Panax ginseng C. A. Meyer. The market price and medical effects of this popular health product are closely related to its age. It is widely acknowledged that CG is typically harvested after 4-6 years of growth, but MCG is often collected after 10 years. Until now, the age identification of MCG or mountain wild ginseng (MWG) has remained a major challenge. In this study, we established a novel and rapid method for staining xylem vessels with phloroglucinol and identifying the "annual growth rings" of ginseng by utilizing a stereoscope, which serves as a reliable indicator of the age of MCG. Statistical analysis of the ring radius and the ring density of MCG aged from 1 to 20 years shows that the secondary xylem of MCG increases rapidly in the first 3 years but then gradually slows down from 4 to 10 years, and minor fluctuation is observed in the next 10 years. Meanwhile, the space between the growth rings (ring density) becomes increasingly small with age. This straightforward staining approach can reveal the age of MCG with remarkable clarity and can distinguish MCG from CG. RESEARCH HIGHLIGHTS: A novel rapid staining method for Panax ginseng was established. The age of mountain-cultivated ginseng (MCG) can be identified by microscopic techniques. MCG and cultivated ginseng (CG) can be discriminated by microstructure characteristics.


Subject(s)
Panax , Panax/chemistry
3.
Adv Biol (Weinh) ; 7(8): e2300062, 2023 08.
Article in English | MEDLINE | ID: mdl-37401656

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive cancer with very poor prognosis. Combination therapy has proven to be a promising strategy for enhancing TNBC treatment efficacy. Toosendanin (TSN), a plant-derived triterpenoid, has shown pleiotropic effects against a variety of tumors. Herein, it is evaluated whether TSN can enhance the efficacy of paclitaxel (PTX), a common chemotherapeutic agent, against TNBC. It is found that TSN and PTX synergistically suppress the proliferation of TNBC cell lines such as MDA-MB-231 and BT-549, and the combined treatment also inhibits the colony formation and induces cell apoptosis. Furthermore, this combination shows more marked migratory inhibition when compared to PTX alone. Mechanistic study shows that the ADORA2A pathway in TNBC is down-regulated by the combination treatment via mediating epithelial-to-mesenchymal transition (EMT) process. In addition, the combined treatment of TSN and PTX significantly attenuates the tumor growth when compared to PTX monotherapy in a mouse model bearing 4T1 tumor. The results suggest that combination of TSN and PTX is superior to PTX alone, suggesting that it may be a promising alternative adjuvant chemotherapy strategy for patients with TNBC, especially those with metastatic TNBC.


Subject(s)
Drugs, Chinese Herbal , Triple Negative Breast Neoplasms , Triterpenes , Animals , Humans , Mice , Cell Line, Tumor , Drugs, Chinese Herbal/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triterpenes/therapeutic use , Epithelial-Mesenchymal Transition/drug effects
4.
J Ethnopharmacol ; 306: 116130, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36621661

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Garcinia oligantha Merr. is an ethnomedicine plant mainly distributed in Guangdong and Hainan, China. It has the effects of heat-clearing and detoxicating, which has been used by local ethnic minorities to treat a variety of diseases, including inflammation, internal heat, toothache and scald. THE AIM OF THE REVIEW: This review summarizes and discusses the progress of the chemical compounds and biological activities of G. oligantha that have been studied in recent years to provide the direction for the prospective research and applications of G. oligantha. MATERIALS AND METHODS: The relevant literature about G. oligantha was accessible from ancient Chinese medical books and records, theses, as well as major scientific databases such as Google Scholar, PubMed, Web of Science, ScienceDirect, SciFinder, Baidu Scholar and China National Knowledge Infrastructure (CNKI). RESULTS: To date, more than 150 chemical compounds were isolated from this plant, including xanthones, volatile oil, fatty acid, benzofurane derivative and biphenyl compounds. Xanthones are the main bioactive compounds that exhibit diverse biological effects, such as antitumor, analgesic, anti-inflammatory, antioxidative, neuroprotective, antimalarial and antibacterial effects, which are consistent with its traditional uses as a folk medicine. Modern pharmacological studies show that these compounds participate in a variety of signaling pathways underlying different pathophysiologies, making them a valuable medicinal resource. CONCLUSION: G. oligantha is an ethnomedicine with a long history. However, due to regional and cultural constraints, the popularisation and use of ethnomedicine are still limited. Modern pharmacological and chemical research suggest that G. oligantha contains a variety of bioactive compounds and showed diverse biological functions, which is worthy of comprehensive and in-depth research. This review summarizes and discusses the recent progress in studies on G. oligantha, looking forward to promote further research and sustainable development of folk medicinal plants.


Subject(s)
Garcinia , Xanthones , Ethnopharmacology , Prospective Studies , Phytochemicals/pharmacology , Medicine, Traditional , Plant Extracts/pharmacology , Medicine, Chinese Traditional
5.
J Ethnopharmacol ; 302(Pt A): 115859, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36280017

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: A widely used traditional prescription, Yi-Gan San (YGS) is a remedy for neurodegenerative disorders. The formulation consists of seven Chinese medicinal materials in specific proportions, namely Uncariae Ramulus cum Uncis (Uncaria rhynchophylla (Miq.) Miq. ex Havil.), Bupleuri Radix (Bupleurum chinense DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Ligusticum wallichii Franch.), Poria (Poria cocos (Schw.) Wolf), Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala Koidz.) and Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.). Using YGS has been shown to alleviate various behavioural and psychological symptoms of dementia (BPSD). AIM OF THIS REVIEW: The goal of this review is to give up-to-date information about the traditional uses, chemistry, pharmacology and clinical efficacy of YGS based on the scientific literature and to learn the current focus and provide references in the next step. MATERIALS AND METHODS: The database search room was accessed using the search terms "Yi-Gan San" and "Yokukansan" to obtain results from resources such as Web of Science, PubMed, Google Scholar and Sci Finder Scholar. We not only consulted the literature of fellow authors for this review but also explored classical medical books. RESULTS: YGS has been used to cure neurosis, sleeplessness, night weeping and restlessness in infants. Its chemical components primarily consist of triterpenes, flavonoids, phenolics, lactones, alkaloids and other types of compounds. These active ingredients displayed diverse pharmacological activities to ameliorate BPSD by regulating serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmission. In addition, YGS showed neuroprotective, antistress, and anti-inflammatory effects. The majority of cases of neurodegenerative disorders are treated with YGS, including Alzheimer's disease and dementia with Lewy bodies. CONCLUSIONS: Based on previous studies, YGS has been used as a traditional prescription in East Asia, such as Japan, Korea and China, and it has diverse chemical compounds and multiple pharmacological activities. Nevertheless, few experimental studies have focused on chemical and quantitative YGS studies, suggesting that further comprehensive research on its chemicals and quality assessments is critical for future evaluations of drug efficacy.


Subject(s)
Angelica sinensis , Atractylodes , Drugs, Chinese Herbal , Glycyrrhiza uralensis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Angelica sinensis/chemistry , Prescriptions
6.
Front Microbiol ; 13: 1025605, 2022.
Article in English | MEDLINE | ID: mdl-36299732

ABSTRACT

Herpes simplex virus (HSV), an alphaherpesvirus, is highly prevalent in the human population and is known to cause oral and genital herpes and various complications. Represented by acyclovir (ACV), nucleoside analogs have been the main clinical treatment against HSV infection thus far. However, due to prolonged and excessive use, HSV has developed ACV-resistant strains. Therefore, effective treatment against ACV-resistant HSV strains is urgently needed. In this review, we summarized the plant extracts and natural compounds that inhibited ACV-resistant HSV infection and their mechanism of action.

7.
Phytomedicine ; 104: 154324, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35841663

ABSTRACT

BACKGROUND: COVID-19 highly caused contagious infections and massive deaths worldwide as well as unprecedentedly disrupting global economies and societies, and the urgent development of new antiviral medications are required. Medicinal herbs are promising resources for the discovery of prophylactic candidate against COVID-19. Considerable amounts of experimental efforts have been made on vaccines and direct-acting antiviral agents (DAAs), but neither of them was fast and fully developed. PURPOSE: This study examined the computational approaches that have played a significant role in drug discovery and development against COVID-19, and these computational methods and tools will be helpful for the discovery of lead compounds from phytochemicals and understanding the molecular mechanism of action of TCM in the prevention and control of the other diseases. METHODS: A search conducting in scientific databases (PubMed, Science Direct, ResearchGate, Google Scholar, and Web of Science) found a total of 2172 articles, which were retrieved via web interface of the following websites. After applying some inclusion and exclusion criteria and full-text screening, only 292 articles were collected as eligible articles. RESULTS: In this review, we highlight three main categories of computational approaches including structure-based, knowledge-mining (artificial intelligence) and network-based approaches. The most commonly used database, molecular docking tool, and MD simulation software include TCMSP, AutoDock Vina, and GROMACS, respectively. Network-based approaches were mainly provided to help readers understanding the complex mechanisms of multiple TCM ingredients, targets, diseases, and networks. CONCLUSION: Computational approaches have been broadly applied to the research of phytochemicals and TCM against COVID-19, and played a significant role in drug discovery and development in terms of the financial and time saving.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Hepatitis C, Chronic , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artificial Intelligence , China , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hepatitis C, Chronic/drug therapy , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Phytochemicals/pharmacology
8.
Phytomedicine ; 102: 154142, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35623158

ABSTRACT

BACKGROUND: Pyroptosis, an inflammatory form of programmed cell death (PCD), is reported to play important roles in the treatment of tumors. In our previous studies, we found that neobractatin (NBT), a caged prenylxanthone isolated from edible fruits of Garcinia bracteata C. Y. Wu ex Y. H. Li, showed anticancer effects against different cancer cells. However, the effect of NBT on pyroptosis is not well understood. PURPOSE: This study aims to investigate whether and how GSDME-mediated pyroptosis contributes to NBT-induced antitumor effects in esophageal cancer (EC) cells. METHODS: Cell viability assay and colony formation assay were used to determine the anticancer effects of NBT in esophageal cancer cells. Lactate dehydrogenase (LDH) release assay and microscopy imaging were used to detect the main characteristic of pyroptosis. CRISPR-Cas9 knockout and siRNA knockdown were performed to verify the roles of GSDME and caspase-3 in NBT-induced pyroptosis. Flow cytometry was used to measure the reactive oxygen species (ROS) level and cell apoptosis. The changes of related protein level were detected by Western blot. Furthermore, animal experiments were used to verify the in vivo effect of NBT. RESULTS: The results showed that NBT reduced the viability of EC cells mainly through GSDME-mediated pyroptosis. Morphologically, NBT induced cell swelling and formed large bubbles emerging from plasma membrane in wild type EC cells. Furthermore, NBT induced the cleavage of GSDME by activating caspase-3 in EC cells. On the other hand, caspase-3 activated by NBT also induced apoptosis especially at high dosage. Knocking down GSDME switched NBT-induced cell death from mainly pyroptosis to apoptosis in vivo and in vitro. Mechanistic studies indicated that NBT led to accumulation of ROS, which then regulated the phosphorylation of both JNK and MEK/ERK. In the absence of ROS or caspase-3, NBT-induced pyroptosis and apoptosis were completely reversed. Moreover, NBT showed a significant antitumor effect in both the KYSE150 and GSDME knockout KYSE150-/- xenograft models by inducing pyroptosis and apoptosis, respectively. CONCLUSION: Our results indicated that natural compound NBT could induce GSDME-mediated pyroptosis and apoptosis in esophageal cancer cells, making it a potential therapeutic drug in clinical treatment.


Subject(s)
Esophageal Neoplasms , Garcinia , Animals , Caspase 3/metabolism , Esophageal Neoplasms/drug therapy , Humans , Pyroptosis , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism
9.
J Ethnopharmacol ; 295: 115396, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35598796

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt., also known as motherwort, is a traditional Chinese medicine that was first identified in Shennong Bencao Jing, the first and essential pharmacy monograph in China. L. japonicus has been regarded as a good gynecological medicine since ancient times. It has been widely used in clinical settings for treatment of gynecological diseases and postnatal rehabilitation with good efficacy and low adverse effects. AIM OF THE STUDY: The main purpose of this study was to determine the angiogenic and wound healing effects of total alkaloid fraction from L. japonicus Houtt. (TALH) in vivo and in vitro. In addition, the main bioactive components of total alkaloids were to be identified and analyzed in this study. MATERIALS AND METHODS: First, the UHPLC/Q-TOF-MS method was used to identify and quantify the major components in the TALH extract. The wound healing activity was evaluated in vivo using a rat full-thickness cutaneous wound model. Histological study of wound healing in rat model was performed via immunohistochemistry and immunofluorescence. Cell proliferation was determined by MTT assay. Wound healing and transwell assays were used for detection of cell migration. The effect on tube formation was determined by tube formation assay in HUVECs. Western blot and RT-PCR were used to detect the expressions of relative proteins and genes respectively. Knock-down of SRC by siRNA was done to verify the crucial role of SRC in promotion of angiogenesis induced by TALH. RESULTS: Seven characteristic peaks were recognized in the UHPLC/Q-TOF-MS spectrum, while four of the main components were quantified. The wound model in rats showed that treatment of TALH promoted wound healing by stimulating cellular proliferation and collagen deposition. In vitro experiments showed that co-treatment of TALH and VEGF increased cell proliferation, migration and tube formation in HUVECs. Mechanistic studies suggested that the co-treatment increased gene expressions of SRC, MEK1/2 and ERK1/2, as well as the phosphorylation levels of these proteins. Furthermore, the effect of co-treatment was attenuated after SRC knockdown, suggesting that SRC plays an important role in angiogenesis and wound healing induced by TALH and VEGF co-treatment. CONCLUSION: Our results showed that TALH was one of the main active components of L. japonicus that promoted angiogenesis and wound healing by regulating the SRC/MEK/ERK pathway. Our study provided scientific basis for better clinical application of L. japonicas.


Subject(s)
Alkaloids , Leonurus , Alkaloids/pharmacology , Animals , Cell Proliferation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Neovascularization, Pathologic/drug therapy , Rats , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Wound Healing
10.
Front Pharmacol ; 13: 853119, 2022.
Article in English | MEDLINE | ID: mdl-35370639

ABSTRACT

Brucea javanica (Ya-dan-zi in Chinese) is a well-known Chinese herbal medicine, which is traditionally used in Chinese medicine for the treatment of intestinal inflammation, diarrhea, malaria, and cancer. The formulation of the oil (Brucea javanica oil) has been widely used to treat various types of cancer. It has also been found that B. javanica is rich in chemical constituents, including quassinoids, triterpenes, alkaloids and flavonoids. Pharmacological studies have revealed that chemical compounds derived from B. javanica exhibit multiple bioactivities, such as anti-cancer, anti-bacterial, anti-diabetic, and others. This review provides a comprehensive summary on the pharmacological properties of the main chemical constituents presented in B. javanica and their underlying molecular mechanisms. Moreover, the review will also provide scientific references for further research and development of B. javanica and its chemical constituents into novel pharmaceutical products for disease management.

11.
Food Funct ; 13(9): 5050-5060, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35403637

ABSTRACT

Due to the rapid evolution of antibiotic resistance in Staphylococcus aureus, antivirulence therapy may be a promising alternative for the effective control of the spread of resistant pathogens. The Chinese Materia Medica has been widely used for the treatment of diseases and production of health foods, and it remains a valuable resource for the discovery of compounds possessing antivirulence activity. Through a Caenorhabditis elegans infection model, an EtOAc-soluble fraction of 80% EtOH extract of Salvia miltiorrhiza Bunge (SMEA) was found to possess potential anti-infective activity against S. aureus. Then, several in vitro assays indicated that SMEA had robust antivirulence activity at the dose of 400 µg mL-1, reducing hemolytic activity and α-hemolysin expression in S. aureus. Furthermore, at 100 mg kg-1, SMEA reduced abscess formation in the main organs of mice challenged with S. aureus. In order to identify the bioactive components of SMEA and investigate the mechanisms underlying the antivirulence activity, SMEA was separated using bioassay-guided fractionation. As a result, eight compounds were identified in SMEA. Among them, tanshinone IIB (TNB) showed strong antivirulence activity both in vitro and in vivo. Furthermore, at 24 µg mL-1, TNB significantly reduced the expression of RNAIII and psmα, indicating that the mechanism underlying TNB activity was related to the accessory gene regulator quorum sensing system. In conclusion, TNB's antivirulence properties make it a promising candidate for drug development against S. aureus infections.


Subject(s)
Anti-Infective Agents , Salvia miltiorrhiza , Staphylococcal Infections , Animals , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/pharmacology , Mice , Quorum Sensing , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Virulence
12.
J Nat Med ; 76(1): 102-109, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34417964

ABSTRACT

One new compound, crocusatin M (1), and three new glycosidic compounds, crocusatins N-P (2-4), along with nine known compounds were isolated from the dried stigmas of Crocus sativus. The structures of new compounds were elucidated on the basis of spectroscopic analysis, and the absolute configurations of 1, 2, and 3 were unambiguously assigned by the comparison of experimental and calculated ECD data. This is the first report of the isolation of 4 with the HMG moiety from the genus Crocus. Compounds 1 and 4 exhibited weak anti-inflammatory activities on inhibiting lipopolysaccharide (LPS)-induced NO production.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Crocus , Monoterpenes/pharmacology , Anti-Inflammatory Agents/isolation & purification , Crocus/chemistry , Flowers/chemistry , Monoterpenes/isolation & purification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
13.
J Ethnopharmacol ; 275: 114175, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33933571

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Circulating tumor cells (CTCs) play an important role in tumor metastasis and may be a target for metastasis prevention. The traditional Chinese medicine Jinfukang functions to improve immunity, prevent metastasis, and prolong lung cancer patient survival periods. Yet, whether Jinfukang prevents metastasis by regulating immune cells to clearance CTCs is still unknown. AIM OF THE STUDY: To explore the anti-metastasis mechanism of Jinfukang from the perspective of regulating NK cells to clear CTCs. MATERIALS AND METHODS: CTC-TJH-01 cell was treated with Jinfukang. Cytokine chip was used to detect cytokines in cell culture supernatant. Lymphocyte recruitment assay was detected by Transwell and flow cytometry. Protein expression was analysis by Western blot. LDH kit was used to detect cytotoxicity. NOD-SCID mice used for tail vein injection to study lung metastasis. RESULTS: Jinfukang could promote the expression and secretion of the chemokine CX3CL1 by CTCs. In addition, Jinfukang could promote the recruitment of natural killer (NK) cells by CTCs and significantly increase the cytotoxic effect of NK cells on CTCs. Moreover, Jinfukang could upregulate the expression of FasL and promote the secretion of TNF-α by NK cells and that NK cells could induce the apoptosis of CTCs through the Fas/FasL signaling pathway. Finally, we confirmed that Jinfukang could promote NK cells to kill CTCs and then inhibit lung cancer metastasis in vivo. The above effects of Jinfukang could be partially reversed by an anti-CX3CL1 mAb. CONCLUSIONS: These results suggest that Jinfukang may prevent lung cancer metastasis by enhancing the clearance of CTCs in the peripheral blood by NK cells, providing evidence for the anti-metastasis effect of Jinfukang.


Subject(s)
Antineoplastic Agents/pharmacology , Chemokine CX3CL1/genetics , Drugs, Chinese Herbal/pharmacology , Killer Cells, Natural/drug effects , Lung Neoplasms/drug therapy , Neoplasm Metastasis/prevention & control , Neoplastic Cells, Circulating/drug effects , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Chemokine CX3CL1/antagonists & inhibitors , Chemokine CX3CL1/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , GPI-Linked Proteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Killer Cells, Natural/immunology , Lung Neoplasms/complications , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis/immunology , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Receptors, Death Domain/metabolism , Signal Transduction/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects , fas Receptor/metabolism
14.
Org Lett ; 22(16): 6339-6343, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806193

ABSTRACT

Hypulatones A and B (1 and 2), two racemic meroterpenoids possessing an unprecedented spiro[benzofuran-2,1'-cycloundecan]-4'-ene-4,6(5H)-dione core, were characterized from Hypericum patulum. Compound 2 was found to significantly inhibit the late current of Nav1.5 (late INa, IC50 = 0.2 µM). Importantly, 2 exhibited remarkable separation (>100-fold) of late INa relative to peak INa and notable selectivity over Cav3.1, Kv1.5, and hERG. 1 showed comparable inhibition on late INa compared to that of 2 with poorer selectivity.


Subject(s)
Hypericum/chemistry , Myocytes, Cardiac/physiology , Sodium/chemistry , Humans , Molecular Structure , Myocytes, Cardiac/chemistry
15.
Phytomedicine ; 58: 152874, 2019 May.
Article in English | MEDLINE | ID: mdl-30889421

ABSTRACT

BACKGROUND: The fruits of Psoralea corylifolia L. (Fructus Psoraleae, FP) has a long history and a wide range of applications in the treatment of osteoporosis and leukoderma. Although it is well known that FP could cause hepatotoxicity and reproductive toxicity, less is known about its potential toxicity on multiple organs. PURPOSE: This study aims to determine the multiorgan toxicity of EtOH extract of FP (EEFP) and to investigate the underlying mechanisms through a systematic evaluation in Wistar rats. STUDY DESIGN AND METHODS: Wistar rats were orally administered with the EEFP at doses of 1.5, 1.0 and 0.5 g/kg for 28 days. Histopathologic and clinicopathologic analyses were performed, and the hormone levels in serum and the mRNA levels of enzymes related to the production of steroid hormones in adrenal glands were detected. The area of each band of adrenal glands and the steroid levels in the adrenal glands were also measured. RESULTS: After the treatment, both the histopathologic and clinicopathologic examination showed that EEFP caused liver, prostate, seminal vesicle and adrenal gland damage. Among the enzymes involved in the regulation of adrenal steroid hormone production, NET, VMAT2, and CYP11B1 were upregulated, while CYP17A1 was downregulated. Among the adrenal steroid hormones, COR and NE were upregulated, while levels of DHT and serum ACRH and CRH decreased. CONCLUSION: Our results indicated that adrenal gland, prostate, and seminal vesicles could also be the target organs of FP-induced toxicity. Abnormal enzyme and hormone production related to the hypothalamic pituitary adrenal (HPA) axis caused by the EEFP may be the potential toxic mechanism for changes in the adrenal gland and secondary sex organs of male rats.


Subject(s)
Adrenal Glands/drug effects , Enzymes/metabolism , Plant Extracts/toxicity , Steroids/metabolism , Administration, Oral , Adrenal Glands/metabolism , Adrenal Glands/pathology , Animals , Enzymes/genetics , Ethanol/chemistry , Fabaceae , Female , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Liver/drug effects , Liver/pathology , Male , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Prostate/drug effects , Prostate/pathology , Rats, Wistar , Toxicity Tests/methods
16.
Planta Med ; 85(6): 444-452, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30650454

ABSTRACT

Six new prenylated xanthones (1: -6: ) and seventeen known xanthones were isolated from extracts of Garcinia bracteata leaves. Their structures were determined by extensive NMR and MS spectroscopic data analysis. The inhibitory activities of the isolates were assayed on HeLa, A549, PC-3, HT-29, and WPMY-1 cell lines. Compounds 1: and 15: -17: showed moderate inhibitory effects on tumor cell growth, with IC50s ranging from 3.7 to 14.7 µM.


Subject(s)
Cytotoxins/isolation & purification , Garcinia/chemistry , Plant Leaves/chemistry , Xanthones/isolation & purification , Cell Line, Tumor/drug effects , Cytotoxins/pharmacology , HeLa Cells/drug effects , Humans , PC-3 Cells/drug effects , Structure-Activity Relationship , Xanthones/pharmacology
17.
Food Chem Toxicol ; 125: 133-140, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30597224

ABSTRACT

Fructus Psoraleae (FP) causes cholestatic liver injury; however, its main toxic constituents that are responsible for causing hepatotoxicity remained undetermined in previous studies. In the present study, psoralen and isopsoralen, the two main constituents of FP, were administered orally to rats (80 and 40 mg/kg, respectively) and mice (320 and 160 mg/kg, respectively) for 28 days, followed by biochemical and histopathological examinations to evaluate their hepatotoxicity. The results showed that psoralen and isopsoralen could induce the toxic reactions of liver and other organs in rats, while mice were not sensitive to these two compounds. Furthermore, the corresponding results indicated that administration of psoralen and isopsoralen repressed the expression of CYP7A1, BSEP, MRP2 and SULT2A1 and increased the expression of FXR and MRP3 in the rat liver. In summary, the toxic reactions of psoralen and isopsoralen are different in different species. In this study, multiple organ toxicity, such as cholestatic liver injury, occurs in rats, but not in mice. Psoralen and isopsoralen are the two main toxic constituents of FP. In addition, psoralen and isopsoralen cause liver injury, possibly through inhibiting bile acid excretion in the liver, leading to the accumulation of toxin in hepatocytes.


Subject(s)
Cholestasis, Intrahepatic/chemically induced , Ficusin/toxicity , Furocoumarins/toxicity , Hepatocytes/drug effects , Plant Extracts/chemistry , Animals , Fabaceae , Female , Mice, Inbred ICR , RNA, Messenger/metabolism , Rats, Wistar
18.
J Pharm Biomed Anal ; 163: 24-33, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30278323

ABSTRACT

Here, time-decoupled comprehensive two-dimensional ultra-high liquid chromatography (UHPLC) coupled with an ion mobility (IM)-high resolution mass spectrometer (HRMS) was established and used to analyze ginsenosides from the main roots of white ginseng (WG) and red ginseng (RG), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility, and mass spectrometry). The incompatibility of mobile phases, dilution effect, and long analysis time, which are the main shortcomings of traditional comprehensive 2D-LC methods, were largely avoided in this newly established 2D-UHPLC method. The orthogonality of this system was 55%, and the peak capacity was 4392. Under the optimized 2D-UHPLC-IM-MS method, 201 ginsenosides were detected from white and red ginseng samples. Among them, 10 pairs of co-eluting isobaric ginseng saponins that were not resolved by 2D-UHPLC-HRMS were further resolved using 2D-UHPLC-IM-MS. In addition, 24 ginsenoside references were analyzed by UHPLC-IM-MS to obtain their collision cross section (CCS) values and ion mobility characteristics. Finally, the established new method combined with multivariate statistical analysis was successfully applied to differentiate WG and RG, and 9 ginsenosides were found to be the potential biomarkers by S-Plot and the values of max fold change, which could be used for classifying WG and RG samples. Overall, the obtained results demonstrate the applicability and potential of the established time-decoupled online comprehensive 2D-UHPLC-IM-MS system, and it will be extended to the analysis of other targeted or untargeted compounds, especially co-eluting isomers in more herbal extracts.


Subject(s)
Chemical Fractionation/methods , Ginsenosides/analysis , Panax/chemistry , Plant Extracts/analysis , Chemical Fractionation/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Feasibility Studies , Plant Extracts/chemistry , Plant Roots/chemistry , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods
19.
Br J Pharmacol ; 175(7): 1085-1099, 2018 04.
Article in English | MEDLINE | ID: mdl-29352742

ABSTRACT

BACKGROUND AND PURPOSE: Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gastrointestinal tract, and an impaired immune response plays a critical role in IBD. The current drugs and therapies for IBD treatment are of limited use, therefore, there is a need to find novel drugs or therapies for this disease. We investigated the effect of cambogin in a mouse model of dextran sulphate sodium (DSS)-induced colitis and whether cambogin attenuates inflammation via a Treg-cell-mediated effect on the immune response. EXPERIMENTAL APPROACH: Chronic colitis was established in mice using 2% DSS, and cambogin (10 mg·kg-1 , p.o.) was administered for 10 days. Body weight, colon length and colon histology were assessed. Cytokine production was measured using elisa and quantitative real-time PCR. To evaluate the mechanism of cambogin, human CD4+ CD25hi CD127lo Treg cells were isolated from peripheral blood mononuclear cells. Major signalling profiles involved in Treg cell stability were measured. KEY RESULTS: Cambogin attenuated diarrhoea, colon shortening and colon histological injury and IL-6, IFN-γ and TNF-α production in DSS-treated mice. Cambogin also up-regulated Treg cell numbers in both the spleen and mesenteric lymph nodes. Furthermore, cambogin (10 µM) prevented Foxp3 loss in human primary Treg cells in vitro, and promoted USP7-mediated Foxp3 deubiquitination and increased Foxp3 protein expression in LPS-treated cells. CONCLUSIONS AND IMPLICATIONS: The effect of cambogin on DSS-induced colitis is expedited by a Treg-cell-mediated modification of the immune response, suggesting that cambogin could be applied as a novel agent for treating colitis and other Treg cell-related diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis/drug therapy , T-Lymphocytes, Regulatory/drug effects , Terpenes/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/immunology , Colitis/pathology , Colon/drug effects , Colon/immunology , Colon/pathology , Cytokines/immunology , Dextran Sulfate , Female , Forkhead Transcription Factors/immunology , HEK293 Cells , Humans , Mice , T-Lymphocytes, Regulatory/immunology , Terpenes/pharmacology
20.
Acta Pharmacol Sin ; 38(2): 252-263, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27840412

ABSTRACT

Oblongifolin C (OC) and guttiferone K (GUTK) are two anticancer compounds extracted from Garcinia yunnanensis Hu, but they act by different mechanisms. In this study we investigated whether a combination of OC and GUTK (1:1 molar ratio) could produce synergistic anticancer effects against human colorectal cancer cells in vitro. For comparison, we also examined the anticancer efficacy of ethanol extracts from G yunnanensis fruit, which contain OC and GUTK up to 5%. Compared to OC and GUTK alone, the combination of OC and GUTK as well as the ethanol extracts more potently inhibited the cancer cell growth with IC50 values of 3.4 µmol/L and 3.85 µg/mL, respectively. Furthermore, OC and GUTK displayed synergistic inhibition on HCT116 cells: co-treatment with OC and GUTK induced more prominent apoptosis than treatment with either drug alone. Moreover, the combination of OC and GUTK markedly increased cleavage of casapse-3 and PARP, and enhanced cellular ROS production and increased JNK protein phosphorylation. In addition, the combination of OC and GUTK exerted stronger effects under nutrient-deprived conditions than in complete medium, suggesting that autophagy played an essential role in regulating OC- and GUTK-mediated cell death. OC and GUTK are the main components that contribute to the anticancer activity of G yunnanensis and the compounds have apoptosis-inducing effects in HCT116 cells in vitro.


Subject(s)
Apoptosis/drug effects , Benzophenones/pharmacology , Garcinia/chemistry , Terpenes/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Benzophenones/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Fruit/chemistry , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Terpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL