ABSTRACT
To improve the quality of osmanthus black tea, samples produced with different scenting methods were prepared. The sensory quality was assessed and the characteristic aromatic components were explored using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. According to the results, osmanthus black tea obtained by adding osmanthus scenting in the fermentation process had the strongest floral aroma. The major contributors to the aroma of osmanthus black tea were identified as ß-ionone, dihydro-ß-ionone, benzeneacetaldehyde, citral, geraniol, and linalool by calculating their relative odor activity values. An analysis of the causes revealed that the moisture content of tea dhool significantly affected the adsorption of fresh flower aroma by tea. The experimental results showed that osmanthus black tea produced using tea dhool containing 30% moisture content had the highest content of crucial aroma components, suggesting the tea dhool under this condition had the strongest adsorption capacity for osmanthus aroma.
Subject(s)
Camellia sinensis , Oleaceae , Volatile Organic Compounds , Tea/chemistry , Odorants/analysis , Volatile Organic Compounds/analysis , Camellia sinensis/chemistryABSTRACT
Roasting is essential for processing large-leaf yellow tea (LYT). However, the effect of the roasting on the metabolic and sensory profiles of LYT remains unknown. Herein, the metabolomics and sensory quality of LYT at five roasting degrees were evaluated by liquid/gas chromatography mass spectrometry and quantitative descriptive analysis. A higher degree of roasting resulted in a significantly stronger crispy rice, fried rice, and smoky-burnt aroma (p < 0.05), which is closely associated with heterocyclic compound accumulation (concentrations: 6.47 ± 0.27 - 1065.00 ± 5.58 µg/g). Amino acids, catechins, flavonoid glycosides and N-ethyl-2-pyrrolidone-substituted flavan-3-ol varied with roasting degree. The enhancement of crispy-rice and burnt flavor coupled with the reduction of bitterness and astringency. Correlations analysis revealed the essential compounds responsible for roasting degree, including 2,3-diethyl-5-methylpyrazine, hexanal, isoleucine, N-ethyl-2-pyrrolidone-substituted flavan-3-ol (EPSF), and others. These findings provide a theoretical basis for improving the specific flavors of LYT.
Subject(s)
Catechin , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Catechin/analysis , Plant Leaves/chemistry , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysisABSTRACT
The sensory quality of tea is influenced by water quality, with natural spring water (NSW) gaining much attention for its natural and healthy qualities. The effects of NSW on the sensory attributes, physicochemical composition, and antioxidant capacity of Chinese tea were investigated. Tea brewed with pure water was the most resistant to oxidation and darkening. NSW with low total dissolved solids (TDS) was most suitable for brewing unfermented or mildly fermented teas, improving their sensory quality. The simulated green tea infusion system was used to investigate further the dramatic darkening of tea infusions in NSW. Exposure of infusions to air promoted the degradation, epimerization, and oxidative polymerization of catechins, and further formed theabrownins which darkened the tea infusions. These findings enabled tea consumers to choose the most suitable NSW for brewing Chinese teas and illustrated the darkening mechanism of tea infusion in high pH/TDS water.
Subject(s)
Camellia sinensis , Catechin , Antioxidants/chemistry , Camellia sinensis/chemistry , Catechin/chemistry , Oxidation-Reduction , Tea/chemistry , Natural Springs/chemistryABSTRACT
Camellia sinensis var. assamica cv. Zijuan (purple tea) is known for its content of anthocyanins, flavan-3-ols, and bioactivities. This study aimed to verify the influence of solvent polarity, in a solid-liquid extraction, on the content of phenolic compounds and chlorophylls, instrumental color, and antioxidant activity. Different proportions of water and ethanol (0:100, 25:75, 50:50, 75:25, and 100:0 v/v) were used for extraction. The results showed that the hydroalcoholic extract (75 % ethanol + 25 % water) had the highest contents of total flavonoids, total anthocyanins, chlorophyll A, and total carotenoids, as well as presenting the highest color intensity, proportion of yellow pigments, and antioxidant activity (total reducing capacity and scavenging of the DPPH free radical). Twenty-two compounds were identified, with chlorogenic acid, hesperidin, (-)-epicatechin, (-)-epigallocatechin gallate, and isoquercitrin being the main phenolics. This phenolic-rich extract inhibited lipoperoxidation induced in egg yolk homogenate (IC50 = 455 mg/L), showed no hemolytic behavior when human erythrocytes were subjected to osmotic stress, and exerted in vitro cytotoxic effects against cancer and hybrid cells. The extract obtained with the mixture of non-toxic solvents presented critical bioactivities, as well as a comprehensive identification of phenolic compounds in the cultivar, and has potential to be used in technological applications.
Subject(s)
Camellia sinensis , Humans , Camellia sinensis/chemistry , Antioxidants/pharmacology , Anthocyanins/pharmacology , Chlorophyll A , Phenols/analysis , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistryABSTRACT
Herein, a new indicator-displacement array (IDA) sensor was developed for the quality evaluation of black tea fermentation. On the principle of the reversible covalent binding of phenylboronic acid and catechol, phenylboronic acids were selected as acceptors for targeted binding to polyphenols. Pyrocatechol violet and alizarin red S were used as indicators of the reaction. The IDA sensors have sensitive differential responses to fermented tea samples, achieving an assessment of the fermentation degree with accuracies of 80.39-88.00% by support vector machine (SVM). In addition, the key polyphenol components of the fermentation process were accurately predicted by the IDA and SVM regression with ratio of prediction to deviation values of 1.55-1.72, 2.03-2.21, and 2.03-2.08 for total polyphenols, total catechins, and epigallocatechin-3-O-gallate, respectively. In conclusion, the developed IDA sensor is capable of the in-situ quality monitoring of black tea fermentation, with the advantages being cost-effectiveness, sensitivity, and rapidity.
Subject(s)
Camellia sinensis , Catechin , Tea , Polyphenols/analysis , Cost-Benefit Analysis , Fermentation , Catechin/analysisABSTRACT
The effects of ß-glucosidase on the volatile profiles and aroma stability of black tea juice were evaluated using gas-chromatography-mass spectrometry coupled with sensory analysis. During liquid fermentation of tea leaves, the addition of ß-glucosidase increased the concentration of aldehydes, strengthening the undesirable "green grassy" odour. However, the "green grassy" odour was counteracted by adding green tea extract during fermentation. At the same time, "flowery" flavour notes were enhanced, improving the overall aroma quality and strengthening the characteristic "sweet" aroma of black tea. Increased addition of ß-glucosidase released more free aroma alcohols from their glucosides. Two "fruity" and "floral" aroma components, benzyl alcohol and phenylethyl alcohol, were not significantly affected by heat treatment (95 °C water bath) and the overall aroma stability was not significantly affected by ß-glucosidase treatment. ß-Glucosidase treatment improved the aroma, colour and overall suitability of fermented black tea juice as an ingredient for tea-based beverages.
Subject(s)
Camellia sinensis , Phenylethyl Alcohol , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , beta-Glucosidase , Phenylethyl Alcohol/analysis , Volatile Organic Compounds/analysis , Camellia sinensis/chemistry , Beverages/analysis , Aldehydes/analysis , Plant Extracts , Glucosides , Benzyl Alcohols , WaterABSTRACT
Seven batches of raw tea leaves, processed by different methods (steaming, pan-frying) and from two different harvesting seasons (spring, autumn), were used to investigate the effect of baking treatment on changes in the composition and content of nonvolatile and volatile compounds. The results showed that baking had a greater impact on sensory and flavor quality, which chemically modified some of taste and aroma components. The aroma concentrations of steamed teas (4,168-10,706 µg/L) were significantly higher than those of pan-fried teas (959-2,608 µg/L), and the aroma concentrations of baked green teas (2,608-10,706 µg/L) were significantly higher than those of unbaked teas (959-4,213 µg/L). Based on VIP > 1 and ACI > 1, (E, E)-3,5-octadien-2-one, hexanal, ß-ionone, 5-methylfurfural, ß-cyclocitral, and linalool were identified as the main aroma compounds. Chemical changes resulting from Maillard reaction were greater during baking of steamed, than pan-fried green tea. These results help improve the quality of green tea with baking.
Subject(s)
Tea , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Taste , Volatile Organic Compounds/analysisABSTRACT
Oral processing (OP), referring to the whole process of food digestion in human mouth, has a major influence on food flavor perception. This study focused on the compositional changes of the four green tea epicatechins (viz., EC, EGC, ECG, EGCG) during OP, based on targeted and nontargeted metabolomics. It was found that the four epicatechins were all extensively lost through transformation undergoing OP, among which EC was the most stable one, whereas EGCG the least. EGCG was further revealed to be susceptible to human oral cavity in the simulated OP in vitro. It could be converted physically by precipitating with mucin in saliva, and chemically through hydrolysis and dimerization, mediated mainly by the neutral pH condition. The OP of epicatechins also caused salivary composition changes possibly involving health benefits of green tea. These findings could raise awareness of the interactions between epicatechins, or any other food materials, with human mouth.
Subject(s)
Catechin , Tea , Antioxidants , Catechin/analysis , Humans , Metabolomics , TasteABSTRACT
Aroma deterioration is one of the biggest problems in processing tea beverages. The aroma of tea infusion deteriorates fast during heat sterilization and the presence of ferrous ion (Fe2+) aggravates it. The underlying mechanism remains unveiled. In this study, Fe2+ was verified to deteriorate the aroma quality of green tea infusion with heat treatment. Catechins were necessary for Fe2+-mediated aroma deterioration. By enhancing the degradation of catechins, Fe2+ dramatically increased the production of hydrogen peroxide (H2O2). Fe2+ and H2O2 together exacerbated the aroma of green tea infusion with heat treatment. GC-MS analysis revealed that the presence of Fe2+ enhanced the loss of green/grassy volatiles and promoted the formation of new volatiles with diversified aroma characteristics, resulting in a dull scent of green tea infusion. Our results revealed how Fe2+ induced aroma deterioration of green tea infusion with heat treatment and could help guide tea producers in attenuating the aroma deterioration of tea infusion during processing.
Subject(s)
Ferrous Compounds/analysis , Odorants/analysis , Tea/chemistry , Catechin/chemistry , Cations, Divalent/analysis , Hot Temperature , Iron/analysis , SterilizationABSTRACT
Zijuan tea is a representative anthocyanin-rich tea cultivar in China. In this study, Zijuan tea was used to produce a novel kombucha beverage (ZTK). The physicochemical, sensory properties, and antioxidant activity of ZTK were compared with that of black tea kombucha (BTK) and green tea kombucha (GTK). Results indicated that after fermentation, the color of ZTK changed from yellowish-brown to salmon-pink, because its anthocyanins (4.5 mg/L) appeared red in acidic conditions. Meanwhile no significant changes of color were observed in BTK and GTK. The dynamic changes of pH, biomass, and concentrations of sugars, amino acids, and main organic acids were similar in three kombucha beverages, except catechins showing different trends. Moreover, ZTK showed the highest overall acceptability score, antioxidant activity, and concentration of volatiles among the three kombucha beverages. Therefore, Zijuan tea is suitable for the preparation of kombucha beverage with attractive color and health benefits.
Subject(s)
Antioxidants , Camellia sinensis , Anthocyanins , Antioxidants/analysis , Fermentation , TeaABSTRACT
The effects of brewing water on the sensory attributes and physicochemical properties of tea infusions made from Chinese teas were investigated. The tea infusions brewed in water with higher pH and total dissolved solids (TDS), generally had a darker color and lower overall sensory acceptability. Moreover, those infusions had less catechins, particularly galloylated-catechins, and lower antioxidant capacity. The teas with less fermentation contained more galloylated-catechins and had higher antioxidant capacity, but were much more susceptible to high mineral brewing water. Green tea was proved to be the most susceptible one, whereas dark tea the most stable one. Green tea infusions prepared with higher pH/TDS water were more rapidly oxidized, resulting in a darker color due to polymerization of catechins, when exposed to the air. These findings suggested that low mineral brewing water was better for Chinese tea, both from the sensory and health benefit perspectives.
Subject(s)
Camellia sinensis , Catechin , Antioxidants/analysis , Catechin/analysis , Tea , WaterABSTRACT
Milky tea is popular in many countries and its color is an important sensory property. The effects of black tea infusion on the color of milky tea prepared with non-dairy creamer were investigated. The results showed that the redder black tea infusion produced milky tea with more redness, and the color of milky tea was a pleasant pink when the a* value (redness indicator) was in the range of 6.0-7.0. Correlation analysis revealed that the respective theaflavins (TFs), thearubigins (TRs), thearubigins (TBs), (-)-epigallocatechin-3-gallate (EGCG) and chlorogenic acid contents significantly correlated with the a* values of milky tea. A series of complementary experiments were performed to elucidate that TFs and EGCG contributed to the redness of milky tea. The color formation was mainly associated with the binding of phenols to the proteins in the non-dairy creamer. These results contribute to understand the mechanism of color formation in milky tea.
Subject(s)
Camellia sinensis , Tea , Antioxidants/analysis , Flavonoids/analysis , Phenols/analysisABSTRACT
The effects of epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG) on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage were modeled using response surface methodology. Results showed that ECG presented the highest reducing capacity while EGCG presented the highest Cu2+ chelating ability. Binary interactions (EGCG/EGC and EGCG/ECG) had an additive effect on CUPRAC, DPPH and Cu2+ chelating ability. The mixture containing 67.4% ECG and 32.6% EGCG was the optimal combination of flavanols (OPC). In a beverage model - chrysanthemum tea - OPC enhanced the anti-proliferative activity in relation to OVCAR-3, HEK293 and HFL1 cells and decreased the intracellular generation of reactive oxygen species. OPC enhanced the bitterness and astringency of the beverage models impacting in a decrease in overall acceptance. The pasteurization process did not decrease the antioxidant activity and the flavanol concentration of the beverages.
Subject(s)
Antioxidants/pharmacology , Catechin/analogs & derivatives , Teas, Herbal , Adult , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Astringents/pharmacology , Catechin/pharmacology , Cell Line, Tumor , Chrysanthemum/chemistry , Female , HEK293 Cells , Humans , Male , Middle Aged , Ovarian Neoplasms/drug therapy , Pasteurization , Reactive Oxygen Species , Taste , Tea/chemistryABSTRACT
Astringency is an important quality attribute of green tea infusion, and (-)-Epigallocatechin gallate (EGCG) is the main contributor to astringency. Turbidity was used to predict the intensity of astringency for EGCG. The interactions between the selected proteins and EGCG, and the impacts of temperature, pH, protein structure, and EGCG concentration were studied. Mucin was selected as the protein in study for the prediction of EGCG astringency intensity. A predictive model (R2 = 0.994) was developed based on the relationship between the astringency of EGCG and the turbidity of EGCG/mucin mixtures at pH 5.0 and 37 °C. The fluorescence quenching analyses showed the interactions between EGCG and the selected proteins, which induced the reversible protein molecule conformational changes. The interactions were considered as the main reason that causes the astringency of tea infusions. The results provided a biochemical approach to explore the sensory qualities of green tea.
Subject(s)
Catechin/analogs & derivatives , Salivary Proteins and Peptides/chemistry , Tea/chemistry , Adult , Catechin/chemistry , Female , Fluorescence , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Models, Theoretical , Mucins/chemistry , Protein Conformation , Spectrometry, Fluorescence , Taste , TemperatureABSTRACT
Flavor stability is important for the quality of tea beverages. Baking is a typical processing technology to improve the flavor of tea leaves. In present study, seven raw tea materials, including steamed spring and autumn tea leaves, pan-fired spring tea leaves, and their corresponding baked tea leaves, were used to investigate the effect of baking on flavor stability of green tea beverages. The results showed that tea beverages prepared with baked tea had better flavor stability. The baking process obviously changed the concentrations of some important flavor substances, especially the aromatic pyrrole substances from 0 (unbaked) to 338.13 µg/L (baked) in tea beverages. Heat treatment had little influence on the flavor of tea beverages prepared from baked tea, but caused great changes in non-volatile and volatile components in those prepared from unbaked leaves. These results could help guide the processing of tea beverages which would improve their flavor quality stability.
Subject(s)
Beverages/analysis , Food Handling/methods , Tea/chemistry , Catechin/analysis , Chromatography, High Pressure Liquid , Color , Mass Spectrometry , Plant Leaves/chemistry , Plant Leaves/metabolism , Polyphenols/analysis , Principal Component Analysis , Taste , Tea/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistryABSTRACT
Green tea processed from autumn leaves is more bitter and astringent than that from spring leaves, mainly due to gallated catechins. The present study aimed to improve the taste of autumn green tea and green tea infusion by using tannase to treat tea leaves and tea infusion. The results showed that, after hydrolysis, the sweet aftertaste and overall acceptability improved, and the ratio of gallated catechins decreased, as did the bitterness and astringency of the autumn green tea. The pH value was significantly correlated with the concentrations of gallated catechins (râ¯=â¯0.930, pâ¯<â¯0.01), non-gallated catechins (râ¯=â¯-0.893, pâ¯<â¯0.01), and gallic acid (râ¯=â¯0.915, pâ¯<â¯0.01), as well as with the intensities of bitterness, astringency, and sweet aftertaste during hydrolysis. Gallic acid contributed to the sweet aftertaste of green tea infusion. These results will help to improve autumn green tea products with tannase.
Subject(s)
Carboxylic Ester Hydrolases/chemistry , Plant Leaves/chemistry , Taste , Tea/chemistry , Adult , Catechin/analysis , Consumer Behavior , Female , Food Handling , Gallic Acid/analysis , Humans , Hydrogen-Ion Concentration , Hydrolysis , Male , Middle Aged , Olfactory Perception , Seasons , Young AdultABSTRACT
Bitterness and astringency are two important quality attributes of green tea infusion, and catechins are the main contributor to the bitterness and astringency. The aim of this work was to quantitatively analyse the bitterness and astringency of green tea infusion according to the concentrations of catechins. The concentration-taste curves of catechins showed a pattern that fit the cubic functions, and their R2 values were higher than 0.956. The bitterness of green tea was highly correlated with the concentrations of (-)-epigallocatechin gallate and (-)-epicatechin gallate (ECG) (R2â¯=â¯0.7769, pâ¯<â¯0.01), and the astringency (R2â¯=â¯0.7878, pâ¯<â¯0.01) was highly correlated with the concentrations of ECG and flavonol glycosides (myricetin 3-O-galactoside and quercetin-3-O-rutinoside). Taste interactions between different catechins and between catechins and other substances were determined. These results may enhance the understanding of tea chemistry for improving the taste of products from green tea.
Subject(s)
Astringents/analysis , Aversive Agents/analysis , Taste Perception , Tea/chemistry , Catechin/analogs & derivatives , Catechin/analysis , Flavonols/analysis , Tea/metabolismABSTRACT
The Tieguanyin oolong tea is popular in China. However, the quality development and chemical change during processing were still unclear. This study aimed to investigate the chemical compositions and quality of Tieguanyin oolong teas processed from different leaves of fresh shoots. The results showed the fermentation degree of oolong teas decreased from the first leaves to the fourth-fifth leaves, and was associated with the changes in infusion color (b∗) and chroma, as well as the contents of total theaflavins, (E)-nerolidol and indole. After shaking and setting, the differences in the water contents and the activities of polyphenoloxidase, peroxidase, and ß-glucosidase of the tea leaves, significantly influenced the oxidation of catechins. The hydrolysis of volatile compounds might influence the fermentation degrees of the oolong teas processed from different leaves of fresh shoots. The results generated from the present study can be used in guiding the production of oolong teas.
Subject(s)
Camellia sinensis/chemistry , Tea/chemistry , Antioxidants/analysis , Biflavonoids/chemistry , Catechin/chemistry , China , Fermentation , Food Handling , Plant Leaves/chemistry , Plant Shoots/chemistry , Quality Control , Volatile Organic Compounds/chemistryABSTRACT
The physicochemical properties of tea extracts are significantly affected by the extraction method. The aim of this study was to compare the effects of static and dynamic extractions on the concentrations of chemical components and taste quality of green tea extracts. Our results show that extraction of chemical components using static extraction follows a pseudo-second-order reaction, while that of dynamic extraction follows a first-order reaction. The concentrations of the solids, polyphenols, and free amino acids in green tea extract prepared by dynamic extraction were much higher, although the overall yields were not significantly different between the two extraction methods. Green tea extracts obtained via dynamic extraction were of lower bitterness and astringency, as well and higher intensities of umami and overall acceptability. These results suggest that dynamic extraction is more suitable for the processing of green tea concentrate because of the higher concentration of green tea extract.
Subject(s)
Chemical Fractionation/methods , Taste , Tea/chemistry , Adult , Amino Acids/analysis , Amino Acids/chemistry , Catechin/analysis , Catechin/chemistry , Female , Humans , Male , Middle Aged , Plant Extracts/chemistry , Polyphenols/analysis , Polyphenols/chemistryABSTRACT
The physicochemical characteristics, sensory quality, and antioxidant activity of tea infusions prepared with purified water (PW), mineral water (MW), mountain spring water (MSW), and tap water (TW) from Hangzhou were investigated. The results showed that the taste quality, catechin concentration, and antioxidant capacity of green, oolong, and black tea infusions prepared using MW and TW were significantly lower than those prepared using PW. Extraction of catechins and caffeine was reduced with high-conductivity water, while high pH influenced the stability of catechins. PW and MSW were more suitable for brewing green and oolong teas, while MSW, with low pH and moderate ion concentration, was the most suitable water for brewing black tea. Lowering the pH of mineral water partially improved the taste quality and increased the concentration of catechins in the infusions. These results aid selection of the most appropriate water for brewing Chinese teas.