Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Article in English | MEDLINE | ID: mdl-38354898

ABSTRACT

Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.


Subject(s)
Memory, Short-Term , Neurofeedback , Humans , Memory, Short-Term/physiology , Neurofeedback/methods , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Magnetic Resonance Imaging/methods , Cognition
2.
J Neural Eng ; 21(1)2024 02 22.
Article in English | MEDLINE | ID: mdl-38295419

ABSTRACT

Objective. The number of electrode channels in a motor imagery-based brain-computer interface (MI-BCI) system influences not only its decoding performance, but also its convenience for use in applications. Although many channel selection methods have been proposed in the literature, they are usually based on the univariate features of a single channel. This leads to a loss of the interaction between channels and the exchange of information between networks operating at different frequency bands.Approach. We integrate brain networks containing four frequency bands into a multilayer network framework and propose a multilayer network-based channel selection (MNCS) method for MI-BCI systems. A graph learning-based method is used to estimate the multilayer network from electroencephalogram (EEG) data that are filtered by multiple frequency bands. The multilayer participation coefficient of the multilayer network is then computed to select EEG channels that do not contain redundant information. Furthermore, the common spatial pattern (CSP) method is used to extract effective features. Finally, a support vector machine classifier with a linear kernel is trained to accurately identify MI tasks.Main results. We used three publicly available datasets from the BCI Competition containing data on 12 healthy subjects and one dataset containing data on 15 stroke patients to validate the effectiveness of our proposed method. The results showed that the proposed MNCS method outperforms all channels (85.8% vs. 93.1%, 84.4% vs. 89.0%, 71.7% vs. 79.4%, and 72.7% vs. 84.0%). Moreover, it achieved significantly higher decoding accuracies on MI-BCI systems than state-of-the-art methods (pairedt-tests,p< 0.05).Significance. The experimental results showed that the proposed MNCS method can select appropriate channels to improve the decoding performance as well as the convenience of the application of MI-BCI systems.


Subject(s)
Brain-Computer Interfaces , Humans , Imagination , Electroencephalography/methods , Imagery, Psychotherapy , Brain , Algorithms
3.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38183186

ABSTRACT

Motor imagery (MI) is a cognitive process wherein an individual mentally rehearses a specific movement without physically executing it. Recently, MI-based brain-computer interface (BCI) has attracted widespread attention. However, accurate decoding of MI and understanding of neural mechanisms still face huge challenges. These seriously hinder the clinical application and development of BCI systems based on MI. Thus, it is very necessary to develop new methods to decode MI tasks. In this work, we propose a multi-branch convolutional neural network (MBCNN) with a temporal convolutional network (TCN), an end-to-end deep learning framework to decode multi-class MI tasks. We first used MBCNN to capture the MI electroencephalography signals information on temporal and spectral domains through different convolutional kernels. Then, we introduce TCN to extract more discriminative features. The within-subject cross-session strategy is used to validate the classification performance on the dataset of BCI Competition IV-2a. The results showed that we achieved 75.08% average accuracy for 4-class MI task classification, outperforming several state-of-the-art approaches. The proposed MBCNN-TCN-Net framework successfully captures discriminative features and decodes MI tasks effectively, improving the performance of MI-BCIs. Our findings could provide significant potential for improving the clinical application and development of MI-based BCI systems.


Subject(s)
Brain-Computer Interfaces , Imagination , Neural Networks, Computer , Algorithms , Imagery, Psychotherapy , Electroencephalography/methods
4.
Brain Res Bull ; 205: 110812, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951276

ABSTRACT

Acoustic stimulation is one of the most influential techniques for distressing tinnitus, while how it functions to reverse neural changes associated with tinnitus remains undisclosed. In this study, our objective is to investigate alterations in brain networks to shed light on the enigma of acoustic intervention for tinnitus. We designed a 75-day long-term acoustic intervention experiment, during which chronic tinnitus patients received daily modulated acoustic stimulation with each session lasting 15 days. Every 15 days, professional tinnitus assessments were conducted, collecting both electroencephalogram (EEG) and tinnitus handicap inventory (THI) data from the patients. Thereafter, we investigated the changes in EEG network organizations during continuous acoustic stimulation and their progressive evolution throughout long-term therapy, alongside exploring the associations between the evolving changes of the network alterations and THI. Our current study findings reveal reorganization in alpha/beta long-range frontal-parietal-occipital connections as well as local frontal and parietal-occipital regions induced by acoustic stimulation. Furthermore, we observed a decrease in modulation effects as therapy sessions progressed. These alterations in brain networks reflect the reversal of tinnitus-related neural activities, particularly distress and perception; thus contributing to tinnitus rehabilitation through long-term modulation effects. This study provides unique insights into how long-term acoustic intervention affects the network organizations of tinnitus patients and deepens our understanding of the pathophysiological mechanisms underlying tinnitus rehabilitation.


Subject(s)
Tinnitus , Humans , Acoustic Stimulation/methods , Tinnitus/therapy , Electroencephalography , Parietal Lobe
5.
Brain Behav ; 13(11): e3241, 2023 11.
Article in English | MEDLINE | ID: mdl-37721727

ABSTRACT

BACKGROUND: Internet addiction (IA), recognized as a behavioral addiction, is emerging as a global public health problem. Acupuncture has been demonstrated to be effective in alleviating IA; however, the mechanism is not yet clear. To fill this knowledge gap, our study aimed to investigate the modulatory effects of acupuncture on the functional interactions among the addiction-related networks in adolescents with IA. METHODS: Thirty individuals with IA and thirty age- and sex-matched healthy control subjects (HCs) were recruited. Subjects with IA were given a 40-day acupuncture treatment, and resting-state functional magnetic resonance imaging (fMRI) data were collected before and after acupuncture sessions. HCs received no treatment and underwent one fMRI scan after enrollment. The intergroup differences in functional connectivity (FC) among the subcortical nucleus (SN) and fronto-parietal network (FPN) were compared between HCs and subjects with IA at baseline. Then, the intragroup FC differences between the pre- and post-treatment were analyzed in the IA group. A multiple linear regression model was further employed to fit the FC changes to symptom relief in the IA group. RESULTS: In comparison to HCs, subjects with IA exhibited significantly heightened FC within and between the SN and FPN at baseline. After 40 days of acupuncture treatment, the FC within the FPN and between the SN and FPN were significantly decreased in individuals with IA. Symptom improvement in subjects with IA was well fitted by the decrease in FC between the left midbrain and ventral prefrontal cortex and between the left thalamus and ventral anterior prefrontal cortex. CONCLUSION: These findings confirmed the modulatory effects of acupuncture on the aberrant functional interactions among the SN and FPN, which may partly reflect the neurophysiological mechanism of acupuncture for IA.


Subject(s)
Acupuncture Therapy , Internet Addiction Disorder , Humans , Adolescent , Magnetic Resonance Imaging/methods , Prefrontal Cortex , Acupuncture Therapy/methods , Thalamus , Seizures , Brain , Brain Mapping/methods
6.
Epilepsy Behav ; 145: 109323, 2023 08.
Article in English | MEDLINE | ID: mdl-37356223

ABSTRACT

BACKGROUND: Mozart's "Sonata for two pianos" (Köchel listing 448) has proven effective as music therapy for patients with epilepsy, but little is understood about the mechanism of which feature in it impacted therapeutic effect. This study explored whether tempo in that piece is important for its therapeutic effect. METHODS: We measured the effects of tempo in Mozart's sonata on clinical and electroencephalographic parameters of 147 patients with epilepsy who listened to the music at slow, original, or accelerated speed. As a control, patients listened to Haydn's Symphony no. 94 at original speed. RESULTS: Listening to Mozart's piece at original speed significantly reduced the number of interictal epileptic discharges. It decreased beta power in the frontal, parietal, and occipital regions, suggesting increased auditory attention and reduced visual attention. It also decreased functional connectivity among frontal, parietal, temporal, and occipital brain regions, also suggesting increased auditory attention and reduced visual attention. No such effects were observed after patients listened to the slow or fast version of Mozart's piece, or to Haydn's symphony at normal speed. CONCLUSIONS: These results suggest that Mozart's "Sonata for two pianos" may exert therapeutic effects by regulating attention when played at its original tempo, but not slower or faster. These findings may help guide the design and optimization of music therapy against epilepsy.


Subject(s)
Epilepsy , Music Therapy , Music , Humans , Acoustic Stimulation/methods , Epilepsy/therapy , Music Therapy/methods , Brain , Auditory Perception/physiology
7.
J Magn Reson Imaging ; 58(3): 720-731, 2023 09.
Article in English | MEDLINE | ID: mdl-36637029

ABSTRACT

BACKGROUND: How the functional interactions of the basal ganglia/thalamus with the cerebral cortex and the cerebellum change over the adult lifespan in movie-watching and resting-state is less clear. PURPOSE: To investigate the functional changes in the organization of the human cortical-subcortical functional networks over the adult lifespan using movie-watching and resting-state fMRI data. STUDY TYPE: Cohort. SUBJECTS: Healthy 467 adults (cross-sectional individuals aged 18-88 years) from the Cambridge Centre for Ageing and Neuroscience (www.cam-can.com). FIELD STRENGTH/SEQUENCE: fMRI using a gradient-echo echo-planar imaging (EPI) sequence at 3 T. ASSESSMENT: Functional connectivities (FCs) of the subcortical subregions (i.e. the basal ganglia and thalamus) with both the cerebral cortex and cerebellum were examined in fMRI data acquired during resting state and movie-watching. And, fluid intelligence scores were also assessed. STATISTICAL TESTS: Student's t-tests, false discovery rate (FDR) corrected. RESULTS: As age increased, FCs that mainly within the basal ganglia and thalamus, and between the basal ganglia/thalamus and cortical networks (including the dorsal attention, ventral attention, and limbic networks) were both increased/decreased during movie-watching and resting states. However, FCs showed a state-dependent component with advancing age. During the movie-watching state, the FCs between the basal ganglia/thalamus and cerebellum/frontoparietal control networks were mainly increased with age, and the FCs in the somatomotor network were decreased with age. During the resting state, the FCs between the basal ganglia/thalamus and default mode/visual networks were mainly increased with age, and the FCs in the cerebellum were mainly decreased with age. Moreover, inverse relationships between FCs and fluid intelligence were mainly found in these network regions. DATA CONCLUSION: Our study may suggest that changes in cortical-subcortical functional networks across the adult lifespan were both state-dependent and stable traits, and that aging fMRI studies should consider the effects of both physiological characteristics and individual situations. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.


Subject(s)
Basal Ganglia , Longevity , Adult , Humans , Cross-Sectional Studies , Basal Ganglia/diagnostic imaging , Aging/physiology , Magnetic Resonance Imaging/methods , Cerebral Cortex , Thalamus , Neural Pathways , Brain Mapping/methods
8.
Neuroscience ; 502: 1-9, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36031089

ABSTRACT

Language is a remarkable cognitive ability that can be expressed through visual (written language) or auditory (spoken language) modalities. When visual characters and auditory speech convey conflicting information, individuals may selectively attend to either one of them. However, the dominant modality in such a competing situation and the neural mechanism underlying it are still unclear. Here, we presented participants with Chinese sentences in which the visual characters and auditory speech convey conflicting information, while behavioral and electroencephalographic (EEG) responses were recorded. Results showed a prominent auditory dominance when audio-visual competition occurred. Specifically, higher accuracy (ACC), larger N400 amplitudes and more linkages in the posterior occipital-parietal areas were demonstrated in the auditory mismatch condition compared to that in the visual mismatch condition. Our research illustrates the superiority of the auditory speech over the visual characters, extending our understanding of the neural mechanisms of audio-visual competition in Chinese.


Subject(s)
Semantics , Speech Perception , Humans , Male , Female , Language , Electroencephalography , Speech Perception/physiology , Evoked Potentials/physiology , China , Visual Perception/physiology , Acoustic Stimulation
9.
Med Image Anal ; 80: 102518, 2022 08.
Article in English | MEDLINE | ID: mdl-35749981

ABSTRACT

Mounting evidence has demonstrated that complex brain function processes are realized by the interaction of holistic functional brain networks which are spatially distributed across specific brain regions in a temporally dynamic fashion. Therefore, modeling spatio-temporal patterns of holistic functional brain networks plays an important role in understanding brain function. Compared to traditional modeling methods such as principal component analysis, independent component analysis, and sparse coding, superior performance has been achieved by recent deep learning methodologies. However, there are still two limitations of existing deep learning approaches for functional brain network modeling. They either (1) merely modeled a single targeted network and ignored holistic ones at one time, or (2) underutilized both spatial and temporal features of fMRI during network modeling, and the spatial/temporal accuracy was thus not warranted. To address these limitations, we proposed a novel Multi-Head Guided Attention Graph Neural Network (Multi-Head GAGNN) to simultaneously model both spatial and temporal patterns of holistic functional brain networks. Specifically, a spatial Multi-Head Attention Graph U-Net was first adopted to model the spatial patterns of multiple brain networks, and a temporal Multi-Head Guided Attention Network was then introduced to model the corresponding temporal patterns under the guidance of modeled spatial patterns. Based on seven task fMRI datasets from the public Human Connectome Project and resting state fMRI datasets from the public Autism Brain Imaging Data Exchange I of 1448 subjects, the proposed Multi-Head GAGNN showed superior ability and generalizability in modeling both spatial and temporal patterns of holistic functional brain networks in individual brains compared to other state-of-the-art (SOTA) models. Furthermore, the modeled spatio-temporal patterns of functional brain networks via the proposed Multi-Head GAGNN can better predict the individual cognitive behavioral measures compared to the other SOTA models. This study provided a novel and powerful tool for brain function modeling as well as for understanding the brain-cognitive behavior associations.


Subject(s)
Connectome , Nerve Net , Brain/diagnostic imaging , Connectome/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Neural Networks, Computer
10.
J Alzheimers Dis ; 83(4): 1521-1536, 2021.
Article in English | MEDLINE | ID: mdl-33843675

ABSTRACT

BACKGROUND: Given that there is no specific drug to treat Alzheimer's disease, non-pharmacologic interventions in people with subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are one of the most important treatment strategies. OBJECTIVE: To clarify the efficacy of blue-green (500 nm) light therapy on sleep, mood, and physiological parameters in patients with SCD and aMCI is an interesting avenue to explore. METHODS: This is a monocentric, randomized, and controlled trial that will last for 4 weeks. We will recruit 150 individuals aged 45 years or older from memory clinics and divide them into 5 groups: SCD treatment (n = 30), SCD control (n = 30), aMCI treatment (n = 30), aMCI control (n = 30), and a group of healthy adult subjects (n = 30) as a normal control (NC). RESULTS: The primary outcome is the change in subjective and objective cognitive performance between baseline and postintervention visits (4 weeks after baseline). Secondary outcomes include changes in performance assessing from baseline, postintervention to follow-up (3 months after the intervention), as well as sleep, mood, and physiological parameters (including blood, urine, electrophysiology, and neuroimaging biomarkers). CONCLUSION: This study aims to provide evidence of the impact of light therapy on subjective and objective cognitive performance in middle-aged and older adults with SCD or aMCI. In addition, we will identify possible neurophysiological mechanisms of action underlying light therapy. Overall, this trial will contribute to the establishment of light therapy in the prevention of Alzheimer's disease.


Subject(s)
Biomarkers , Cognition/radiation effects , Cognitive Dysfunction/therapy , Low-Level Light Therapy , Affect/physiology , Aged , Biomarkers/blood , Biomarkers/urine , Female , Humans , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Sleep/physiology
11.
Hum Brain Mapp ; 42(11): 3440-3449, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33830581

ABSTRACT

The aberrant thalamocortical pathways of epilepsy have been detected recently, while its underlying effects on epilepsy are still not well understood. Exploring pathoglytic changes in two important thalamocortical pathways, that is, the basal ganglia (BG)-thalamocortical and the cerebellum-thalamocortical pathways, in people with idiopathic generalized epilepsy (IGE), could deepen our understanding on the pathological mechanism of this disease. These two pathways were reconstructed and investigated in this study by combining diffusion and functional MRI. Both pathways showed connectivity changes with the perception and cognition systems in patients. Consistent functional connectivity (FC) changes were observed mainly in perception regions, revealing the aberrant integration of sensorimotor and visual information in IGE. The pathway-specific FC alterations in high-order regions give neuroimaging evidence of the neural mechanisms of cognitive impairment and epileptic activities in IGE. Abnormal functional and structural integration of cerebellum, basal ganglia and thalamus could result in an imbalance of inhibition and excitability in brain systems of IGE. This study located the regulated cortical regions of BG and cerebellum which been affected in IGE, established possible links between the neuroimaging findings and epileptic symptoms, and enriched the understanding of the regulatory effects of BG and cerebellum on epilepsy.


Subject(s)
Basal Ganglia/physiopathology , Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Connectome , Epilepsy, Generalized/physiopathology , Nerve Net/physiopathology , Thalamus/physiopathology , Adult , Basal Ganglia/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Epilepsy, Generalized/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Thalamus/diagnostic imaging , Young Adult
12.
Neural Netw ; 135: 78-90, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33360930

ABSTRACT

Absence epilepsy, characterized by transient loss of awareness and bilaterally synchronous 2-4 Hz spike and wave discharges (SWDs) on electroencephalography (EEG) during absence seizures, is generally believed to arise from abnormal interactions between the cerebral cortex (Ctx) and thalamus. Recent animal electrophysiological studies suggested that changing the neural activation level of the external globus pallidus (GPe) neurons can remarkably modify firing rates of the thalamic reticular nucleus (TRN) neurons through the GABAergic GPe-TRN pathway. However, the existing experimental evidence does not provide a clear answer as to whether the GPe-TRN pathway contributes to regulating absence seizures. Here, using a biophysically based mean-field model of the GPe-corticothalamic (GCT) network, we found that both directly decreasing the strength of the GPe-TRN pathway and inactivating GPe neurons can effectively suppress absence seizures. Also, the pallido-cortical pathway and the recurrent connection of GPe neurons facilitate the regulation of absence seizures through the GPe-TRN pathway. Specifically, in the controllable situation, enhancing the coupling strength of either of the two pathways can successfully terminate absence seizures. Moreover, the competition between the GPe-TRN and pallido-cortical pathways may lead to the GPe bidirectionally controlling absence seizures, and this bidirectional control manner can be significantly modulated by the Ctx-TRN pathway. Importantly, when the strength of the Ctx-TRN pathway is relatively strong, the bidirectional control of absence seizures by changing GPe neural activities can be observed at both weak and strong strengths of the pallido-cortical pathway.These findings suggest that the GPe-TRN pathway may have crucial functional roles in regulating absence seizures, which may provide a testable hypothesis for further experimental studies and new perspectives on the treatment of absence epilepsy.


Subject(s)
Cerebral Cortex/physiology , Globus Pallidus/physiology , Neural Networks, Computer , Seizures/physiopathology , Thalamus/physiology , Electroencephalography/methods , Humans , Neural Pathways/physiology , Neurons/physiology
13.
Article in English | MEDLINE | ID: mdl-33216716

ABSTRACT

The acoustic stimulation influences of the brain is still unveiled, especially from the brain network point, which can reveal how interaction is propagated and integrated between different brain zones for chronic tinnitus patients. We specifically designed a paradigm to record the electroencephalograms (EEGs) for tinnitus patients when they were treated with consecutive acoustic stimulation neuromodulation therapy for up to 75 days, using the tinnitus handicap inventory (THI) to evaluate the tinnitus severity or the acoustic stimulation treatment efficacy, and the EEG to record the brain activities every 2 weeks. Then, we used an EEG-based coherence analysis to investigate if the changes in brain network consistent with the clinical outcomes can be observed during 75-days acoustic treatment. Finally, correlation analysis was conducted to study potential relationships between network properties and tinnitus handicap inventory score change. The EEG network became significantly weaker after long-term periodic acoustic stimulation treatment, and tinnitus handicap inventory score changes or the acoustic stimulation treatment efficacy are strongly correlated with the varying brain network properties. Long-term acoustic stimulation neuromodulation intervention can improve the rehabilitation of chronic tinnitus patients, and the EEG network provides a relatively reliable and quantitative analysis approach for objective evaluation of tinnitus clinical diagnosis and treatment.


Subject(s)
Tinnitus , Acoustic Stimulation , Brain , Electroencephalography , Humans , Treatment Outcome
14.
IEEE Trans Biomed Eng ; 68(4): 1282-1292, 2021 04.
Article in English | MEDLINE | ID: mdl-32976091

ABSTRACT

GOAL: Idiopathic generalized epilepsy (IGE) represents generalized spike-wave discharges (GSWD) and distributed changes in thalamocortical circuit. The purpose of this study is to investigate how the ongoing alpha oscillation acts upon the local temporal dynamics and spatial hyperconnectivity in epilepsy. METHODS: We evaluated the spatiotemporal regulation of alpha oscillations in epileptic state based on simultaneous EEG-fMRI recordings in 45 IGE patients. The alpha-BOLD temporal consistency, as well as the effect of alpha power windows on dynamic functional connectivity strength (dFCS) was analyzed. Then, stable synchronization networks during GSWD were constructed, and the spatial covariation with alpha-based network integration was investigated. RESULTS: Increased temporal covariation was demonstrated between alpha power and BOLD fluctuations in thalamus and distributed cortical regions in IGE. High alpha power had inhibition effect on dFCS in healthy controls, while in epilepsy, high alpha windows arose along with the enhancement of dFCS in thalamus, caudate and some default mode network (DMN) regions. Moreover, synchronization networks in GSWD-before, GSWD-onset and GSWD-after stages were constructed, and the connectivity strength in prominent hub nodes (precuneus, thalamus) was associated with the spatially disturbed alpha-based network integration. CONCLUSION: The results indicated spatiotemporal regulation of alpha in epilepsy by means of the increased power and decreased coherence communication. It provided links between alpha rhythm and the altered temporal dynamics, as well as the hyperconnectivity in thalamus-default mode circuit. SIGNIFICANCE: The combination between neural oscillations and epileptic representations may be of clinical importance in terms of seizure prediction and non-invasive interventions.


Subject(s)
Alpha Rhythm , Electroencephalography , Brain Mapping , Epilepsy, Generalized , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Thalamus/diagnostic imaging
15.
Brain Imaging Behav ; 15(2): 782-787, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32700258

ABSTRACT

Basal ganglia, which include the striatum and thalamus, have key roles in motivation, emotion, motor function, also contribute to higher-order cognitive function. Previous researches have documented structural and functional alterations in basal ganglia in schizophrenia. While few studies have assessed asymmetries of these characters in basal ganglia of schizophrenia. The current study investigated this issue by using diffusion tensor imaging, anatomic T1-weight image and resting-state functional data from 88 chronic schizophrenic subjects and 92 healthy controls. The structural characteristic, including fractional anisotropy, mean diffusivity (MD) and volume, were extracted and quantified from the subregions of basal ganglia, including caudate, putamen, pallidum and thalamus, through automated atlas-based method. The resting-state functional maps of these regions were also calculated through seed-based functional connectivity. Then, the laterality indexes of structural and functional features were calculated. Compared with healthy controls, schizophrenic subjects showed increased left laterality of volume in striatum and reduced left laterality of volume in thalamus. Furthermore, the difference of laterality of subregions in thalamus is compensatory in schizophrenic subjects. Importantly, the severity of patients' positive symptom was negative corelated with reduced left laterality of volume in thalamus. Our findings provide preliminary evidence demonstrating that the possibility of aberrant laterality in neural pathways and connectivity patterns related to the basal ganglia in schizophrenia.


Subject(s)
Schizophrenia , Anisotropy , Basal Ganglia/diagnostic imaging , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imaging
16.
Neural Plast ; 2020: 7409417, 2020.
Article in English | MEDLINE | ID: mdl-32256558

ABSTRACT

Purpose: Acupuncture is an effective therapy for Internet addiction (IA). However, the underlying mechanisms of acupuncture in relieving compulsive Internet use remain unknown. Neuroimaging studies have demonstrated the role of the ventral striatum (VS) in the progress of IA; hence, the aim of this study was to explore the effects of acupuncture on the resting-state functional connectivity (rsFC) and relevant network of VS in IA. Methods: Twenty-seven IA individuals and 30 demographically matched healthy control subjects (HCs) were recruited in this study. We acquired the functional magnetic resonance imaging (fMRI) data in IA subjects before and after 40 days of acupuncture treatment. Seed-to-voxel and ROI-to-ROI analyses were applied to detect the rsFC alterations of the VS and related network in IA subjects and to investigate the modulation effect of acupuncture on the rsFC. Results: Compared with HCs, IA subjects exhibited enhanced rsFC of the right ventral rostral putamen (VRP) with the left orbitofrontal cortex (OFC), premotor cortex (PMC), cerebellum, and right ventromedial prefrontal cortex (vmPFC). In the network including these five ROIs, IA also showed increased ROI-to-ROI rsFC. Using a paired t-test in IA subjects before and after 40 days of acupuncture, the increased ROI-to-ROI rsFC was decreased (normalized to HC) with acupuncture, including the rsFC of the right VRP with the left OFC, PMC, and cerebellum, and the rsFC of the left cerebellum with the left OFC, PMC, and right vmPFC. Furthermore, the change in rsFC strength between the right VRP and left cerebellum in IA individuals was found positively correlated with the Internet craving alleviation after acupuncture. Conclusions: These findings verified the modulation effect of acupuncture on functional connectivity of reward and habit systems related to the VS in IA individuals, which might partly represent the underlying mechanisms of acupuncture on IA.


Subject(s)
Acupuncture Therapy , Brain/physiopathology , Habits , Internet Addiction Disorder/physiopathology , Reward , Adult , Brain Mapping , Female , Humans , Internet Addiction Disorder/therapy , Magnetic Resonance Imaging , Male , Neural Pathways/physiopathology , Young Adult
17.
Int J Neural Syst ; 30(11): 2050014, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32308081

ABSTRACT

Thalamus interacts with cortical areas, generating oscillations characterized by their rhythm and levels of synchrony. However, little is known of what function the rhythmic dynamic may serve in thalamocortical couplings. This work introduced a general approach to investigate the modulatory contribution of rhythmic scalp network to the thalamo-frontal couplings in juvenile myoclonic epilepsy (JME) and frontal lobe epilepsy (FLE). Here, time-varying rhythmic network was constructed using the adapted directed transfer function between EEG electrodes, and then was applied as a modulator in fMRI-based thalamocortical functional couplings. Furthermore, the relationship between corticocortical connectivity and rhythm-dependent thalamocortical coupling was examined. The results revealed thalamocortical couplings modulated by EEG scalp network have frequency-dependent characteristics. Increased thalamus- sensorimotor network (SMN) and thalamus-default mode network (DMN) couplings in JME were strongly modulated by alpha band. These thalamus-SMN couplings demonstrated enhanced association with SMN-related corticocortical connectivity. In addition, altered theta-dependent and beta-dependent thalamus-frontoparietal network (FPN) couplings were found in FLE. The reduced theta-dependent thalamus-FPN couplings were associated with the decreased FPN-related corticocortical connectivity. This study proposed interactive links between the rhythmic modulation and thalamocortical coupling. The crucial role of SMN and FPN in subcortical-cortical circuit may have implications for intervention in generalized and focal epilepsy.


Subject(s)
Epilepsy, Frontal Lobe , Myoclonic Epilepsy, Juvenile , Electroencephalography , Humans , Magnetic Resonance Imaging , Thalamus
18.
Int J Neural Syst ; 30(5): 1950029, 2020 May.
Article in English | MEDLINE | ID: mdl-31847633

ABSTRACT

Status epilepticus (SE) is a common, life-threatening neurological disorder that may lead to permanent brain damage. In rodent models, SE is an acute phase of seizures that could be reproduced by injecting with pilocarpine and then induce chronic temporal lobe epilepsy (TLE) seizures. However, how SE disrupts brain activity, especially communications among brain regions, is still unclear. In this study, we aimed to identify the characteristic abnormalities of network connections among the frontal cortex, hippocampus and thalamus during the SE episodes in a pilocarpine model with functional and effective connectivity measurements. We showed that the coherence connectivity among these regions increased significantly during the SE episodes in almost all frequency bands (except the alpha band) and that the frequency band with enhanced connections was specific to different stages of SE episodes. Moreover, with the effective analysis, we revealed a closed neural circuit of bidirectional effective interactions between the frontal regions and the hippocampus and thalamus in both ictal and post-ictal stages, implying aberrant enhancement of communication across these brain regions during the SE episodes. Furthermore, an effective connection from the hippocampus to the thalamus was detected in the delta band during the pre-ictal stage, which shifted in an inverse direction during the ictal stage in the theta band and in the theta, alpha, beta and low-gamma bands during the post-ictal stage. This specificity of the effective connection between the hippocampus and thalamus illustrated that the hippocampal structure is critical for the initiation of SE discharges, while the thalamus is important for the propagation of SE discharges. Overall, our results demonstrated enhanced interaction among the frontal cortex, hippocampus and thalamus during the SE episodes and suggested the modes of information flow across these structures for the initiation and propagation of SE discharges. These findings may reveal an underlying mechanism of aberrant network communication during pilocarpine-induced SE discharges and deepen our knowledge of TLE seizures.


Subject(s)
Brain Waves/physiology , Connectome , Electrocorticography , Frontal Lobe/physiopathology , Hippocampus/physiopathology , Nerve Net/physiopathology , Status Epilepticus/physiopathology , Thalamus/physiopathology , Animals , Disease Models, Animal , Epilepsy, Temporal Lobe , Muscarinic Agonists/pharmacology , Pilocarpine/pharmacology , Rats , Status Epilepticus/chemically induced
19.
Neuroimage Clin ; 22: 101759, 2019.
Article in English | MEDLINE | ID: mdl-30897433

ABSTRACT

Epilepsy is marked by hypersynchronous bursts of neuronal activity, and seizures can propagate variably to any and all areas, leading to brain network dynamic organization. However, the relationship between the network characteristics of scalp EEG and blood oxygenation level-dependent (BOLD) responses in epilepsy patients is still not well known. In this study, simultaneous EEG and fMRI data were acquired in 18 juvenile myoclonic epilepsy (JME) patients. Then, the adapted directed transfer function (ADTF) values between EEG electrodes were calculated to define the time-varying network. The variation of network information flow within sliding windows was used as a temporal regressor in fMRI analysis to predict the BOLD response. To investigate the EEG-dependent functional coupling among the responding regions, modulatory interactions were analyzed for network variation of scalp EEG and BOLD time courses. The results showed that BOLD activations associated with high network variation were mainly located in the thalamus, cerebellum, precuneus, inferior temporal lobe and sensorimotor-related areas, including the middle cingulate cortex (MCC), supplemental motor area (SMA), and paracentral lobule. BOLD deactivations associated with medium network variation were found in the frontal, parietal, and occipital areas. In addition, modulatory interaction analysis demonstrated predominantly directional negative modulation effects among the thalamus, cerebellum, frontal and sensorimotor-related areas. This study described a novel method to link BOLD response with simultaneous functional network organization of scalp EEG. These findings suggested the validity of predicting epileptic activity using functional connectivity variation between electrodes. The functional coupling among the thalamus, frontal regions, cerebellum and sensorimotor-related regions may be characteristically involved in epilepsy generation and propagation, which provides new insight into the pathophysiological mechanisms and intervene targets for JME.


Subject(s)
Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Functional Neuroimaging/methods , Myoclonic Epilepsy, Juvenile/physiopathology , Nerve Net/physiopathology , Thalamus/physiopathology , Adolescent , Adult , Cerebellum/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Myoclonic Epilepsy, Juvenile/diagnostic imaging , Nerve Net/diagnostic imaging , Scalp , Thalamus/diagnostic imaging , Young Adult
20.
Br J Psychiatry ; 214(5): 288-296, 2019 05.
Article in English | MEDLINE | ID: mdl-30791964

ABSTRACT

BACKGROUND: Previous studies in schizophrenia revealed abnormalities in the cortico-cerebellar-thalamo-cortical circuit (CCTCC) pathway, suggesting the necessity for defining thalamic subdivisions in understanding alterations of brain connectivity.AimsTo parcellate the thalamus into several subdivisions using a data-driven method, and to evaluate the role of each subdivision in the alterations of CCTCC functional connectivity in patients with schizophrenia. METHOD: There were 54 patients with schizophrenia and 42 healthy controls included in this study. First, the thalamic structural and functional connections computed, based on diffusion magnetic resonance imaging (MRI, white matter tractography) and resting-state functional MRI, were clustered to parcellate thalamus. Next, functional connectivity of each thalamus subdivision was investigated, and the alterations in thalamic functional connectivity for patients with schizophrenia were inspected. RESULTS: Based on the data-driven parcellation method, six thalamic subdivisions were defined. Loss of connectivity was observed between several thalamic subdivisions (superior-anterior, ventromedial and dorsolateral part of the thalamus) and the sensorimotor system, anterior cingulate cortex and cerebellum in patients with schizophrenia. A gradual pattern of dysconnectivity was observed across the thalamic subdivisions. Additionally, the altered connectivity negatively correlated with symptom scores and duration of illness in individuals with schizophrenia. CONCLUSIONS: The findings of the study revealed a wide range of thalamic functional dysconnectivity in the CCTCC pathway, increasing our understanding of the relationship between the CCTCC pathway and symptoms associated with schizophrenia, and further indicating a potential alteration pattern in the thalamic nuclei in people with schizophrenia.Declaration of interestNone.


Subject(s)
Cerebellum/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Nerve Net/diagnostic imaging , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imaging , Adult , Antipsychotic Agents/therapeutic use , Chlorpromazine/therapeutic use , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Schizophrenia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL