Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arch Esp Urol ; 77(2): 142-147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583006

ABSTRACT

OBJECTIVE: To explore the effect of acupuncture at Fuguan point combined with tamoxifen citrate tablet on sperm motility parameters. METHODS: A total of 115 individuals with asthenospermia were categorized based on different treatment regimens: 53 patients in the control group (receiving tamoxifen citrate tablets) and 62 patients in the observation group (undergoing acupoint acupuncture in conjunction with tamoxifen citrate tablets). Both groups underwent a 3-month treatment period. The computer-assisted sperm analysis system was employed to measure various motility parameters of human sperm, including sperm motility rate, average path velocity (VAP), lateral swing amplitude (ALH), percentage of class a sperm, and percentage of class a + b sperm. RESULTS: Prior to treatment, no statistically significant differences were observed between the two groups in terms of sperm motility rate, VAP, ALH, percentage of class a sperm, and percentage of class a + b sperm (p > 0.05). Following treatment, both groups exhibited significant enhancements in sperm motility rate, VAP, ALH, percentage of class a sperm, and percentage of class a + b sperm compared to pretreatment levels (p < 0.05). Furthermore, all measured indicators in the observation group demonstrated significantly superior improvements than those of the control group, with the differences proving statistically significant (p < 0.05). CONCLUSIONS: The combination of acupuncture at Fusiguan point and tamoxifen citrate tablets exerts a notably positive effect on sperm motility in individuals diagnosed with asthenospermia.


Subject(s)
Acupuncture Therapy , Asthenozoospermia , Humans , Male , Sperm Motility , Semen , Asthenozoospermia/therapy , Tamoxifen/therapeutic use , Tamoxifen/pharmacology , Tablets/pharmacology
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123922, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38295589

ABSTRACT

The fruit of Crataegus sp. is known as "Shanzha (SZ)" in China and is widely used in the food, beverage, and traditional Chinese medicine (TCM) industries. SZ usually requires thermal processing to reduce the irritation of its acidity to the gastric mucosa. Different processed products of SZ resulting from thermal processing have different or even opposite functions in clinical applications. In addition, 5-hydroxymethylfurfural (5-HMF) intermediates produced during thermal processing are carcinogenic to humans. Therefore, the aim of this study was to explore a rapid and accurate method by Fourier transform infrared spectroscopy (FT-IR) for the identification of different processed products and the determination of 5-HMF in extracts. In qualitative identification, a three-stage infrared spectroscopy identification method (raw spectra, the second derivative spectra, and two-dimensional correlation (2DCOS) spectra) was developed to distinguish different processed products of SZ step by step. In quantitative determination, partial least squares regression combined with different variable selection methods, especially the 2DCOS method, was applied to determine the 5-HMF content. The results show that temperature-induced 2DCOS synchronous spectra can effectively identify different processed products of SZ by shape, intensity, and position of auto-peaks or cross-peaks, and the variables selected by power spectra from concentration-induced 2DCOS synchronous spectra have better prediction ability for 5-HMF compared to full variables. The above results demonstrate that 2D-COS analysis is a potential tool in qualitative and quantitative analysis, which can improve sample identification accuracy and determination capabilities. This study not only establishes a rapid and accurate method for the identification of different processed products but also provides a practical reference for food safety and the efficient use of TCM.


Subject(s)
Crataegus , Fruit , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectrophotometry, Infrared/methods , Medicine, Chinese Traditional
3.
Nat Chem ; 16(3): 466-475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38057367

ABSTRACT

Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.

4.
Sci Rep ; 12(1): 17410, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36258024

ABSTRACT

The fish immune system is a topic or subject that offers a unique understanding of defensive system evolution in vertebrate heredity. While gut microbiota plays several roles in fish: well-being, promoting health and growth, resistance to bacterial invasion, regulation of energy absorption, and lipid metabolism. However, studies on fish gut microbiota face practical challenges due to the large number of fish varieties, fluctuating environmental conditions, and differences in feeding habits. This study was carried out to evaluate the impacts of supplemented three autochthonous strains, Bacillus sp. RCS1, Pantoea agglomerans RCS2, and Bacillus cereus RCS3 mixture diet on cobia fish (Rachycentron canadum). Also, chromatography, mass spectrometry and high throughput sequencing were combined to explore composition and metabolite profile of gut microbiota in juvenile cobia fed with supplemented diet. In the trial group, juvenile cobia received diets supplemented with 1 × 1012 CFU mL-1 autochthonous strains for ten weeks and a control diet without supplementation. Juvenile cobia receiving diets supplementation exhibited significantly improved growth than those without additives (control). Haematological indices, such as red blood cells, white blood cells, corpuscular haemoglobin concentration, mean corpuscular volume, haemoglobin, and mean corpuscular haemoglobin, were higher in the supplemented group. Similarly, digestive enzymes (trypsin, lipase, amylase, pepsin and cellulose, activities) activities were higher in supplemented diet with an indigenous isolates mixture. Serum biochemical parameters albumin, globulin, and total protein were significantly higher, while triglyceride, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and cholesterol showed no significant difference. On the other hand, glucose was significantly (P < 0.05) higher in the group without supplementation. On gene expression in the midgut, Immunoglobulin, Colony-stimulating factor receptor 1, major histocompatibility complex 1 were up-regulated by native isolates while T cell receptor beta, and Major histocompatibility complex 2 showed no significant difference. Gut bacterial composition was altered in fish receiving supplemented diet with autochthonous strains. Metabolomics also revealed that some metabolic pathways were considerably enriched in fish fed with supplemented diet; pathway analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed that differentially expressed metabolites were involved in galactose metabolism, tryptophan metabolism, carbohydrate digestion and absorption, purine metabolism, and ABC transporters. Functional analysis of bacterial community showed that differences in enriched metabolic pathways generally comprised carbohydrate and its metabolites, nucleotide and its metabolites, amino acid and its metabolites, heterocyclic compounds, and tryptamines, cholines, pigments. The current investigation results showed that autochthonous strains mixture has significantly enhanced the growth, survival, and innate and adaptive immunities of juvenile cobia.


Subject(s)
Gastrointestinal Microbiome , Perciformes , Animals , Alanine/metabolism , Albumins/metabolism , Alkaline Phosphatase/metabolism , Amino Acids/metabolism , Amylases/metabolism , Animal Feed/analysis , Aspartate Aminotransferases/metabolism , ATP-Binding Cassette Transporters/metabolism , Cellulose/metabolism , Cholesterol/metabolism , Diet , Fishes/metabolism , Galactose/metabolism , Glucose/metabolism , Lipase/metabolism , Metabolome , Nucleotides/metabolism , Pepsin A/metabolism , Perciformes/physiology , Purines/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Colony-Stimulating Factor/metabolism , Triglycerides/metabolism , Trypsin/metabolism , Tryptamines , Tryptophan/metabolism
5.
Front Pharmacol ; 13: 899038, 2022.
Article in English | MEDLINE | ID: mdl-35677447

ABSTRACT

Xinkeshu tablets (XKST), a traditional Chinese patent medicine (CPM), have served in the clinical treatment of cardiovascular diseases (CVDs) for decades. However, its pharmacodyamic material basis was still unclear, and the holistic quality control has not been well established due to the lack of systematic research on the quality markers. In this experiment, the heart rate recovery rate of a zebrafish larva was used to evaluate the traditional pharmacological effect of XKST i.e., antiarrhythmic effect. The HPLC fingerprints of 16 batches of XKST samples were obtained, and antiarrhythmic components of XKST were identified by establishing the spectrum-effect relationship between HPLC fingerprints and heart rate recovery rate of zebrafish larva with orthogonal signal correction and partial least squares regression (OSC-PLSR) analysis. The anticardiovascular disease components of XKST were identified by mapping the targets related to CVDs in network pharmacology. The compounds of XKST absorbed and exposed in vivo were identified by ultra-high performance liquid chromatography Q-Exactive high-resolution mass spectrometry (UHPLC-Q-Exactive HRMS). Based on the earlier studies, combined with five principles for identifying quality markers and verified by a zebrafish arrhythmia model, danshensu, salvianolic acid A, salvianolic acid B, daidzein, and puerarin were identified as quality markers of XKST. In total, 16 batches of XKST samples were further quantified with the method established in this study. Our study laid the foundation for the quality control of XKST. The integrated strategy used in the study of XKST could be applied for the identification and quantification of quality markers of other CPMs as well.

6.
Chin J Nat Med ; 19(12): 921-929, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34961590

ABSTRACT

This work was aimed to establish a quality control method for evaluating the effects on glucose and lipids of the fruiting body of Isaria cicadae Miquel from strain Ic-17-7 (Ic-17-7fb) using a rat model of type 2 diabetes (T2DM). Random amplified polymorphic DNA, sequence-characterized amplified region, and high-performance liquid chromatography (HPLC) were used for the quality control of Ic-17-7fb. The pharmacological effects on streptozocin (STZ)-induced high fat diet (HFD)-fed Albino Wistar rats were evaluated. The rats underwent the following treatments: control, metformin, Ic-17-7fb (0.166 and 0.5 g·kg-1) or without treatment. The fasting blood glucose (FBG), blood glucose, total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL-c), and low-density lipoprotein (LDL-c) were measured. Ic-17-7fb amplified a single specific band by S11-2-F3 and S11-2-R3 primers. An HPLC-based quality and quantity method was established for industrial application. The contents of adenosine and N6-(2-hydroxyethyl) adenosine (HEA) of the cultivated Ic-17-7fb were analyzed. All of the validation lots of cultured Ic-17-7fb passed the quantity control of the training set (0.90 mg·g-1 of adenosine and 0.89 mg·g-1 of HEA). After two weeks of administration, the average FBG was 4.89 ± 0.42 (control), 26.10 ± 5.77 (model), 23.63 ± 6.15 (metformin), 17.96 ± 9.36 (Ic-17-7fb for 0.166 g·kg-1), and 19.69 ± 8.71 mmol·L-1 (Ic-17-7fb for 0.5 g·kg-1). The FBG of Ic-17-7fb (0.166 g·kg-1) treatment significantly reduced by 31.19%, compared with the model after two weeks of administration (P < 0.01). Metformin, Ic-17-7fb (0.166 g·kg -1), and Ic-17-7fb (0.5 g·kg-1) reduced TC, TG, HDL-c, and LDL-c compared with the T2DM model treatment at the 6th week of treatment (P < 0.05). This study established the first quality standard for Ic-17-7fb, which can be effectively applied in the treatment of T2DM. The reliable quality control method and pharmacological effect will broaden its application space.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Animals , Blood Glucose , Cordyceps , Diabetes Mellitus, Type 2/drug therapy , Quality Control , Rats , Rats, Wistar
7.
Sci Total Environ ; 786: 147452, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33975111

ABSTRACT

During past two decades, steroid hormones have raised significant public concerns due to their potential adverse effects on the hormonal functions of aquatic organisms and humans. Considering China being a big producer and consumer of steroid hormones, we summarize the current contamination status of steroid hormones in different environmental compartments in China, and preliminarily assess the associated risks to ecological systems. The results show that steroid hormones are ubiquitously present in Chinese surface waters where estrogens are the most studied steroids compared with androgens, progestogens and glucocorticoids. Estrone (E1), 17ß-estradiol (17ß-E2) and estriol (E3) are generally the dominant steroid estrogens in Chinese surface waters, whereas for the other steroids, androsterone (ADR), epi-androsterone (EADR), progesterone (PGT), cortisol (CRL) and cortisone (CRN) have relatively large contributions. Meanwhile, the investigations for the other environmental media such as particles, sediments, soils and groundwater have been limited, as well as for steroid conjugates and metabolites. The median risk quotients of most steroid hormones in surface waters and sediments are lower than 1, indicating low to moderate risks to local organisms. This review provides a full picture of steroid distribution and ecological risks in China, which may be useful for future monitoring and risk assessment. More studies may focus on the analysis of steroid conjugates, metabolites, solid phase fractions, analytical method development and acute/chronic toxicities in different matrices to pursue a more precise and holistic risk assessment.


Subject(s)
Water Pollutants, Chemical , China , Environmental Monitoring , Estrogens/analysis , Estrone/analysis , Humans , Risk Assessment , Water Pollutants, Chemical/analysis
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118854, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32920500

ABSTRACT

Extraction process is not only a critical manufacturing unit but also the initial process of various extracts and preparations. Taking the most extensive Chinese herbal medicine Danshen (Salvia miltziorrhiza Bge) as an example, salvianolic acid B (Sal B) is its main active pharmaceutical ingredient but lacks accurate characterization of the extraction process. As one of process analytical technologies, near-infrared spectroscopy (NIRS) technology has been widely applied for monitoring pharmaceutical extraction process. In most past studies, water spectral information is often eliminated due to its high absorption. However, this study proposed a method of using water spectrum to understand the whole extraction process and to quickly determine the content of Sal B. Principal component analysis (PCA) was first utilized to investigate the whole extraction process, then the reconstructed spectrum based on PCA was established and analyzed by Aquaphotomics, and finally the partial least squares regression (PLSR) quantitative model of Sal B was established. PCA and Aquaphotomics results showed the whole extraction process could be considered as a dynamic change from structure breaker to structure maker, and the dominance of highly H-bonded water structures increases with the extraction time. Also, the Sal B quantitative model with water spectrum showed higher accuracy and stability than other methods, which parameters (RMSEC, RMSECV, RMSEP, R2c, R2cv, R2p, RPD) were 0.2408 mg/mL, 0.2939 mg/mL, 0.2584 mg/mL, 0.9536, 0.9300, 0.9494, 4.6298, respectively, and the paired t-test showed that Sal B content measured by NIR and HPLC methods had no significant differences (p > 0.05). In conclusion, all result indicated that water can be used as a probe to understand the traditional Chinese medicine extraction process with NIRS.


Subject(s)
Drugs, Chinese Herbal , Salvia miltiorrhiza , Medicine, Chinese Traditional , Spectroscopy, Near-Infrared , Water
9.
Angew Chem Int Ed Engl ; 59(39): 16926-16932, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32584490

ABSTRACT

We describe a photoinduced copper-catalyzed asymmetric radical decarboxylative alkynylation of bench-stable N-hydroxyphthalimide(NHP)-type esters of racemic alkyl carboxylic acids with terminal alkynes, which provides a flexible platform for the construction of chiral C(sp3 )-C(sp) bonds. Critical to the success of this process are not only the use of the copper catalyst as a dual photo- and cross-coupling catalyst but also tuning of the NHP-type esters to inhibit the facile homodimerization of the alkyl radical and terminal alkyne, respectively. Owing to the use of stable and easily available NHP-type esters, the reaction features a broader substrate scope compared with reactions using the alkyl halide counterparts, covering (hetero)benzyl-, allyl-, and aminocarbonyl-substituted carboxylic acid derivatives, and (hetero)aryl and alkyl as well as silyl alkynes, thus providing a vital complementary approach to the previously reported method.

10.
BMC Plant Biol ; 19(1): 542, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31805858

ABSTRACT

BACKGROUND: In water lily (Nymphaea) hybrid breeding, breeders often encounter non-viable seeds, which make it difficult to transfer desired or targeted genes of different Nymphaea germplasm. We found that pre-fertilization barriers were the main factor in the failure of the hybridization of Nymphaea. The mechanism of low compatibility between the pollen and stigma remains unclear; therefore, we studied the differences of stigma transcripts and proteomes at 0, 2, and 6 h after pollination (HAP). Moreover, some regulatory genes and functional proteins that may cause low pollen-pistil compatibility in Nymphaea were identified. RESULTS: RNA-seq was performed for three comparisons (2 vs 0 HAP, 6 vs 2 HAP, 6 vs 0 HAP), and the number of differentially expressed genes (DEGs) was 8789 (4680 were up-regulated), 6401 (3020 were up-regulated), and 11,284 (6148 were up-regulated), respectively. Using label-free analysis, 75 (2 vs 0 HAP) proteins (43 increased and 32 decreased), nine (6 vs 2 HAP) proteins (three increased and six decreased), and 90 (6 vs 0 HAP) proteins (52 increased and 38 decreased) were defined as differentially expressed proteins (DEPs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs and DEPs were mainly involved in cell wall organization or biogenesis, S-adenosylmethionine (SAM) metabolism, hydrogen peroxide decomposition and metabolism, reactive oxygen species (ROS) metabolism, secondary metabolism, secondary metabolite biosynthesis, and phenylpropanoid biosynthesis. CONCLUSIONS: Our transcriptomic and proteomic analysis highlighted specific genes, incuding those in ROS metabolism, biosynthesis of flavonoids, SAM metabolism, cell wall organization or biogenesis and phenylpropanoid biosynthesis that warrant further study in investigations of the pollen-stigma interaction of water lily. This study strengthens our understanding of the mechanism of low pollen-pistil compatibility in Nymphaea at the molecular level, and provides a theoretical basis for overcoming the pre-fertilization barriers in Nymphaea in the future.


Subject(s)
Flowers/physiology , Nymphaea/physiology , Plant Breeding , Proteome/physiology , Transcriptome/physiology , Gene Ontology , Hybridization, Genetic , Nymphaea/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/physiology
11.
CNS Neurosci Ther ; 25(10): 1126-1133, 2019 10.
Article in English | MEDLINE | ID: mdl-31411803

ABSTRACT

AIMS: Hyperbaric oxygen preconditioning (HBOP) attenuates brain edema, microglia activation, and inflammation after intracerebral hemorrhage (ICH). In this present study, we investigated the role of HBOP in ICH-induced microglia polarization and the potential involved signal pathway. METHODS: Male Sprague-Dawley rats were divided into three groups: SHAM, ICH, and ICH + HBOP group. Before surgery, rats in SHAM and HBOP groups received HBO for 5 days. Rats in SHAM group received needle injection, while rats in ICH and ICH + HBOP groups received 100 µL autologous blood injection into the right basal ganglia. Rats were euthanized at 24 hours after ICH, and the brains were removed for immunohistochemistry and Western blotting. Neurological deficits and brain water content were determined. RESULTS: Intracerebral hemorrhage induced brain edema, which was significantly lower in the HBOP group. The levels of MMP9 were also less in the HBOP group. HBO pretreatment resulted in less neuronal death and neurological deficits after ICH. Their immunoactivity and protein levels of M1 markers were downregulated, but the M2 markers were unchanged by HBOP. In addition, ICH-induced pro-inflammatory cytokine (TNF-α and IL-1ß) levels and the phosphorylation of JNK and STAT1 were also lower in the HBOP rats. CONCLUSIONS: HBO pretreatment attenuated ICH-induced brain injuries and MMP9 upregulation, which may through the inhibiting of M1 polarization of microglia and inflammatory signal pathways after ICH.


Subject(s)
Brain Injuries/metabolism , Cell Polarity/physiology , Cerebral Hemorrhage/metabolism , Hyperbaric Oxygenation/methods , Ischemic Preconditioning/methods , Microglia/metabolism , Animals , Brain Injuries/pathology , Brain Injuries/therapy , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/therapy , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Male , Random Allocation , Rats , Rats, Sprague-Dawley
12.
J Steroid Biochem Mol Biol ; 191: 105363, 2019 07.
Article in English | MEDLINE | ID: mdl-31018166

ABSTRACT

Glucocorticoid-Induced Osteoporosis (GIOP) is a prevalent clinical complication caused by large dose administration of glucocorticoids, such as Dexamethasone (Dex) and Prednisone. GIOP may lead to fractures and even Osteonecrosis of the Femoral Head (ONFH). It has been reported that glucocorticoids inhibit osteogenesis via the suppression of osteogenic differentiation in Mesenchymal Stem Cells (MSCs), but the precise mechanism underlying this suppression awaits further investigation. Meanwhile, novel and efficacious therapies are recommended to cope with GIOP. In this study, we demonstrated that Dex had the inhibitory effect on Bone Morphogenetic Protein 9 (BMP9)-induced ALP activities and matrix mineralization in Mouse Embryonic Fibroblasts (MEFs). In addition, the study confirmed that Dex decreased the expression of osteogenic markers such as Runx2 and OPN. However, the inhibitory effect of Dex on these osteogenic markers can be reversed when combined with insulin-like growth factor 1 (IGF-1). Regarding the inhibitory mechanism, we found that the level of AKT and p-AKT can be decreased by Dex and that Ly294002, the PI3K inhibitor, can block the reversal effect of IGF-1. Moreover, the knockdown or inhibition of COX-2 produced similar results to those of Ly294002. Our findings indicated that IGF-1 may reverse the osteogenic inhibitory effect of Dex via PI3K/AKT pathway, which may be associated with the up-regulation of COX-2. This study may provide new clinical management strategy for GIOP cases.


Subject(s)
Dexamethasone/adverse effects , Fibroblasts/drug effects , Glucocorticoids/adverse effects , Growth Differentiation Factor 2/metabolism , Insulin-Like Growth Factor I/metabolism , Osteogenesis/drug effects , Animals , Cell Line , Cells, Cultured , Cyclooxygenase 2/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
13.
J Pharm Sci ; 108(8): 2542-2551, 2019 08.
Article in English | MEDLINE | ID: mdl-30876860

ABSTRACT

In this study, black phosphorus nanosheets (BPNSs) were incorporated into a hydrogel formed from dibenzaldehyde-functionalized polymer (DF-PEG) and polyaspartylhydrazide (PAHy) polymer to create an injectable and pH-sensitive DF-PEG-PAHy/BPNSs hydrogel, which can be used as a smart depot for synergistic chemo-photothermal cancer therapy. The DF-PEG-PAHy/BPNSs hydrogel exhibited excellent gelation characteristics, pH sensitivity, and near-infrared responsiveness. The nanocomposite hydrogel provided controlled drug release and near-infrared irradiation speeded up release of drug from the hydrogel because of the photothermal effect of the BPNSs. Cytotoxicity tests confirmed that the hydrogel has good biocompatibility and exerts its photothermal effect in vitro. Antitumor tests in mice demonstrated the capacity of DF-PEG-PAHy/BPNSs hydrogel for synergistic chemo-photothermal therapy in vivo. The hydrogel showed reduced adverse effects because of stable drug release in the tumor area and an efficient photothermal effect. Together, these data demonstrated the potential of DF-PEG-PAHy/BPNSs hydrogel containing a chemotherapy drug to serve as a novel smart delivery system for combined chemo-photothermal cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Doxorubicin/therapeutic use , Hydrogels/therapeutic use , Neoplasms/therapy , Phosphorus/therapeutic use , Animals , Antibiotics, Antineoplastic/administration & dosage , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/therapeutic use , Doxorubicin/administration & dosage , Drug Delivery Systems , Female , Hydrogels/administration & dosage , Hydrogen-Ion Concentration , Hyperthermia, Induced , Injections , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorus/administration & dosage
14.
Chin J Nat Med ; 16(10): 732-748, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30322607

ABSTRACT

The steroidal saponins are one of the saponin types that exist in an unbound state and have various pharmacological activities, such as anticancer, anti-inflammatory, antiviral, antibacterial and nerves-calming properties. Cancer is a growing health problem worldwide. Significant progress has been made to understand the antitumor effects of steroidal saponins in recent years. According to reported findings, steroidal saponins exert various antitumor activities, such as inhibiting proliferation, inducing apoptosis and autophagy, and regulating the tumor microenvironment, through multiple related signaling pathways. This article focuses on the advances in domestic and foreign studies on the antitumor activity and mechanism of actions of steroidal saponins in the last five years to provide a scientific basis and research ideas for further development and clinical application of steroidal saponins.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Neoplasms/drug therapy , Plant Extracts/pharmacology , Saponins/pharmacology , Steroids/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Humans , Neoplasms/physiopathology , Plant Extracts/chemistry , Saponins/chemistry , Steroids/chemistry
15.
J Ethnopharmacol ; 225: 271-278, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-29729385

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhibai Dihuang Granule (ZDG), a traditional Chinese medicine (TCM) made from eight Chinese herbs, has been classically used to treat Yin-deficiency-heat (YDH) syndrome. ZDG is well known with the therapeutic efficacy of nourishing Yin and decreasing internal heat in clinic, but the mechanism of ZDG's therapeutic effect is still not clear. MATERIALS AND METHODS: High doses of triiodothyronine (T3) were given intraperitoneally to induce Hyperthyroid YDH syndrome in SD rats. The animals were then treated with ZDG for one week. The iTRAQ-coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique was used to screen the differentially expressed serum proteins between ZDG treated rats and YDH syndrome rats. The differentially expressed proteins were analyzed by bioinformatics method and were verified by enzyme-linked immunosorbent assay (ELISA). RESULTS: A total of 55 differentially expressed proteins were identified, including 23 up-regulated proteins (>1.25 fold, p < 0.05) and 32 down-regulated proteins (<0.80 fold, p < 0.05). Among the differentially expressed proteins, 26 proteins returned to normal after ZDG treatment. Bioinformatics analysis showed that these proteins were mainly involved in immune response, including regulation of immune system process, complement activation, and humoral immune response mediated by circulating immunoglobulin. ELISA revealed significantly increased levels of Zinc-alpha-2-glycoprotein (Azgp1), L-selectin, C-reactive protein (Crp), Plasminogen (Plg), Kininogen 1 (Kng1), and significantly decreased levels of Mannose binding lectin 2 (Mbl2) and Complement C1qb chain (C1qb) in ZDG treated rats compared with YDH syndrome rats. Bioinformatics analyses indicated that Azgp1 participated in antigen processing and presentation, Crp, C1qb, and Mbl2 were involved in complement activation, while L-selectin, Plg, and Kng1 were involved in regulating the inflammatory response. CONCLUSIONS: Our study provides experimental evidence to understand the therapeutic mechanism of ZDG in YDH syndrome. The results suggested that ZDG may regulate the complement activation and inflammatory response, and promote the ability to recognize antigens to alleviate YDH syndrome.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Yin Deficiency/drug therapy , Animals , Antigen Presentation/drug effects , Body Temperature , Complement Activation/drug effects , Drugs, Chinese Herbal/pharmacology , Female , Hyperthyroidism/chemically induced , Hyperthyroidism/drug therapy , Hyperthyroidism/immunology , Immune System/drug effects , Proteomics , Rats, Sprague-Dawley , Syndrome , Triiodothyronine , Yin Deficiency/chemically induced , Yin Deficiency/immunology
16.
Int J Nanomedicine ; 13: 1399-1409, 2018.
Article in English | MEDLINE | ID: mdl-29563795

ABSTRACT

BACKGROUND: The prevalence of Helicobacter pylori has long been a global health issue. Triple therapy, being the first-line treatment, has caused dysbiosis of the gastrointestinal tract that led to various complications. A novel nanomedicine - liposomal linolenic acid (LipoLLA) - has been proven to have great potential in eradicating H. pylori. However, the possible side effects of LipoLLA due to alteration of the gastrointestinal microbiota remain unknown. AIM: This study focused on the impact of LipoLLA on gastrointestinal microbiota in mice in comparison with triple therapy in order to assess the safety profile. METHODS: Mice were divided into five groups: blank control group; H. pylori control group; triple therapy group; low-dose LipoLLA group (25 mg/kg); and high-dose LipoLLA group (50 mg/kg). Fecal samples were collected before and after the intake of corresponding formulas. Gastric tissues were obtained after mice dissection. These samples were analyzed with high-throughput sequencing. RESULTS: The analysis revealed that LipoLLA resulted in minor gut microbiota alteration at different levels. The altered proportions in the high-dose group were higher than that of the low-dose group. On the other hand, the triple therapy group showed dramatic shifts in the major community composition. It displayed a notable boost in the relative abundance of Proteobacteria and Firmicutes along with a decrease in that of Verrucomicrobia and Bacteroidetes. All of them belonged to the major phyla in the microbiome. Triple therapy also led to the growth of the family Enterobacteriaceae, Enterococcaceae, and Clostridiaceae_1 that may be associated with clinical illnesses. Gastric microbiota analysis reached similar conclusions. CONCLUSION: Our findings indicated that LipoLLA causes minor gastrointestinal microbiota alterations while the triple therapy triggered dramatic changes. Thus, LipoLLA is not only promising but also a safe therapeutic medication to eradicate H. pylori infection.


Subject(s)
Gastrointestinal Microbiome/drug effects , alpha-Linolenic Acid/pharmacology , Analysis of Variance , Animals , Biodiversity , Cluster Analysis , Helicobacter pylori/drug effects , Liposomes , Male , Mice, Inbred C57BL , Phylogeny , Principal Component Analysis
17.
Int J Mol Sci ; 19(2)2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29419748

ABSTRACT

Large numbers of lipids exist in the porcine oocytes and early embryos and have the positive effects on their development, suggesting that the lipids may play an important role in pluripotency establishment and maintenance in pigs. However, the effects of lipids and their metabolites, such as fatty acids on reprogramming and the pluripotency gene expression of porcine-induced pluripotent stem cells (iPSCs), are unclear. Here, we generated the porcine iPSCs that resemble the mouse embryonic stem cells (ESCs) under lipid and fatty-acid-enriched cultural conditions (supplement of AlbuMAX). These porcine iPSCs show positive for the ESCs pluripotency markers and have the differentiation abilities to all three germ layers, and importantly, have the capability of aggregation into the inner cell mass (ICM) of porcine blastocysts. We further confirmed that lipid and fatty acid enriched condition can promote the cell proliferation and improve reprogramming efficiency by elevating cAMP levels. Interestingly, this lipids supplement promotes mesenchymal-epithelial transition (MET) through the cAMP/PKA/CREB signal pathway and upregulates the E-cadherin expression during porcine somatic cell reprogramming. The lipids supplement also makes a contribution to lipid droplets accumulation in the porcine iPSCs that resemble porcine preimplantation embryos. These findings may facilitate understanding of the lipid metabolism in porcine iPSCs and lay the foundation of bona fide porcine embryonic stem cell derivation.


Subject(s)
CREB-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Dietary Supplements , Induced Pluripotent Stem Cells/metabolism , Lipid Metabolism , Lipids , Signal Transduction , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cellular Reprogramming , Fatty Acids/metabolism , Fibroblasts , Induced Pluripotent Stem Cells/drug effects , Lipids/pharmacology , Models, Biological , Proto-Oncogene Proteins c-met/genetics , Swine
18.
Chin Med ; 13: 2, 2018.
Article in English | MEDLINE | ID: mdl-29321808

ABSTRACT

BACKGROUND: Zhibai Dihuang Granule (ZDG) is a traditional Chinese medicine which has been used to treat Yin-deficiency-heat (YDH) syndrome for thousands of years in China. However, little work has been conducted to explore the molecular mechanism of ZDG in YDH syndrome, and the processes of YDH syndrome prevention and treatment have been developed slowly. The present study was aimed to explore the therapeutic mechanism of ZDG on YDH syndrome. METHODS: The YDH syndrome rats were induced by hot Chinese herbs, then treated by ZDG orally for 1 week. Body weight was measured every 2 days. After sacrifice, blood samples were collected and the thymus, adrenal glands, spleen, and liver were immediately removed and weighed. iTRAQ-based proteomics approach was applied to explore the serum protein alterations with the treatment of ZDG, and to investigate the underlying mechanism of ZDG in treating YDH syndrome. RESULTS: The body weights of YDH syndrome rats were significantly decreased compared with control group, and increased in ZDG treated rats. The relative weights of thymus in YDH syndrome rats were increased compared with the control rats, and significantly decreased in after ZDG treatment. In the proteomic analyses, seventy-one proteins were differentially expressed in the YDH syndrome group and the ZDG treated group, including 10 up-regulated and 61 down-regulated proteins. Gene ontology analysis revealed that the differentially expressed proteins were mostly related to immune response, and pathway enrichment analysis showed that these proteins were enriched in coagulation and complement cascades. Enzyme-linked immunosorbent assay was performed to detect the protein levels in coagulation and complement cascades, and the results showed that complement component 5 levels were significantly increased, while fibrinogen gamma chain levels were significantly decreased in the ZDG treated group. CONCLUSIONS: We found that ZDG treatment could lead to proteins alteration in immune response, especially in coagulation and complement cascades. ZDG can up-regulate the proteins in the complement cascade to eliminate pathogens, and down-regulate the proteins in the coagulation cascade to suppress inflammation. Our study provides experimental basis to understand the therapeutic mechanism of ZDG and revealed that ZDG can regulate coagulation and complement cascades in treating YDH syndrome.

19.
J Int Med Res ; 45(2): 792-797, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28415952

ABSTRACT

Objective Ketamine-associated cystitis (KAC) has been described in a few case reports, but its treatment in a relatively large number of patients has not been documented. This study aimed to describe our experience of treatment of 36 patients with KAC. Methods Thirty-six patients (30 males and 6 females, aged 19-38 years) with KAC, who had previously taken a muscarinic receptor blocker and/or antibiotics, but without symptomatic relief, were treated with botulinum toxin A injection combined with bladder hydrodistention. Urodynamic testing, and the O'Leary-Sant interstitial cystitis symptom index (ICSI) and problem index (ICPI) were used to evaluate baseline values and improvement before and after the treatment. Results One month post-treatment, all patients achieved marked relief of symptoms. The nocturia time was markedly reduced, while bladder capacity, the interval between micturition, the void volume, and the maximum flow rate were remarkably increased at 1 month. Additionally, the ICSI and ICPI were significantly improved. Conclusion Botulinum toxin A injection along with bladder hydrodistention is effective for managing KAC.


Subject(s)
Botulinum Toxins, Type A/therapeutic use , Cystitis/therapy , Hydrotherapy/methods , Tissue Expansion/methods , Urinary Bladder/drug effects , Adult , Anesthetics, Dissociative/adverse effects , Cystitis/chemically induced , Cystitis/physiopathology , Female , Humans , Ketamine/adverse effects , Male , Prospective Studies , Treatment Outcome , Urinary Bladder/physiopathology , Urination/drug effects , Urination/physiology , Urodynamics
20.
Integr Cancer Ther ; 16(4): 526-539, 2017 12.
Article in English | MEDLINE | ID: mdl-27698265

ABSTRACT

The BCR-ABL kinase inhibitor, imatinib mesylate, is the front-line treatment for chronic myeloid leukemia, but the emergence of imatinib resistance has led to the search for alternative drug treatments. There is a pressing need, therefore, to develop and test novel drugs. Natural products including plants, microorganisms, and halobios provide rich resources for discovery of anticancer drugs. In this article, we demonstrate that emodin inhibited the growth of K562 cells harboring BCR-ABL in vitro and in vivo, and induced abundant apoptosis, which was correlated with the inhibition of PETN/PI3K/Akt level and deletion of BCR-ABL. These findings suggest that emodin is a promising agent to kill K562 cells harboring BCR-ABL.


Subject(s)
Antineoplastic Agents/pharmacology , Emodin/pharmacology , Fusion Proteins, bcr-abl/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Biological Products/pharmacology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Imatinib Mesylate/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL