Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Country/Region as subject
Publication year range
1.
Mar Drugs ; 22(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667769

ABSTRACT

Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.


Subject(s)
Biological Products , Microalgae , Biological Products/chemistry , Humans , Animals , Dietary Supplements
2.
Food Res Int ; 177: 113836, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225113

ABSTRACT

An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.


Subject(s)
Antihypertensive Agents , Antioxidants , Benzothiazoles , Polysaccharides, Bacterial , Sulfonic Acids , Antihypertensive Agents/chemistry , Antioxidants/analysis , Hydrolysis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Pectins/analysis , Protein Hydrolysates/chemistry , Peptides/chemistry , Edible Grain/chemistry , Colloids/analysis
3.
Prep Biochem Biotechnol ; 54(2): 260-271, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37355277

ABSTRACT

Collagenases are proteases able to degrade native and denatured collagen, with broad applications such as leather, food, and pharmaceutical industries. The aim of this research was to purify and characterize a collagenase from Streptomyces antibioticus. In the present work, the coffee ground substrate provided conditions to obtaining high collagenase activity (377.5 U/mL) using anion-exchange DEAE-Sephadex G50 chromatographic protocol. SDS-PAGE revealed the metallo-collagenase with a single band of 41.28 kDa and was able to hydrolyzed type I and type V collagen producing bioactive peptides that delayed the coagulation time. The enzyme activity showed stability across a range of pH (6.0-11) and temperature (30-55 °C) with optima at pH 7.0 and 60 °C, respectively. Activators include Mg+2, Ca+2, Na+, K+, while full inhibition was given by other tested metalloproteinase inhibitors. Kinetic parameters (Km of 27.14 mg/mol, Vmax of 714.29 mg/mol/min, Kcat of 79.9 s-1 and Kcat/Km of 2.95 mL/mg/s) and thermodynamic parameters (Ea of 65.224 kJ/mol, ΔH of 62.75 kJ/mol, ΔS of 1.96 J/mol, ΔG of 62.16 kJ/mol, ΔGE-S of 8.18 kJ/mol and ΔGE-T of -2.64 kJ/mol) were also defined. Coffee grounds showed to be an interesting source to obtaining a collagenase able to produce bioactive peptides with anticoagulant activity.


Subject(s)
Streptomyces antibioticus , Coffee , Thermodynamics , Collagenases , Peptides , Hydrogen-Ion Concentration , Kinetics
4.
Biotechnol J ; 19(2): e2300291, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013664

ABSTRACT

Nannochloropsis oceanica is a microalga with relevant protein content, making it a potential source of bioactive peptides. Furthermore, it is also rich in fatty acids, with a special focus on eicosapentaenoic acid (EPA), an omega-3 fatty acid mainly obtained from marine animal sources, with high importance for human health. N. oceanica has a rigid cell wall constraining protein extraction, thus hydrolyzing it may help increase its components' extractability. Therefore, a Box-Behnken experimental design was carried out to optimize the hydrolysis. The hydrolysate A showed 67% ± 0.7% of protein, antioxidant activity of 1166 ± 63.7 µmol TE g-1 of protein and an ACE inhibition with an IC50 of 379 µg protein mL-1 . The hydrolysate B showed 60% ± 1.8% of protein, antioxidant activity of 775 ± 13.0 µmol TE g-1 of protein and an ACE inhibition with an IC50 of 239 µg protein mL-1 . The by-product showed higher yields of total fatty acids when compared to "raw" microalgae, being 5.22% and 1%, respectively. The sustainable developed methodology led to the production of one fraction rich in bioactive peptides and another with interesting EPA content, both with value-added properties with potential to be commercialized as ingredients for different industrial applications, such as functional food, supplements, or cosmetic formulations.


Subject(s)
Eicosapentaenoic Acid , Microalgae , Animals , Humans , Eicosapentaenoic Acid/metabolism , Hydrolysis , Antioxidants/metabolism , Peptides/metabolism , Proteins/metabolism , Fatty Acids/metabolism , Microalgae/metabolism
5.
Foods ; 12(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38137270

ABSTRACT

Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.

6.
Foods ; 12(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37761214

ABSTRACT

Recently, there has been a renewed interest in Cannabis sativa and its uses. The recreational use of inflorescences as a source of THC has led to the legal restriction of C. sativa cultivation to limit the detrimental effects of psychotropic substance abuse on health. However, this has also limited the cultivation of textile/industrial varieties with a low content of THC used for textile and nutritional purposes. While previously the bans had significantly penalized the cultivation of C. sativa, today many countries discriminate between recreational use (marijuana) and industrial and food use (hemp). The stalks of industrial hemp (low in psychotropic substances) have been used extensively for textile purposes while the seeds are nutritionally versatile. From hemp seeds, it is possible to obtain flours applicable in the bakery sector, oils rich in essential fatty acids, proteins with a high biological value and derivatives for fortification, supplementation and nutraceutical purposes. Hemp seed properties seem relevant for vegetarian diets, due to their high nutritional value and underestimated employment in the food sector. Hemp seed and their derivatives are a valuable source of protein, essential fatty acids and minerals that could provide additional benefit to vegetarian nutrition. This document aims to explore the information available in the literature about hemp seeds from a nutritional point of view, highlighting possible beneficial effects for humans with particular attention to vegetarian nutrition as a supplemental option for a well-planned diet.

7.
Adv Food Nutr Res ; 106: 219-239, 2023.
Article in English | MEDLINE | ID: mdl-37722773

ABSTRACT

Cardiovascular disease (CVD) is a major cause of deaths in industrialized countries and a constantly growing cause of morbidity and mortality worldwide Hypercholesterolemia is one of the main risk factors for CVD progression that may be prevented by lifestyle changes, including diet. This chapter will discuss the role of peptides from plants (soybean, lupin, cowpea, hempseed, and rice bran) sources with pleotropic activity for the prevention of CVD. Overall, the bioactivity that will be mainly discussed it is the hypocholesterolemic one. The very diversified structures of the hypocholesterolemic peptides so far identified explains the reason why they exert their activity through different mechanisms of action that will be extensively described in this review. Doubtlessly, their potential use in nutritional application is desirable, however, only few of them have been tested in vivo. Therefore, more efforts need to be pursued for singling out good candidates for the development of functional foods or dietary supplements.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/prevention & control , Dietary Supplements , Functional Food , Peptides/pharmacology , Peptides/therapeutic use , Risk Factors
8.
Animal ; 17(7): 100861, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37329844

ABSTRACT

Colostrum (the first mammary gland secretion after calving) is known to contain high concentrations of nutrients as well as bioactive substances (including immunoglobulins, growth factors, and antimicrobial factors) to ensure neonatal survival. Due to its immunomodulatory, antibacterial, and antiviral activities, bovine colostrum has been used not only in calves but also in the prevention and treatment of human gastrointestinal and respiratory infections. Transition milk is the mammary secretion from the second milking to the sixth, which may contain these bioactive compounds to a lesser extent. The objective of the present study was to measure IGF-I, immunoglobulin G (IgG), and lactoferrin (LTF) concentrations in colostrum and transition milk of primiparous and multiparous cows to further assess its potential use in veterinary and nutraceutical applications. The results demonstrated that the concentrations of these three bioactive molecules decrease from the first milking to the tenth. Concentrations of IGF-I and LTF were greater in multiparous than in primiparous cows. Also, lactation number interacted with milking number in IGF-I, since primiparous cows had a smoother decline of IGF-I concentrations than multiparous ones. Overall, transition milk from the second milking showed a 46% decrease in the analysed colostrum bioactive molecules. Therefore, further studies are needed to apply this knowledge in neonate farm management practices or in developing pharmaceutical supplements from farm surpluses.


Subject(s)
Lactoferrin , Milk , Pregnancy , Female , Humans , Cattle , Animals , Milk/metabolism , Lactoferrin/metabolism , Immunoglobulin G , Insulin-Like Growth Factor I/metabolism , Colostrum/metabolism , Lactation , Parity
9.
J Food Sci ; 88(7): 3119-3133, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37282747

ABSTRACT

In this study, the composition of amino acids, nutritional characteristics, degree of hydrolysis (DH), antioxidant properties, and antibacterial activity of proteins and hydrolysates of bellflower (Campanula latifolia), Persian willow (Salix aegyptiaca), and bitter orange (Citrus aurantium L.) were investigated under the influence of different proteases (Alcalase: Al, trypsin: Tr, pancreatin: Pa, and pepsin: Pe). Evaluation of the structural features of the proteins showed amide regions (amide A, B, I-III) and secondary structures. Hydrophobic amino acids (∼38%), antioxidants (∼21%), and essential types (∼46%) form a significant part of the structure of flower pollen. The digestibility and nutritional quality (PER) of the hydrolyzed samples (CP: 1.67; CA: 1.89, and PW: 1.93) were more than the original protein. Among proteins and peptides, the highest degree of hydrolysis (34.6%: Al-PWH), inhibition of free radicals DPPH (84.2%: Al-CPH), ABTS (95.2%: Pa-CPH), OH (86.7%: Tr-CAH), NO (57.8%: Al-CPH), reducing power (1.31: Pa-CPH), total antioxidant activity (1.46: Pa-CPH), and chelation of iron ions (80%: Al-CPH and Al-CAH) and copper (50.3%: Pa-CAH) were affected by protein type, enzyme type, and amino acid composition. Also, the highest inhibition of the growth of Escherichia coli (25 mm) and Bacillus cereus (24 mm) were related to CP and PW hydrolysates, respectively. The results of this research showed that hydrolyzed flower pollens can be used as a rich source of essential amino acids as well as natural antioxidants and antibacterial in food and dietary products. PRACTICAL APPLICATION: Enzymatic hydrolysis of Campanula latifolia, Persian willow, and Citrus aurantium pollen proteins was performed. The hydrolyzed ones had high nutritional quality and digestibility (essential amino acids and PER index). Antioxidant properties and chelation of metal ions of peptides were affected by the type of protein and enzyme. The hydrolysates showed inhibitory activity against the growth of Esherichia coli and Bacillus cereus.


Subject(s)
Codonopsis , Salix , Antioxidants/chemistry , Salix/metabolism , Codonopsis/metabolism , Peptides/pharmacology , Proteins , Hydrolysis , Amino Acids/metabolism , Trypsin , Amino Acids, Essential , Amides , Pollen , Protein Hydrolysates/chemistry
10.
Biology (Basel) ; 12(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37237565

ABSTRACT

Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.

11.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108383

ABSTRACT

Irritable bowel syndrome (IBS), a multifactorial intestinal disorder, is often associated with a disruption in intestinal permeability as well as an increased expression of pro-inflammatory markers. The aim of this study was to first test the impact of treatment with glutamine (Gln), a food supplement containing natural curcumin extracts and polyunsaturated n-3 fatty acids (Cur); bioactive peptides from a fish protein hydrolysate (Ga); and a probiotic mixture containing Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus helveticus. These compounds were tested alone on a stress-based IBS model, the chronic-restraint stress model (CRS). The combination of Gln, Cur and Ga (GCG) was also tested. Eight-week-old C57Bl/6 male mice were exposed to restraint stress for two hours every day for four days and received different compounds every day one week before and during the CRS procedure. Plasma corticosterone levels were measured as a marker of stress, and colonic permeability was evaluated ex vivo in Ussing chambers. Changes in the gene expression of tight junction proteins (occludin, claudin-1 and ZO 1) and inflammatory cytokines (IL1ß, TNFα, CXCL1 and IL10) were assessed using RT-qPCR. The CRS model led to an increase in plasma corticosterone and an increase in colonic permeability compared with unstressed animals. No change in plasma corticosterone concentrations was observed in response to CRS with the different treatments (Gln, Cur, Ga or GCG). Stressed animals treated with Gln, Cur and Ga alone and in combination showed a decrease in colonic permeability when compared to the CRS group, while the probiotic mixture resulted in an opposite response. The Ga treatment induced an increase in the expression of the anti-inflammatory cytokine IL-10, and the GCG treatment was able to decrease the expression of CXCL1, suggesting the synergistic effect of the combined mixture. In conclusion, this study demonstrated that a combined administration of glutamine, a food supplement containing curcumin and polyunsaturated n-3 fatty acids, and bioactive peptides from a fish hydrolysate was able to reduce colonic hyperpermeability and reduce the inflammatory marker CXCL1 in a stress-based model of IBS and could be of interest to patients suffering from IBS.


Subject(s)
Curcumin , Fatty Acids, Omega-3 , Irritable Bowel Syndrome , Animals , Mice , Male , Irritable Bowel Syndrome/metabolism , Glutamine/pharmacology , Glutamine/metabolism , Curcumin/pharmacology , Curcumin/metabolism , Intestinal Mucosa/metabolism , Corticosterone/metabolism , Cytokines/metabolism , Permeability , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism
12.
Front Nutr ; 10: 1145068, 2023.
Article in English | MEDLINE | ID: mdl-37057066

ABSTRACT

Valorising waste from the processing of fishery and aquaculture products into functional additives, and subsequent use in aquafeed as supplements could be a novel approach to promoting sustainability in the aquaculture industry. The present study supplemented 10% of various fish protein hydrolysates (FPHs), obtained from the hydrolysis of kingfish (KH), carp (CH) and tuna (TH) waste, with 90% of poultry by-product meal (PBM) protein to replace fishmeal (FM) completely from the barramundi diet. At the end of the trial, intestinal mucosal barriers damage, quantified by villus area (VA), lamina propria area (LPA), LPA ratio, villus length (VL), villus width (VW), and neutral mucin (NM) in barramundi fed a PBM-based diet was repaired when PBM was supplemented with various FPHs (p < 0.05, 0.01, and 0.001). PBM-TH diet further improved these barrier functions in the intestine of fish (p < 0.05 and 0.001). Similarly, FPHs supplementation suppressed PBM-induced intestinal inflammation by controlling the expression of inflammatory cytokines (tnf-α and il-10; p < 0.05 and 0.001) and a mucin-relevant production gene (i-mucin c; p < 0.001). The 16S rRNA data showed that a PBM-based diet resulted in dysbiosis of intestinal bacteria, supported by a lower abundance of microbial diversity (p < 0.001) aligned with a prevalence of Photobacterium. PBM-FPHs restored intestine homeostasis by enhancing microbial diversity compared to those fed a PBM diet (p < 0.001). PBM-TH improved the diversity (p < 0.001) further by elevating the Firmicutes phylum and the Ruminococcus, Faecalibacterium, and Bacteroides genera. Muscle atrophy, evaluated by fiber density, hyperplasia and hypertrophy and associated genes (igf-1, myf5, and myog), occurred in barramundi fed PBM diet but was repaired after supplementation of FPHs with the PBM (p < 0.05, 0.01, and 0.001). Similarly, creatine kinase, calcium, phosphorous, and haptoglobin were impacted by PBM-based diet (p < 0.05) but were restored in barramundi fed FPHs supplemented diets (p < 0.05 and 0.01). Hence, using circular economy principles, functional FPHs could be recovered from the fish waste applied in aquafeed formulations and could prevent PBM-induced intestinal dysbiosis and muscular atrophy. GRAPHICAL ABSTRACT.

13.
Foods ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36981252

ABSTRACT

Hypercholesterolemia remains a serious global public health concern. Previously, synthetic anti-hypercholesterolemic drugs were used for ameliorating this condition; however, long-term usage presented several side-effects. In this regard, natural products as an adjunct therapy has emerged in recent times. This study aimed to produce novel bioactive peptides with anti-hypercholesterolemic activity (cholesterol esterase (CEase) and pancreatic lipase (PL)) from quinoa protein hydrolysates (QPHs) using three enzymatic hydrolysis methods (chymotrypsin, protease and bromelain) at 2-h hydrolysis intervals (2, 4, and 6 h). Chymotrypsin-generated hydrolysates showed higher CEase (IC50: 0.51 mg/mL at 2 h) and PL (IC50: 0.78 mg/mL at 6 h) inhibitory potential in comparison to other derived hydrolysates and intact quinoa proteins. Peptide profiling by LC-MS QTOF and in silico interaction with target enzymes showed that only four derived bioactive peptides from QPHs could bind in the active site of CEase, whereas twelve peptides could bind in the active site of PL. Peptides QHPHGLGALCAAPPST, HVQGHPALPGVPAHW, and ASNLDNPSPEGTVM were identified to be potential CEase inhibitors, and FSAGGLP, QHPHGLGALCAAPPST, KIVLDSDDPLFGGF, MFVPVPH, and HVQGHPALPGVPAHW were identified as potential PL inhibitors on the basis of the maximum number of reactive residues in these bioactive peptides. In conclusion, QPHs can be considered as an alternative therapy for the treatment of hypercholesterolemia.

14.
J Sci Food Agric ; 103(11): 5213-5220, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36988580

ABSTRACT

Pulses have been part of human nutrition for centuries. They are also used in folk medicine as products with multidirectional medicinal effects. They are annual plants representing the Fabaceae family. Their edible part is the fruit, i.e. the so-called pods. Whole pods or their parts can be eaten, depending on the species and fruit ripeness. Beans, peas, peanuts, chickpeas, lentils, broad beans and soybeans are edible legume species. Legume seeds are characterized by high nutritional value. Compared to seeds from other plants, they have high protein content ranging, on average, from 20% to 35%, depending on the type, growing conditions and maturity of the fruit. This review focuses on various health-promoting properties of legumes and presents their nutritional value and compounds exerting health-promoting effects. Many pulses have a low glycemic index, which is important for prevention and treatment of diabetes. In addition to their low glycemic index and high fiber content, pulses have α-amylase and α-glucosidase inhibitors, which reduce the absorption of glucose from the gastrointestinal tract. These compounds have antidiabetic and anti-inflammatory effects. Pulses have been shown to contain bioactive peptides with angiotensin-converting enzyme inhibitory properties; hence, they are useful in the treatment of cardiovascular diseases. Pulses used in the nutrition of obese individuals provide compounds with pancreatic lipase inhibitory properties, thus promoting weight reduction and control. © 2023 Society of Chemical Industry.


Subject(s)
Cicer , Fabaceae , Humans , Fabaceae/chemistry , Glycine max , Pisum sativum/chemistry , Seeds/chemistry , Cicer/chemistry , Vegetables
15.
PeerJ ; 11: e14384, 2023.
Article in English | MEDLINE | ID: mdl-36684675

ABSTRACT

The method of anticancer bioactive peptide (ACBP) functionalized selenium particle (Se), which has enhanced anticancer activity, inhibited the growth of gastric cancer (GC) cells, and increased the ability of apoptosis in vitro, has been reported in previous studies. We used tandem mass spectrometry (TMT) labeling to construct a complete atlas of the acetylation-modified proteome in GC MKN-45 cells treated with ACBP-Se. The proteomics data database was searched and analyzed by bioinformatics: Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), functional enrichment, and protein-protein interaction network. Finally, we conducted a quantitative PRM analysis of the selected target-modified peptides. We identified 4,958 acetylation sites from 1,926 proteins in this research. Among these, 4,467 acetylation sites corresponding to 1,777 proteins were quantified. Based on the above data and standards, we found that in the ACBP-Se group vs. the control group, 297 sites were upregulated, and 665 sites were downregulated. We systematically assessed the proteins containing quantitative information sites, including protein annotation, functional classification, and functional enrichment, cluster analysis supported by functional enrichment, domain structures, and protein interaction networks. Finally, we evaluated differentially expressed lysine acetylation sites. We revealed that SHMT2 K200 and PGK1 K97 were the most critical acetylated non-histone proteins, which may have an essential role in ACBP-Se treatment. Here, we identified and quantified the lysine acetylation proteins in GC cells treated with ACBP-Se. The characterization of acetylation indicates that acetylated proteins might be pivotal in the biological process, molecular binding, and metabolic pathways of ACBP-Se treatment progress. Our findings provide a broad understanding of acetylation ACBP-Se treatment of GC, suggesting a potential application for molecular targeted therapy.


Subject(s)
Antineoplastic Agents , Selenium , Stomach Neoplasms , Humans , Acetylation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Lysine/pharmacology , Peptides/pharmacology , Proteome/metabolism , Selenium/pharmacology , Selenium/therapeutic use , Stomach Neoplasms/drug therapy
16.
Food Chem ; 402: 134192, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36179519

ABSTRACT

This study aims to investigate the potentials of mature (MSPHs) and young (YSPHs) soybean enzymatic protein hydrolysates for the inhibition of pancreatic lipase (PL) and cholesterol esterase (C-Ease) enzymes. Higher proteins degradation levels were recorded with Bromelain compared to Flavourzyme and Alcalase, and upon hydrolysis, improved PL and C-Ease inhibition performances were displayed compared to unhydrolyzed proteins. Afterwards, six PHs with potent anti-lipidemic activities were selected for sequencing using LC-MS QTOF and molecular binding studies. Peptides FPFPRPPHQ, QCCAFEM, FAPEFLK from MSPHs and SFFFPFELPRE, FMYL, PFLL, FPLL, LPHF from YSPHs were predicted to possess potent inhibitory activities against PL. Furthermore, FPFPRPPHQ, FMYL, MMLM from MSPHs, and SFFFPFELPRE from YSPHs were predicted to be potent inhibitors of C-Ease. FPFPRPPHQ and SFFFPFELPRE derived from MSPHs and YSPHs, respectively, demonstrated effective inhibition potentialities against both PL and C-Ease. Therefore, mature and young soybean-derived protein hydrolysates could be recognized as a potential ingredient in the management of hypercholesterolemia.


Subject(s)
Bromelains , Protein Hydrolysates , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Glycine max/metabolism , Sterol Esterase , Peptides/chemistry , Subtilisins/chemistry , Hydrolysis , Lipase
17.
Biomolecules ; 12(12)2022 12 13.
Article in English | MEDLINE | ID: mdl-36551294

ABSTRACT

PURPOSE: Inhibition of dipeptidyl peptidase-IV (DPP-IV) is an effective therapy for treating type II diabetes (T2D) that has been widely applied in clinical practice. We aimed to evaluate the DPP-IV inhibitory properties of ginger protease hydrolysate (GPH) and propose a comprehensive approach to screen and evaluate DPP-IV inhibitors. METHODS: We evaluated the in vitro inhibitory properties of fish skin gelatin hydrolysates produced by five proteases, namely, neutral protease, alkaline protease, bromelain, papain, and ginger protease, toward DPP-IV. We screened the most potent DPP-IV inhibitory peptide (DIP) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with in silico analysis. Next, surface plasmon resonance (SPR) technology was innovatively introduced to explore the interactions between DPP-IV and DIP, as well as the IC50. Furthermore, we performed oral administration of DIP in rats to study its in vivo absorption. RESULTS: GPH displayed the highest degree of hydrolysis (20.37%) and DPP-IV inhibitory activity (65.18%). A total of 292 peptides from the GPH were identified using LC-MS/MS combined with de novo sequencing. Gly-Pro-Hyp-Gly-Pro-Pro-Gly-Pro-Gly-Pro (GPXGPPGPGP) was identified as the most potent DPP-IV inhibitory peptide after in silico screening (Peptide Ranker and molecular docking). Then, the in vitro study revealed that GPXGPPGPGP had a high inhibitory effect on DPP-IV (IC50: 1012.3 ± 23.3 µM) and exhibited fast kinetics with rapid binding and dissociation with DPP-IV. In vivo analysis indicated that GPXGPPGPGP was not absorbed intact but partially, in the form of dipeptides and tripeptides. CONCLUSION: Overall, the results suggested that GPH would be a natural functional food for treating T2D and provided new ideas for searching and evaluating potential antidiabetic compounds. The obtained GPXGPPGPGP can be structurally optimized for in-depth evaluation in animal and cellular experiments.


Subject(s)
Diabetes Mellitus, Type 2 , Tilapia , Rats , Animals , Gelatin/chemistry , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Peptides/pharmacology , Peptides/chemistry
18.
Foods ; 11(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36429229

ABSTRACT

The aim of this study was to evaluate the effects of the chitosan/collagen peptides/cinnamon bark essential oil composite coating on dry-aged beef. Chitosan (2%, w/v), collagen peptides (1%, w/v), and cinnamon bark essential oil (1%, v/v) were homogenized to obtain the coating. Beef samples were divided into three groups (traditional dry-ageing, in-bag dry-ageing, and coating and then dry-ageing) and dry-aged for 42 days. Physiochemical, microbial, and sensorial parameters of samples were determined during the dry-ageing process. There were no significant differences (p > 0.05) in pH values, shear force values, cooking loss, color, juiciness, tenderness, and flavor across groups. The total volatile base nitrogen value of the coating group was lower than those of the other two groups. Compared to traditional dry-ageing, in-bag and coating dry-ageing reduced (p < 0.05) many volatile compounds such as alcohols, aldehydes, ketones, and acetate. In-bag and coating dry-ageing had no impact on the fungal community, but changed the bacterial community by inhibiting Pseudomonas. This study demonstrates that the chitosan/collagen peptides/cinnamon bark essential oil coating reduces microbial spoilage during dry-ageing, and has a small influence on product quality.

19.
J Nutr Sci Vitaminol (Tokyo) ; 68(Supplement): S113-S115, 2022.
Article in English | MEDLINE | ID: mdl-36436988

ABSTRACT

Bone health is an important medical concern in rapidly aging demographics worldwide. Excessive bone resorption, due to enhanced activity of osteoclasts, is a major underlying cause of bone disorders such as osteoporosis. Inflammation and oxidative stress are key factors contributing to increased osteoclastic activity. Like increased activity of osteoclasts, depletion of osteoblasts also contributes to weakened structural integrity of bone. Considering the epidemiology of bone disorders and aging demographics there is a substantial need for novel bone health therapeutics. IRW (Ile-Arg-Trp), an egg-derived tripeptide, exhibits a spectrum of pharmacological activity. In our recent work, we have shown that IRW inhibits osteoclastogenesis and promotes osteogenesis in the mouse macrophage RAW 264.7 and MC3T3-E1 cells. IRW treatment (25 and 50 µM) significantly inhibited osteoclastogenesis-associated factors [TRAF6 (TNF Receptor Associated Factor 6), Fos Proto-Oncogene (c-Fos), Nuclear Factor of Activated T Cells 1 (NFATc1), and cathepsin K] and upregulated osteogenesis-associated factors [RUNX2 (Runt-related transcription factor 2) and RANKL (Receptor activator of nuclear factor kappa-B ligand)] in the two cell lines. Currently, we are conducting studies to analyze the impact of IRW on Angiotensin II (Ang II)-induced stress in vitro and in vivo. In summary, our recent work presents the ability of IRW to prevent LPS-induced inflammatory bone resorption and activation of osteogenesis activity via multiple signaling pathways.


Subject(s)
Bone Resorption , Osteoporosis , Mice , Animals , Osteoclasts/metabolism , Osteoporosis/prevention & control , Osteoporosis/metabolism , Bone Resorption/prevention & control , Bone Resorption/metabolism , Dietary Supplements
20.
Nutrients ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36297084

ABSTRACT

Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.


Subject(s)
Anti-Allergic Agents , Anti-Infective Agents , Peptides , Analgesics, Opioid , Anti-Allergic Agents/pharmacology , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antihypertensive Agents , Antioxidants/pharmacology , Complex Mixtures , Dietary Supplements , Epitopes , Fibrinolytic Agents , Food Hypersensitivity/prevention & control , Peptide Hydrolases , Peptides/pharmacology , Peptides/chemistry , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL