Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203835

ABSTRACT

JQ-1 is a typical BRD4 inhibitor with the ability to directly fight tumor cells and evoke antitumor immunity via reducing the expression of PD-L1. However, problems arise with the development of JQ-1 in clinical trials, such as marked lymphoid and hematopoietic toxicity, leading to the investigation of combination therapy. SZU-101 is a TLR7 agonist designed and synthesized by our group with potent immunostimulatory activity. Therefore, we hypothesized that combination therapy of SZU-101 and JQ-1 would target innate immunity and adaptive immunity simultaneously, to achieve a better antitumor efficacy than monotherapy. In this study, the repressive effects of the combination administration on tumor growth and metastasis were demonstrated in both murine breast cancer and melanoma models. In 4T1 tumor-bearing mice, i.t. treatment with SZU-101 in combination with i.p. treatment with JQ-1 suppressed the growth of tumors at both injected and uninjected sites. Combination therapy increased M1/M2 ratio in TAMs, decreased PD-L1 expression and promoted the recruitment of activated CD8+ T cells in the TME. In summary, the improved therapeutic efficacy of the novel combination therapy appears to be feasible for the treatment of a diversity of cancers.


Subject(s)
Adenine , Bromodomain Containing Proteins , Melanoma , Succinates , Toll-Like Receptor 7 , Animals , Mice , Adenine/analogs & derivatives , Adjuvants, Immunologic , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Nuclear Proteins , Toll-Like Receptor 7/agonists , Transcription Factors , Bromodomain Containing Proteins/antagonists & inhibitors
2.
Drug Des Devel Ther ; 16: 129-141, 2022.
Article in English | MEDLINE | ID: mdl-35046638

ABSTRACT

PURPOSE: Berbamine (Ber), a bioactive constituent extracted from a traditional Chinese medicinal herb, has been shown to exhibit broad inhibitory activity on a panel of cancer cell types. However, its effects and the underlying molecular mechanisms on gastric cancer (GC) remain poorly understood. METHODS: The anti-growth activity of Ber on two GC cell lines and normal gastric epithelial cell line were evaluated using MTS and clone formation assay. Flow cytometry analysis was employed to evaluate the cell cycle distribution and apoptosis of GC cells. Western blot and quantitative PCR (qPCR) analysis were employed to investigate the anti-GC mechanism of Ber. The inhibitory activity and binding affinity of Ber against BRD4 were evaluated by homogeneous time-resolved fluorescence (HTRF) and surface plasmon resonance (SPR) assay, respectively. Molecular docking and molecular simulations were conducted to predict the interaction mode between BRD4 and Ber. RESULTS: The results demonstrated that Ber reduced the proliferation of GC cell lines SGC-7901 and BGC-823 and induced cell cycle arrest and apoptosis. Mechanistically, Ber was identified as a novel natural-derived BRD4 inhibitor through multiple experimental assay, and its anti-GC activity was probably mediated by BRD4 inhibition. Molecular modeling studies suggested that Ber might bind to BRD4 primarily through hydrophobic interactions. CONCLUSION: Our study uncovered the underlying anti-GC activity of Ber in vitro and suggested that Ber holds promise as a potential lead compound in the discovery of novel BRD4 inhibitors.


Subject(s)
Benzylisoquinolines/pharmacology , Cell Cycle Proteins/metabolism , Stomach Neoplasms/drug therapy , Transcription Factors/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Molecular Docking Simulation , Signal Transduction
3.
Neurobiol Learn Mem ; 179: 107383, 2021 03.
Article in English | MEDLINE | ID: mdl-33460788

ABSTRACT

BACKGROUND: Inaccurate fear memories can be maladaptive and potentially portrait a core symptomatic dimension of fear adaptive disorders such as post-traumatic stress disorder (PTSD), which is generally characterized by an intense and enduring memory for the traumatic events. Evidence exists in support of epigenetic regulation of fear behavior. Brd4, a member of the bromodomain and extra-terminal domain (BET) protein family, serves as a chromatin "reader" by binding to histones in acetylated lysine residues, and hence promotes transcriptional activities. However, less is known whether Brd4 participates in modulating cognitive activities especially memory formation and extinction. Here we provide evidence for a role of Brd4 in modulation of auditory fear memory. Auditory fear conditioning resulted in a biphasic Brd4 activation in the anterior cingulate cortex (ACC) and hippocampus of adult mice. Thus, Brd4 phosphorylation occurred 6 h and 3-14 days, respectively, after auditory fear conditioning. Systemic inhibition of Brd4 with a BET inhibitor, JQ1, impaired the extinction of remote (i.e., 14 days after conditioning) fear memory. Further, conditional Brd4 knockout in excitatory neurons of the forebrain impaired remote fear extinction as observed in the JQ1-treated mice. Herein, we identified that Brd4 is essential for extinction of remote fear in rodents. These results thus indicate that Brd4 potentially plays a role in the pathogenesis of PTSD.


Subject(s)
Acoustic Stimulation , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear , Gyrus Cinguli/metabolism , Hippocampus/metabolism , Memory/physiology , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Azepines/pharmacology , Conditioning, Classical/drug effects , Epigenesis, Genetic , Extinction, Psychological/drug effects , Memory/drug effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Mice , Mice, Knockout , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Triazoles/pharmacology
4.
J Cell Mol Med ; 24(15): 8518-8531, 2020 08.
Article in English | MEDLINE | ID: mdl-32596881

ABSTRACT

Alcoholic liver disease (ALD) is the major cause of chronic liver disease and a global health concern. ALD pathogenesis is initiated with liver steatosis, and ALD can progress to steatohepatitis, fibrosis, cirrhosis and even hepatocellular carcinoma. Salvianic acid A (SAA) is a phenolic acid component of Danshen, a Chinese herbal medicine with possible hepatoprotective properties. The purpose of this study was to investigate the effect of SAA on chronic alcoholic liver injury and its molecular mechanism. We found that SAA significantly inhibited alcohol-induced liver injury and ameliorated ethanol-induced hepatic inflammation. These protective effects of SAA were likely carried out through its suppression of the BRD4/HMGB1 signalling pathway, because SAA treatment largely diminished alcohol-induced BRD4 expression and HMGB1 nuclear translocation and release. Importantly, BRD4 knockdown prevented ethanol-induced HMGB1 release and inflammatory cytokine production in AML-12 cells. Similarly, alcohol-induced pro-inflammatory cytokines were blocked by HMGB1 siRNA. Collectively, our results reveal that activation of the BRD4/HMGB1 pathway is involved in ALD pathogenesis. Therefore, manipulation of the BRD4/HMGB1 pathway through strategies such as SAA treatment holds great therapeutic potential for chronic alcoholic liver disease therapy.


Subject(s)
Down-Regulation/drug effects , HMGB1 Protein/metabolism , Lactates/pharmacology , Liver Diseases, Alcoholic/drug therapy , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Male , Mice , Protective Agents/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects
5.
J Biomed Sci ; 26(1): 79, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31629407

ABSTRACT

BACKGROUND: Neuronal activity-induced changes in gene expression patterns are important mediators of neuronal plasticity. Many neuronal genes can be activated or inactivated in response to neuronal depolarization. Mechanisms that activate gene transcription are well established, but activity-dependent mechanisms that silence transcription are less understood. It is also not clear what is the significance of inhibiting these genes during neuronal activity. METHODS: Quantitative Real Time-PCR, western blot and immunofluorescence staining were performed to examine the expression of Senp1 and GluR1 in mouse cortical neurons. The alterations of Yy1 phosphorylation upon neuronal depolarization and the interaction of Yy1 with Brd4 were studied by protein co-immunoprecipitation. The regulators of Yy1 phosphorylation were identified by phosphatase inhibitors. Chromatin immunoprecipitation, in vitro DNA binding assay, luciferase assay and gene knockdown experiments were used to validate the roles of Yy1 and its phosphorylation as well as Brd4 in regulating Senp1 expression. RESULTS: We report that neuronal depolarization deactivates the transcription of the SUMO protease Senp1, an important component regulating synaptic transmission, scaling, and plasticity, through Yy1. In un-stimulated neurons, Senp1 transcription is activated by a Yy1-Brd4 transcription factor protein complex assembled on the Senp1 promoter. Upon membrane depolarization, however, Yy1 is dephosphorylated and the Yy1-Brd4 complex is evicted from the Senp1 promoter, reducing Senp1 transcription levels. Both Yy1 and Senp1 promote the expression of AMPA receptor subunit GluR1, a pivotal component in learning and memory. CONCLUSIONS: These results reveal an axis of Yy1/Brd4-Senp1 which regulates the expression of GluR1 during neuronal depolarization. This implicates a regulation mechanism in silencing gene expression upon neuronal activity.


Subject(s)
Cysteine Endopeptidases/genetics , Gene Expression Regulation/genetics , Neurons/physiology , Receptors, AMPA/genetics , YY1 Transcription Factor/genetics , Animals , Cysteine Endopeptidases/metabolism , Embryo, Mammalian/physiology , Mice, Inbred C57BL , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptors, AMPA/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YY1 Transcription Factor/metabolism
6.
Molecules ; 24(17)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31454992

ABSTRACT

We introduce SAR-by-Space, a concept to drastically accelerate structure-activity relationship (SAR) elucidation by synthesizing neighboring compounds that originate from vast chemical spaces. The space navigation is accomplished within minutes on affordable standard computer hardware using a tree-based molecule descriptor and dynamic programming. Maximizing the synthetic accessibility of the results from the computer is achieved by applying a careful selection of building blocks in combination with suitably chosen reactions; a decade of in-house quality control shows that this is a crucial part in the process. The REAL Space is the largest chemical space of commercially available compounds, counting 11 billion molecules as of today. It was used to mine actives against bromodomain 4 (BRD4). Before synthesis, compounds were docked into the binding site using a scoring function, which incorporates intrinsic desolvation terms, thus avoiding time-consuming simulations. Five micromolecular hits have been identified and verified within less than six weeks, including the measurement of IC50 values. We conclude that this procedure is a substantial time-saver, accelerating both ligand- and structure-based approaches in hit generation and lead optimization stages.


Subject(s)
Computational Biology/methods , Small Molecule Libraries/pharmacology , Transcription Factors/chemistry , Transcription Factors/metabolism , Binding Sites , Databases, Chemical , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Structure , Protein Binding , Small Molecule Libraries/chemistry , Structure-Activity Relationship
7.
Eur J Med Chem ; 165: 258-272, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30685526

ABSTRACT

The Virtual Screening (VS) study described herein aimed at detecting novel Bromodomain BRD4 binders and relied on knowledge from public databases (ChEMBL, REAXYS) to establish a battery of predictive models of BRD activity for in silico selection of putative ligands. Beyond the actual discovery of new BRD ligands, this represented an opportunity to practically estimate the actual usefulness of public domain "Big Data" for robust predictive model building. Obtained models were used to virtually screen a collection of 2 million compounds from the Enamine company collection. This industrial partner then experimentally screened a subset of 2992 molecules selected by the VS procedure for their high likelihood to be active. Twenty nine confirmed hits were detected after experimental testing, representing 1% of the selected candidates. As a general conclusion, this study emphasizes once more that public structure-activity databases are nowadays key assets in drug discovery. Their usefulness is however limited by the state-of-the-art knowledge harvested so far by published studies. Target-specific structure-activity information is rarely rich enough, and its heterogeneity makes it extremely difficult to exploit in rational drug design. Furthermore, published affinity measures serving to build models selecting compounds to be experimentally screened may not be well correlated with the experimental hit selection criterion (in practice, often imposed by equipment constraints). Nevertheless, a robust 2.6-fold increase in hit rate with respect to an equivalent, random screening campaign showed that machine learning is able to extract some real knowledge in spite of all the noise in structure-activity data.


Subject(s)
Data Mining/methods , Drug Discovery , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Cell Cycle Proteins , Computer Simulation , Drug Evaluation, Preclinical/methods , Humans , Ligands , Machine Learning , Structure-Activity Relationship
8.
Proc Natl Acad Sci U S A ; 115(31): 7949-7954, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30012592

ABSTRACT

The importance of BET protein BRD4 in gene transcription is well recognized through the study of chemical modulation of its characteristic tandem bromodomain (BrD) binding to lysine-acetylated histones and transcription factors. However, while monovalent inhibition of BRD4 by BET BrD inhibitors such as JQ1 blocks growth of hematopoietic cancers, it is much less effective generally in solid tumors. Here, we report a thienodiazepine-based bivalent BrD inhibitor, MS645, that affords spatially constrained tandem BrD inhibition and consequently sustained repression of BRD4 transcriptional activity in blocking proliferation of solid-tumor cells including a panel of triple-negative breast cancer (TNBC) cells. MS645 blocks BRD4 binding to transcription enhancer/mediator proteins MED1 and YY1 with potency superior to monovalent BET inhibitors, resulting in down-regulation of proinflammatory cytokines and genes for cell-cycle control and DNA damage repair that are largely unaffected by monovalent BrD inhibition. Our study suggests a therapeutic strategy to maximally control BRD4 activity for rapid growth of solid-tumor TNBC cells.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Transcription, Genetic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Cell Cycle Proteins , Cell Line, Tumor , Female , Humans , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
9.
Bioorg Med Chem Lett ; 27(20): 4606-4613, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28939121

ABSTRACT

Bromodomain and extra-terminal (BET) proteins, a class of epigenetic reader domains has emerged as a promising new target class for small molecule drug discovery for the treatment of cancer, inflammatory, and autoimmune diseases. Starting from in silico screening campaign, herein we report the discovery of novel BET inhibitors based on [1,2,4]triazolo[4,3-a]quinoxaline scaffold and their biological evaluation. The hit compound was optimized using the medicinal chemistry approach to the lead compound with excellent inhibitory activities against BRD4 in the binding assay. The substantial antiproliferative activities in human cancer cell lines, promising drug-like properties, and the selectivity for the BET family make the lead compound (13) as a novel BRD4 inhibitor motif for anti-cancer drug discovery.


Subject(s)
Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Quinoxalines/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Drug Evaluation, Preclinical , Half-Life , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-myc/metabolism , Quinoxalines/pharmacokinetics , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Rats , Structure-Activity Relationship , Triazoles/chemistry
10.
Mol Cell ; 64(1): 163-175, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27666594

ABSTRACT

Mitochondrial diseases comprise a heterogeneous group of genetically inherited disorders that cause failures in energetic and metabolic function. Boosting residual oxidative phosphorylation (OXPHOS) activity can partially correct these failures. Herein, using a high-throughput chemical screen, we identified the bromodomain inhibitor I-BET 525762A as one of the top hits that increases COX5a protein levels in complex I (CI) mutant cybrid cells. In parallel, bromodomain-containing protein 4 (BRD4), a target of I-BET 525762A, was identified using a genome-wide CRISPR screen to search for genes whose loss of function rescues death of CI-impaired cybrids grown under conditions requiring OXPHOS activity for survival. We show that I-BET525762A or loss of BRD4 remodeled the mitochondrial proteome to increase the levels and activity of OXPHOS protein complexes, leading to rescue of the bioenergetic defects and cell death caused by mutations or chemical inhibition of CI. These studies show that BRD4 inhibition may have therapeutic implications for the treatment of mitochondrial diseases.


Subject(s)
Benzodiazepines/pharmacology , Cytochrome c Group/genetics , Electron Transport Complex I/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Cell Cycle Proteins , Cell Fusion , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Cytochrome c Group/metabolism , Electron Transport Complex I/deficiency , Electron Transport Complex IV , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Screening Assays , Humans , Metabolome , Metabolomics , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Oxidative Phosphorylation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Promoter Regions, Genetic , Protein Binding , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
11.
Eur J Med Chem ; 121: 294-299, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27266999

ABSTRACT

Bromodomains (BRDs) are protein interaction modules that selectively recognize ε -N-lysine residues, serving as key epigenetic readers and play a key role in epigenetic regulation of gene transcription. Bromodomain-containing protein 4 (BRD4), a protein containing two BRDs termed BD1 and BD2, has emerged as an attractive candidate for the development of inhibitors targeting gene transcription in several types of cancers. In this study, we made structural modifications of previously reported BRD4 inhibitors, to develop new chemical scaffold 3,4-dihydroquinoxalin-2(1H)-one. Four series of compounds (compounds 7-10) were synthesized, and the BRD4-inhibitory activity and anti-proliferative effect of these compounds were evaluated. We found compound 10d has remarkable anti-proliferative activities toward leukemia cells and could induce apoptosis by mitochondrial pathways. Notably, the analysis of molecular docking suggested that hydrophobic interaction was essential for compound 10d to bind to BD1. In conclusion, these results demonstrate the potential of compound 10d to be utilized as a BRD4 inhibitor with apoptosis inducing effect in future leukemia therapy.


Subject(s)
Benzodiazepinones/chemistry , Benzodiazepinones/pharmacology , Drug Design , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Benzodiazepinones/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Conformation , Transcription Factors/chemistry , Transcription Factors/metabolism
12.
Sci Adv ; 2(2): e1501257, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26989780

ABSTRACT

Peptidyl arginine deiminase 4 (PAD4) is a nuclear enzyme that converts arginine residues to citrulline. Although increasingly implicated in inflammatory disease and cancer, the mechanism of action of PAD4 and its functionally relevant pathways remains unclear. E2F transcription factors are a family of master regulators that coordinate gene expression during cellular proliferation and diverse cell fates. We show that E2F-1 is citrullinated by PAD4 in inflammatory cells. Citrullination of E2F-1 assists its chromatin association, specifically to cytokine genes in granulocyte cells. Mechanistically, citrullination augments binding of the BET (bromodomain and extra-terminal domain) family bromodomain reader BRD4 (bromodomain-containing protein 4) to an acetylated domain in E2F-1, and PAD4 and BRD4 coexist with E2F-1 on cytokine gene promoters. Accordingly, the combined inhibition of PAD4 and BRD4 disrupts the chromatin-bound complex and suppresses cytokine gene expression. In the murine collagen-induced arthritis model, chromatin-bound E2F-1 in inflammatory cells and consequent cytokine expression are diminished upon small-molecule inhibition of PAD4 and BRD4, and the combined treatment is clinically efficacious in preventing disease progression. Our results shed light on a new transcription-based mechanism that mediates the inflammatory effect of PAD4 and establish the interplay between citrullination and acetylation in the control of E2F-1 as a regulatory interface for driving inflammatory gene expression.


Subject(s)
Citrulline/metabolism , E2F1 Transcription Factor/chemistry , E2F1 Transcription Factor/metabolism , Inflammation/metabolism , Acetylation , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Cell Cycle Proteins , Cell Line , Cytokines/genetics , E2F1 Transcription Factor/genetics , Gene Expression Regulation , HL-60 Cells , Humans , Hydrolases/antagonists & inhibitors , Hydrolases/genetics , Hydrolases/metabolism , Inflammation/genetics , Inflammation/immunology , Male , Mice , Mice, Inbred DBA , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases , RNA, Small Interfering/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/metabolism
13.
Bioorg Med Chem Lett ; 25(14): 2818-23, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26022843

ABSTRACT

Bromodomains are key transcriptional regulators that are thought to be druggable epigenetic targets for cancer, inflammation, diabetes and cardiovascular therapeutics. Of particular importance is the first of two bromodomains in bromodomain containing 4 protein (BRD4(1)). Protein-ligand docking in BRD4(1) was used to purchase a small, focused screening set of compounds possessing a large variety of core structures. Within this set, a small number of weak hits each contained a dihydroquinoxalinone ring system. We purchased other analogs with this ring system and further validated the new hit series and obtained improvement in binding inhibition. Limited exploration by new analog synthesis showed that the binding inhibition in a FRET assay could be improved to the low µM level making this new core a potential hit-to-lead series. Additionally, the predicted geometries of the initial hit and an improved analog were confirmed by X-ray co-crystallography with BRD4(1).


Subject(s)
Drug Design , Ligands , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Binding Sites , Cell Cycle Proteins , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Nuclear Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Quinoxalines/chemistry , Quinoxalines/metabolism , Structure-Activity Relationship , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL