Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mater Today Bio ; 17: 100441, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36388462

ABSTRACT

Thyroid cancer, as one of the most common endocrine cancers, has seen a surge in incidence in recent years. This is most likely due to the lack of specificity and accuracy of its traditional diagnostic modalities, leading to the overdiagnosis of thyroid nodules. Although there are several treatment options available, they are limited to surgery and 131I radiation therapy that come with significant side effects and hence cannot meet the treatment needs of anaplastic thyroid carcinoma with very high malignancy. Optical imaging that utilizes optical absorption, refraction and scattering properties, not only observes the structure and function of cells, tissues, organs, or even the whole organism to assist in diagnosis, but can also be used to perform optical therapy to achieve targeted non-invasive and precise treatment of thyroid cancer. These applications of screening, diagnosis, and treatment, lend to optical imaging's promising potential within the realm of thyroid cancer surgical navigation. Over the past decade, research on optical imaging in the diagnosis and treatment of thyroid cancer has been growing year by year, but no comprehensive review on this topic has been published. Here, we review key advances in the application of optical imaging in the diagnosis and treatment of thyroid cancer and discuss the challenges and potential for clinical translation of this technology.

2.
Saudi Pharm J ; 29(1): 12-26, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33603536

ABSTRACT

Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells' sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.

3.
J Tradit Complement Med ; 10(6): 529-543, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33134129

ABSTRACT

Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R-II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential.

4.
J Ginseng Res ; 42(4): 401-411, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30337800

ABSTRACT

Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid ß-protein (Aß) formation by inhibiting ß- and γ-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and Aß-induced neurotoxicity, and decrease Aß-induced production of reactive oxygen species and neuroinflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates Aß-induced cholinergic deficits in AD models. Similarly, gintonin inhibits Aß-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce Aß formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.

5.
Br J Nutr ; 115(9): 1509-20, 2016 05.
Article in English | MEDLINE | ID: mdl-26983845

ABSTRACT

The aim of the present study was to assess the effects of dietary supplementation with epidermal growth factor (EGF)-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. In total, forty piglets weaned at 21-26 d of age were assigned to one of the five groups that were provided basic diet (control group) or diet supplemented with S. cerevisiae expressing either empty-vector (INVSc1(EV) group), tagged EGF (T-EGF) (INVSc1-TE(-) group), extracellular EGF (EE-EGF) (INVSc1-EE(+) group) or intracellular EGF (IE-EGF) (INVSc1-IE(+) group). All treatments were delivered as 60·00 µg/kg body weight EGF/d. On 0, 7, 14 and 21 d, eight piglets per treatment were sacrificed to analyse the morphology, activities and mRNA expressions of digestive enzymes, as well as Ig levels (IgA, IgM, IgG) in duodenal mucosa. The results showed significant improvement on 7, 14 and 21 d, with respect to average daily gain (P<0·05), mucosa morphology (villus height and crypt depth) (P<0·05), Ig levels (P<0·01), activities and mRNA expressions of digestive enzymes (creatine kinase, alkaline phosphatase, lactate dehydrogenase and sucrase) (P<0·05) and the mRNA expression of EGF-receptor (P<0·01) in NVSc1-TE(-), INVSc1-EE(+) and INVSc1-IE(+) groups compared with control and INVSc1(EV) groups. In addition, a trend was observed in which the INVSc1-IE(+) group showed an improvement in Ig levels (0·05

Subject(s)
Dietary Supplements , Duodenum/drug effects , Epidermal Growth Factor/pharmacology , Intestinal Mucosa/drug effects , Saccharomyces cerevisiae/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Creatine Kinase/genetics , Creatine Kinase/metabolism , Duodenum/growth & development , Duodenum/metabolism , Epidermal Growth Factor/administration & dosage , ErbB Receptors/genetics , ErbB Receptors/metabolism , Immunoglobulins/metabolism , Intestinal Mucosa/growth & development , Intestinal Mucosa/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Lactococcus lactis , RNA, Messenger/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Sucrase/genetics , Sucrase/metabolism , Swine , Weaning
6.
Br J Nutr ; 115(6): 984-93, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26810899

ABSTRACT

Whey protein concentrate (WPC) has been reported to have protective effects on the intestinal barrier. However, the molecular mechanisms involved are not fully elucidated. Transforming growth factor-ß1 (TGF-ß1) is an important component in the WPC, but whether TGF-ß1 plays a role in these processes is not clear. The aim of this study was to investigate the protective effects of WPC on the intestinal epithelial barrier as well as whether TGF-ß1 is involved in these protection processes in a piglet model after lipopolysaccharide (LPS) challenge. In total, eighteen weanling pigs were randomly allocated to one of the following three treatment groups: (1) non-challenged control and control diet; (2) LPS-challenged control and control diet; (3) LPS+5 %WPC diet. After 19 d of feeding with control or 5 %WPC diets, pigs were injected with LPS or saline. At 4 h after injection, pigs were killed to harvest jejunal samples. The results showed that WPC improved (P<0·05) intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, which was reflected by increased transepithelial electrical resistance and decreased mucosal-to-serosal paracellular flux of dextran (4 kDa), compared with the LPS group. Moreover, WPC prevented the LPS-induced decrease (P<0·05) in claudin-1, occludin and zonula occludens-1 expressions in the jejunal mucosae. WPC also attenuated intestinal inflammation, indicated by decreased (P<0·05) mRNA expressions of TNF-α, IL-6, IL-8 and IL-1ß. Supplementation with WPC also increased (P<0·05) TGF-ß1 protein, phosphorylated-Smad2 expression and Smad4 and Smad7 mRNA expressions and decreased (P<0·05) the ratios of the phosphorylated to total c-jun N-terminal kinase (JNK) and p38 (phospho-JNK:JNK and p-p38:p38), whereas it increased (P<0·05) the ratio of extracellular signal-regulated kinase (ERK) (phospho-ERK:ERK). Collectively, these results suggest that dietary inclusion of WPC attenuates the LPS-induced intestinal injury by improving mucosal barrier function, alleviating intestinal inflammation and influencing TGF-ß1 canonical Smad and mitogen-activated protein kinase signalling pathways.


Subject(s)
Dietary Supplements , Disease Models, Animal , Enterocolitis/prevention & control , Intestinal Mucosa/physiopathology , Intestines/physiopathology , Tight Junction Proteins/metabolism , Whey Proteins/therapeutic use , Animals , Crosses, Genetic , Cytokines/genetics , Cytokines/metabolism , Electric Impedance , Enterocolitis/metabolism , Enterocolitis/pathology , Enterocolitis/physiopathology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/pathology , Lipopolysaccharides/toxicity , MAP Kinase Signaling System , Male , Orchiectomy/veterinary , Permeability , Random Allocation , Sus scrofa , Tight Junction Proteins/genetics , Transforming Growth Factor beta1/analysis , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/therapeutic use , Weaning , Whey Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL