Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Acta Pharm Sin B ; 12(2): 511-531, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35256932

ABSTRACT

Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.

2.
J Nutr Sci ; 10: e62, 2021.
Article in English | MEDLINE | ID: mdl-34457244

ABSTRACT

The fish paste product, fish balls 'tsumire', is a traditional type of Japanese food made from minced fish as well as imitation crab, kamaboko and hanpen. Although tsumire is known as a high-protein and low-fat food, there is a lack of scientific evidence on its health benefits. Hence, we aimed to investigate the effects of tsumire intake on organ weight and biomarker levels in Sprague-Dawley rats for 84 d as a preliminary study. Six-week-old male Sprague-Dawley rats were divided into two groups: group I, fed normal diets, and group II, fed normal diets with 5 % dried tsumire. Throughout the administration period, we monitored their body weight and food intake; at the end of this period, we measured their organ weight and analysed their blood biochemistry. No significant differences were observed with respect to body weight, food intake, organ weight and many biochemical parameters between the two groups. It was found that inorganic phosphorus and glucose levels were higher in group II rats than in group I rats. On the other hand, sodium, calcium, amylase and cholinesterase levels were significantly lower in group II than in group I. Interestingly, we found that the levels of aspartate aminotransferase, alanine transaminase, lactate dehydrogenase and leucine aminopeptidase in group II were significantly lower than in group I, and that other liver function parameters of group II tended to be lower than in group I. In conclusion, we consider that the Japanese traditional food, 'tsumire,' may be effective as a functional food for human health management worldwide.


Subject(s)
Fish Products , Functional Food , Alanine Transaminase , Amylases , Animals , Aspartate Aminotransferases , Blood Glucose , Body Weight , Calcium , Cholinesterases , L-Lactate Dehydrogenase , Leucyl Aminopeptidase , Male , Phosphorus , Rats , Rats, Sprague-Dawley , Sodium
3.
J Tradit Complement Med ; 10(6): 577-585, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33134134

ABSTRACT

BACKGROUND AND AIM: Chrysin is a flavonoid found in plant extracts from Passiflora species, honey and propolis. It has demonstrated anti-adipogenic activity in vitro but there are no studies substantiating the anti-obesity activity of chrysin in vivo. EXPERIMENTAL PROCEDURE: The pancreatic lipase (PL) inhibitory potential of chrysin was determined by preliminary in silico screening and further confirmed by in vitro PL inhibitory assay and oral fat tolerance test (OFTT). The effect of chrysin on acute feed intake and sucrose preference test was determined in normal rats. Obesity was induced by feeding of high fructose diet (HFD) to the rats. The rats were divided into six groups: normal control, HFD control, orlistat and three doses of chrysin (25, 50 and 100 mg/kg body weight). Body weight, body mass index (BMI), abdominal circumference/thoracic circumference (AC/TC) ratio, calorie intake, adiposity index, fecal cholesterol, locomotor activity and histopathology of the adipose tissue of the rats were evaluated. RESULTS: Chrysin showed good affinity to PL with competitive type of inhibition. It significantly reduced serum triglycerides in OFTT. Chrysin also significantly reduced acute feed intake and sucrose preference in rats. Chrysin significantly decreased the body weight, BMI, AC/TC ratio, adiposity index, calorie intake while it significantly increased the fecal cholesterol and locomotor activity of the rats. Chrysin was found to reduce the size of the adipocytes when compared to the HFD control group. CONCLUSION: Thus, chrysin exerted anti-obesity effect by inhibiting PL, reducing sucrose preference, reducing calorie intake and increasing the locomotor activity of rats.

4.
J Nutr Sci ; 8: e25, 2019.
Article in English | MEDLINE | ID: mdl-31428332

ABSTRACT

Co-ingestion of almonds with carbohydrate prevents excessive increase in plasma glucose level (PGL), but information about the functional fraction is limited. Identifying the functional fraction is necessary to use almonds more efficiently in terms of controlling postprandial glycaemia after a high-carbohydrate meal. In the present study, we evaluated the effects of almond skin, oil, water-soluble fraction and water-insoluble fraction on both postprandial glycaemia and insulinaemia. The effect of almond skin was tested by comparing the effect of whole almonds with the effect of skinless almonds. Male ICR mice were administered dextrin and 4 g/kg body weight test samples. After the administration, 2-h postprandial changes in glycaemia and insulinaemia were measured. Oil was the only fraction being able to blunt postprandial glycaemia. Interestingly, when co-ingesting with dextrin, almond oil did not change the insulin level compared with the control but whole almonds or skinless almonds triggered a 4-fold increase in insulin level. The co-ingestion of whole almonds or skinless almonds similarly suppressed the PGL at 15 and 30 min (P < 0·05), which means almond skin has no effect on postprandial glycaemia. Neither soluble nor insoluble fractions lead to any significant changes in postprandial glycaemia and insulinaemia. In conclusion, oil is the main functional component accounting for the glycaemia-lowering effect without altering insulin level.


Subject(s)
Blood Glucose/analysis , Eating , Insulin/blood , Plant Oils , Postprandial Period , Prunus dulcis , Animals , Body Weight , Male , Mice , Mice, Inbred ICR , Models, Animal , Plant Oils/chemistry , Prunus dulcis/chemistry
5.
Br J Nutr ; 121(9): 1026-1038, 2019 05.
Article in English | MEDLINE | ID: mdl-31062684

ABSTRACT

Consumption of certain berries appears to slow postprandial glucose absorption, attributable to polyphenols, which may benefit exercise and cognition, reduce appetite and/or oxidative stress. This randomised, crossover, placebo-controlled study determined whether polyphenol-rich fruits added to carbohydrate-based foods produce a dose-dependent moderation of postprandial glycaemic, glucoregulatory hormone, appetite and ex vivo oxidative stress responses. Twenty participants (eighteen males/two females; 24 (sd 5) years; BMI: 27 (sd 3) kg/m2) consumed one of five cereal bars (approximately 88 % carbohydrate) containing no fruit ingredients (reference), freeze-dried black raspberries (10 or 20 % total weight; LOW-Rasp and HIGH-Rasp, respectively) and cranberry extract (0·5 or 1 % total weight; LOW-Cran and HIGH-Cran), on trials separated by ≥5 d. Postprandial peak/nadir from baseline (Δmax) and incremental postprandial AUC over 60 and 180 min for glucose and other biochemistries were measured to examine the dose-dependent effects. Glucose AUC0-180 min trended towards being higher (43 %) after HIGH-Rasp v. LOW-Rasp (P=0·06), with no glucose differences between the raspberry and reference bars. Relative to reference, HIGH-Rasp resulted in a 17 % lower Δmax insulin, 3 % lower C-peptide (AUC0-60 min and 3 % lower glucose-dependent insulinotropic polypeptide (AUC0-180 min) P<0·05. No treatment effects were observed for the cranberry bars regarding glucose and glucoregulatory hormones, nor were there any treatment effects for either berry type regarding ex vivo oxidation, appetite-mediating hormones or appetite. Fortification with freeze-dried black raspberries (approximately 25 g, containing 1·2 g of polyphenols) seems to slightly improve the glucoregulatory hormone and glycaemic responses to a high-carbohydrate food item in young adults but did not affect appetite or oxidative stress responses at doses or with methods studied herein.


Subject(s)
Dietary Carbohydrates/administration & dosage , Edible Grain , Food, Fortified , Polyphenols/administration & dosage , Postprandial Period/drug effects , Rubus/chemistry , Appetite/drug effects , Blood Glucose/drug effects , Cross-Over Studies , Female , Humans , Male , Oxidative Stress/drug effects , Young Adult
6.
J Nutr Sci ; 8: e2, 2019.
Article in English | MEDLINE | ID: mdl-30719284

ABSTRACT

Procyanidins have been reported to possess potential for the prevention of hyperglycaemia. However, there are very few data for procyanidins about the difference the degree of polymerisation (DP) has on anti-hyperglycaemic effects. Moreover, the underlying molecular mechanisms by which procyanidins suppress hyperglycaemia are not yet fully understood. In the present study, we prepared procyanidin fractions with different DP, namely low-DP (DP≤3) and high-DP (DP≥4) fractions, from a cacao liquor procyanidin-rich extract (CLPr). These fractions were administered orally to Institute of Cancer Research (ICR) mice and their anti-hyperglycaemic effects were examined. We found that CLPr and its fractions prevent postprandial hyperglycaemia accompanied by an increase in the plasma glucagon-like peptide-1 (GLP-1) level with or without glucose load. In the absence of glucose load, both fractions increased the plasma insulin level and activated its downstream signalling pathway in skeletal muscle, resulting in promotion of the translocation of GLUT4. Phosphorylation of AMP-activated protein kinase (AMPK) was also involved in the promotion of GLUT4 translocation. High- and low-DP fractions showed a similar activation of insulin and AMPK pathways. In conclusion, cacao liquor procyanidins prevent hyperglycaemia by promoting GLUT4 translocation in skeletal muscle, and both the GLP-1-activated insulin pathway and the AMPK pathway are involved in the underlying molecular mechanism.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cacao/chemistry , Glucagon-Like Peptide 1/metabolism , Hyperglycemia/prevention & control , Proanthocyanidins/pharmacology , Animals , Disease Models, Animal , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Insulin/blood , Male , Mice , Mice, Inbred ICR , Muscle, Skeletal/metabolism , Phosphorylation , Plant Extracts/pharmacology , Polyphenols/pharmacology , Signal Transduction/drug effects
7.
Nutr Res Rev ; 32(1): 146-167, 2019 06.
Article in English | MEDLINE | ID: mdl-30728086

ABSTRACT

We provide an overview of studies on seafood intake in relation to obesity, insulin resistance and type 2 diabetes. Overweight and obesity development is for most individuals the result of years of positive energy balance. Evidence from intervention trials and animal studies suggests that frequent intake of lean seafood, as compared with intake of terrestrial meats, reduces energy intake by 4-9 %, sufficient to prevent a positive energy balance and obesity. At equal energy intake, lean seafood reduces fasting and postprandial risk markers of insulin resistance, and improves insulin sensitivity in insulin-resistant adults. Energy restriction combined with intake of lean and fatty seafood seems to increase weight loss. Marine n-3 PUFA are probably of importance through n-3 PUFA-derived lipid mediators such as endocannabinoids and oxylipins, but other constituents of seafood such as the fish protein per se, trace elements or vitamins also seem to play a largely neglected role. A high intake of fatty seafood increases circulating levels of the insulin-sensitising hormone adiponectin. As compared with a high meat intake, high intake of seafood has been reported to reduce plasma levels of the hepatic acute-phase protein C-reactive protein level in some, but not all studies. More studies are needed to confirm the dietary effects on energy intake, obesity and insulin resistance. Future studies should be designed to elucidate the potential contribution of trace elements, vitamins and undesirables present in seafood, and we argue that stratification into responders and non-responders in randomised controlled trials may improve the understanding of health effects from intake of seafood.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Diet , Feeding Behavior , Insulin Resistance , Insulin/metabolism , Obesity/prevention & control , Seafood , Animals , Fatty Acids, Omega-3/therapeutic use , Humans
8.
J Nutr Sci ; 8: e40, 2019 12 04.
Article in English | MEDLINE | ID: mdl-32042407

ABSTRACT

A large proportion of older adults are affected by impaired glucose metabolism. Previous studies with fish protein have reported improved glucose regulation in healthy adults, but the evidence in older adults is limited. Therefore, we wanted to assess the effect of increasing doses of a cod protein hydrolysate (CPH) on postprandial glucose metabolism in older adults. The study was a double-blind cross-over trial. Participants received four different doses (10, 20, 30 or 40 mg/kg body weight (BW)) of CPH daily for 1 week with 1-week washout periods in between. The primary outcome was postprandial response in glucose metabolism, measured by samples of serum glucose and insulin in 20 min intervals for 120 min. The secondary outcome was postprandial response in plasma glucagon-like peptide 1 (GLP-1). Thirty-one subjects aged 60-78 years were included in the study. In a mixed-model statistical analysis, no differences in estimated maximum value of glucose, insulin or GLP-1 were observed when comparing the lowest dose of CPH (10 mg/kg BW) with the higher doses (20, 30 or 40 mg/kg BW). The estimated maximum value of glucose was on average 0·28 mmol/l lower when the participants were given 40 mg/kg BW CPH compared with 10 mg/kg BW (P = 0·13). The estimated maximum value of insulin was on average 5·14 mIU/l lower with 40 mg/kg BW of CPH compared with 10 mg/kg BW (P = 0·20). Our findings suggest that serum glucose and insulin levels tend to decrease with increasing amounts of CPH. Due to preliminary findings, the results require further investigation.


Subject(s)
Dietary Supplements , Fish Proteins, Dietary/administration & dosage , Protein Hydrolysates/administration & dosage , Aged , Blood Glucose/metabolism , Body Weight , Cross-Over Studies , Double-Blind Method , Energy Intake , Female , Glucagon-Like Peptide 1/blood , Glucose/metabolism , Homeostasis/drug effects , Humans , Insulin/blood , Male , Middle Aged , Nutrients/administration & dosage , Postprandial Period
9.
Br J Nutr ; 119(9): 1029-1038, 2018 05.
Article in English | MEDLINE | ID: mdl-29514721

ABSTRACT

Epidemiological studies have found coffee consumption is associated with a lower risk for type 2 diabetes mellitus, but the underlying mechanisms remain unclear. Thus, the aim of this randomised, cross-over single-blind study was to investigate the effects of regular coffee, regular coffee with sugar and decaffeinated coffee consumption on glucose metabolism and incretin hormones. Seventeen healthy men participated in five trials each, during which they consumed coffee (decaffeinated, regular (containing caffeine) or regular with sugar) or water (with or without sugar). After 1 h of each intervention, they received an oral glucose tolerance test with one intravenous dose of [1-13C]glucose. The Oral Dose Intravenous Label Experiment was applied and glucose and insulin levels were interpreted using a stable isotope two-compartment minimal model. A mixed-model procedure (PROC MIXED), with subject as random effect and time as repeated measure, was used to compare the effects of the beverages on glucose metabolism and incretin parameters (glucose-dependent insulinotropic peptide (GIP)) and glucagon-like peptide-1 (GLP-1)). Insulin sensitivity was higher with decaffeinated coffee than with water (P<0·05). Regular coffee with sugar did not significantly affect glucose, insulin, C-peptide and incretin hormones, compared with water with sugar. Glucose, insulin, C-peptide, GLP-1 and GIP levels were not statistically different after regular and decaffeinated coffee compared with water. Our findings demonstrated that the consumption of decaffeinated coffee improves insulin sensitivity without changing incretin hormones levels. There was no short-term adverse effect on glucose homoeostasis, after an oral glucose challenge, attributable to the consumption of regular coffee with sugar.


Subject(s)
Caffeine/administration & dosage , Coffee/chemistry , Insulin Resistance , Adult , Blood Glucose , Caffeine/chemistry , Cross-Over Studies , Diabetes Mellitus, Type 2/prevention & control , Glucose Tolerance Test , Humans , Insulin , Male , Single-Blind Method , Young Adult
10.
Br J Nutr ; 118(10): 777-787, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29110741

ABSTRACT

We previously found that guar gum (GG) and chickpea flour (CPF) added to flatbread wheat flour lowered postprandial blood glucose (PPG) and insulin responses dose dependently. However, rates of glucose influx cannot be determined from PPG, which integrates rates of influx, tissue disposal and hepatic glucose production. The objective was to quantify rates of glucose influx and related fluxes as contributors to changes in PPG with GG and CPF additions to wheat-based flatbreads. In a randomised cross-over design, twelve healthy males consumed each of three different 13C-enriched meals: control flatbreads (C), or C incorporating 15 % CPF with either 2 % (GG2) or 4 % (GG4) GG. A dual isotope technique was used to determine the time to reach 50 % absorption of exogenous glucose (T 50 %abs, primary objective), rate of appearance of exogenous glucose (RaE), rate of appearance of total glucose (RaT), endogenous glucose production (EGP) and rate of disappearance of total glucose (RdT). Additional exploratory outcomes included PPG, insulin, glucose-dependent insulinotropic peptide and glucagon-like peptide 1, which were additionally measured over 4 h. Compared with C, GG2 and GG4 had no significant effect on T 50 %abs. However, GG4 significantly reduced 4-h AUC values for RaE, RaT, RdT and EGP, by 11, 14, 14 and 64 %, respectively, whereas GG2 showed minor effects. Effect sizes over 2 and 4 h were similar except for significantly greater reduction in EGP for GG4 at 2 h. In conclusion, a soluble fibre mix added to flatbreads only slightly reduced rates of glucose influx, but more substantially affected rates of postprandial disposal and hepatic glucose production.


Subject(s)
Bread , Cicer , Cyamopsis , Dietary Fiber/pharmacology , Glucose/metabolism , Glycemic Index , Postprandial Period , Adult , Area Under Curve , Blood Glucose/metabolism , Carbon Isotopes , Flour , Galactans , Gastric Inhibitory Polypeptide/blood , Glucagon-Like Peptide 1/blood , Gluconeogenesis/drug effects , Glucose/pharmacokinetics , Humans , Insulin/blood , Intestinal Absorption/drug effects , Liver , Male , Mannans , Plant Gums , Plant Preparations/pharmacology , Triticum , Young Adult
11.
Br J Nutr ; 116(2): 223-46, 2016 07.
Article in English | MEDLINE | ID: mdl-27264638

ABSTRACT

The endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.


Subject(s)
Antioxidants/pharmacology , Cardiovascular Diseases/physiopathology , Diabetes Complications/physiopathology , Diabetes Mellitus/physiopathology , Endothelium, Vascular/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Antioxidants/therapeutic use , Cardiovascular Diseases/blood , Cardiovascular Diseases/prevention & control , Diabetes Complications/blood , Diabetes Complications/prevention & control , Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Endoplasmic Reticulum Stress , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Humans , Inflammation/etiology , Nitric Oxide Synthase/blood , Oxidative Stress , Plant Extracts/therapeutic use , Polyphenols/therapeutic use , Vascular Endothelial Growth Factor A/blood
SELECTION OF CITATIONS
SEARCH DETAIL