Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Transl Med ; 22(1): 132, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310289

ABSTRACT

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Subject(s)
Cell-Free Nucleic Acids , Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Phosphatidylinositol 3-Kinases/genetics , Drug Evaluation, Preclinical , Proto-Oncogene Proteins p21(ras)/genetics , Early Detection of Cancer , Liquid Biopsy , Phosphoinositide-3 Kinase Inhibitors , Biomarkers , Class I Phosphatidylinositol 3-Kinases/genetics , Mutation/genetics
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279264

ABSTRACT

Hepatocellular carcinoma (HCC) presents a significant global health challenge due to limited early detection methods, primarily relying on conventional approaches like imaging and alpha-fetoprotein (AFP). Although non-coding RNAs (ncRNAs) show promise as potential biomarkers in HCC, their true utility remains uncertain. We conducted a comprehensive review of 76 articles, analyzing 88 circulating lncRNAs in 6426 HCC patients. However, the lack of a standardized workflow protocol has hampered holistic comparisons across the literature. Consequently, we herein confined our meta-analysis to only a subset of these lncRNAs. The combined analysis of serum highly upregulated in liver cancer (HULC) gene expression with homeobox transcript antisense intergenic RNA (HOTAIR) and urothelial carcinoma-associated 1 (UCA1) demonstrated markedly enhanced sensitivity and specificity in diagnostic capability compared to traditional biomarkers or other ncRNAs. These findings could have substantial implications for the early diagnosis and tailored treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Carcinoma, Transitional Cell , Liver Neoplasms , RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA, Long Noncoding/metabolism , Genes, Homeobox , RNA, Antisense , Carcinoma, Transitional Cell/genetics , Gene Expression Regulation, Neoplastic , Urinary Bladder Neoplasms/genetics , RNA, Untranslated , Biomarkers , Gene Expression Profiling , Biomarkers, Tumor/genetics
3.
J Reprod Immunol ; 161: 104172, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141514

ABSTRACT

The prevention of pre-eclampsia is difficult due to the syndromic nature and multiple underlying mechanisms of this severe complication of pregnancy. The current clinical distinction between early- and late-onset disease, although clinically useful, does not reflect the true nature and complexity of the pathologic processes leading to pre-eclampsia. The current gaps in knowledge on the heterogeneous molecular pathways of this syndrome and the lack of adequate, specific diagnostic methods are major obstacles to early screening and tailored preventive strategies. The development of novel diagnostic tools for detecting the activation of the identified disease pathways would enable early, accurate screening and personalized preventive therapies. We implemented a holistic approach that includes the utilization of different proteomic profiling methods of maternal plasma samples collected from various ethnic populations and the application of systems biology analysis to plasma proteomic, maternal demographic, clinical characteristic, and placental histopathologic data. This approach enabled the identification of four molecular subclasses of pre-eclampsia in which distinct and shared disease mechanisms are activated. The current review summarizes the results and conclusions from these studies and the research and clinical implications of our findings.


Subject(s)
Pre-Eclampsia , Pregnancy , Female , Humans , Pre-Eclampsia/diagnosis , Pre-Eclampsia/prevention & control , Placenta/metabolism , Proteomics , Goals , Pregnancy Trimester, First , Biomarkers/metabolism
4.
Curr Drug Targets ; 24(14): 1139-1149, 2023.
Article in English | MEDLINE | ID: mdl-37936447

ABSTRACT

INTRODUCTION: Amelogenesis imperfecta (AI) refers to a heterogeneous group of conditions with multiple factors which contribute to the hypomineralisation of enamel. Preventive measures are necessary to predict this pathology. Prospects for preventive medicine are closely related to the search for new informative methods for diagnosing a human disease. MicroRNAs are prominent for the non-invasive diagnostic platform. THE AIM OF THE STUDY: The aim of the review is to review the heterogeneous factors involved in amelogenesis and to select the microRNA panel associated with the AI type. METHODS: We used DIANA Tools (algorithms, databases and software) for interpreting and archiving data in a systematic framework ranging from the analysis of expression regulation from deep sequencing data to the annotation of miRNA regulatory elements and targets (https://dianalab. e-ce.uth.gr/). In our study, based on a gene panel associated with the AI types, twenty-four miRNAs were identified for the hypoplastic type (supplement), thirty-five for hypocalcified and forty-- nine for hypomaturation AI. The selection strategy included the microRNA search with multiple targets using the AI type's gene panel. RESULTS: Key proteins, calcium-dependent and genetic factors were analysed to reveal their role in amelogenesis. The role of extracellular non-coding RNA sequences with multiple regulatory functions seems to be the most attractive. We chose the list of microRNAs associated with the AI genes. We found four microRNAs (hsa-miR-27a-3p, hsa-miR-375, hsa-miR-16-5p and hsamiR- 146a-5p) for the gene panel, associated with the hypoplastic type of AI; five microRNAs (hsa- miR-29c-3p, hsa-miR-124-3p, hsa-miR-1343-3p, hsa-miR-335-5p, and hsa-miR-16-5p - for hypocalcified type of AI, and seven ones (hsa-miR-124-3p, hsa-miR-147a, hsa-miR-16-5p, hsamiR- 429, hsa-let-7b-5p, hsa-miR-146a-5p, hsa-miR-335-5p) - for hypomaturation. It was revealed that hsa-miR-16-5p is included in three panels specific for both hypoplastic, hypocalcified, and hypomaturation types. Hsa-miR-146a-5p is associated with hypoplastic and hypomaturation type of AI, which is associated with the peculiarities of the inflammatory response immune response. In turn, hsa-miR-335-5p associated with hypocalcified and hypomaturation type of AI. CONCLUSION: Liquid biopsy approaches are a promising way to reduce the economic cost of treatment for these patients in modern healthcare. Unique data exist about the role of microRNA in regulating amelogenesis. The list of microRNAs that are associated with AI genes and classified by AI types has been uncovered. The target gene analysis showed the variety of functions of selected microRNAs, which explains the multiple heterogeneous mechanisms in amelogenesis. Predisposition to mineralisation problems is a programmed event. Many factors determine the manifestation of this problem. Additionally, it is necessary to remember the variable nature of the changes, which reduces the prediction accuracy. Therefore, models based on liquid biopsy and microRNAs make it possible to take into account these factors and their influence on the mineralisation. The found data needs further investigation.


Subject(s)
Amelogenesis , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
5.
J Transl Med ; 21(1): 714, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821919

ABSTRACT

PURPOSE: Currently, there are no accurate markers for predicting potentially lethal prostate cancer (PC) before biopsy. This study aimed to develop urine tests to predict clinically significant PC (sPC) in men at risk. METHODS: Urine samples from 928 men, namely, 660 PC patients and 268 benign subjects, were analyzed by gas chromatography/quadrupole time-of-flight mass spectrophotometry (GC/Q-TOF MS) metabolomic profiling to construct four predictive models. Model I discriminated between PC and benign cases. Models II, III, and GS, respectively, predicted sPC in those classified as having favorable intermediate risk or higher, unfavorable intermediate risk or higher (according to the National Comprehensive Cancer Network risk groupings), and a Gleason sum (GS) of ≥ 7. Multivariable logistic regression was used to evaluate the area under the receiver operating characteristic curves (AUC). RESULTS: In Models I, II, III, and GS, the best AUCs (0.94, 0.85, 0.82, and 0.80, respectively; training cohort, N = 603) involved 26, 24, 26, and 22 metabolites, respectively. The addition of five clinical risk factors (serum prostate-specific antigen, patient age, previous negative biopsy, digital rectal examination, and family history) significantly improved the AUCs of the models (0.95, 0.92, 0.92, and 0.87, respectively). At 90% sensitivity, 48%, 47%, 50%, and 36% of unnecessary biopsies could be avoided. These models were successfully validated against an independent validation cohort (N = 325). Decision curve analysis showed a significant clinical net benefit with each combined model at low threshold probabilities. Models II and III were more robust and clinically relevant than Model GS. CONCLUSION: This urine test, which combines urine metabolic markers and clinical factors, may be used to predict sPC and thereby inform the necessity of biopsy in men with an elevated PC risk.


Subject(s)
Metabolome , Prostatic Neoplasms , Humans , Male , Biopsy , Neoplasm Grading , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/urine , Risk Factors , Early Detection of Cancer/methods , Urinalysis/methods , Urine/chemistry
6.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(8): 241-253, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37558430

ABSTRACT

We launched SCRUM-Japan platform for the cancer genome profiling (CGP) test screening followed by the enrollment to genomically-matched clinical trials in 2015. More than 30,000 tissue-based and 10,000 liquid-based CGP tests have already been performed for enrolling to a total of 127 industry-/investigator-initiated registration trials, which resulted in regulatory approvals of 12 new agents with 14 indications in Japan. Using the clinical-genomic database, a new driver gene was recently discovered with dramatic response by genomically-matched agent. Our comparative study with tissue-based CGPs revealed more usefulness of liquid biopsy in terms of less invasive manner, shorter turn-round time, and higher enrollment rate for matched treatments than tissue-based in gastrointestinal cancers. For detecting minimal/molecular residual disease (MRD) after surgery, post-surgical monitoring with tumor-informed liquid biopsy assay in association with two randomized control trials have also started in 2020 (CIRCULATE-Japan). The observational cohort study showed obvious efficacy of the MRD monitoring for predicting recurrence, leading to change clinical practice in patient selection who should receive adjuvant therapy in the near future.


Subject(s)
Neoplasms , Humans , Japan , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Patient Care , Genomics
7.
Future Oncol ; 19(17): 1165-1174, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37458152

ABSTRACT

For BRAF V600E-mutated metastatic colorectal cancer (mCRC), the BEACON phase 3 trial showed survival benefit of triplet therapy with cetuximab (anti-EGFR antibody), encorafenib (BRAF inhibitor) and binimetinib (MEK inhibitor) as well as doublet therapy with cetuximab and encorafenib over irinotecan-based chemotherapy plus anti-EGFR antibody. Both regimens are standards of care in Japan, but definite biomarkers for predicting efficacy and selecting treatment remain lacking. The mechanisms underlying resistance to these regimens also warrant urgent exploration to further evolve treatment. This prospective observational/translational study evaluated real-word clinical outcomes with cetuximab and encorafenib with or without binimetinib for BRAF-mutated mCRC patients and investigated biomarkers for response and resistance by collecting blood samples before and after treatment. Clinical Trial Registration: UMIN000045530 (https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000051983).


The BEETS trial is a study that looks at how well two combinations of targeted therapies (cetuximab + encorafenib with or without binimetinib) work and how safe they are for patients with advanced colorectal cancer that has a mutation (change) in the BRAF gene. In this trial, patients participate voluntarily instead of being assigned to one of the two therapy groups. When a patient has BRAF-mutated advanced colorectal cancer, it means that the cancer cells in their body have changes in a gene called BRAF. This gene normally produces a protein called BRAF, which is involved in the growth of cells. However, when there is a mutation in this gene, it can cause the production of an overactive BRAF protein, leading to fast and excessive cell growth and division. For patients with BRAF-mutated advanced colorectal cancer, combinations of targeted therapies have been found to be effective as a second- or third-line treatment, based on the results of a phase 3 clinical trial. The main goal of the BEETS trial is to evaluate how well these treatments work and how safe they are when used in real-world clinical practice. Additionally, the study will use laboratory tests (liquid biopsy) to explore new biomarkers that can help predict how well a treatment will work and assist in selecting the most suitable treatment plans. We hope that the findings of this study will contribute to improving the overall management of this specific type of cancer.


Subject(s)
Beta vulgaris , Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Proto-Oncogene Proteins B-raf/genetics , Cetuximab/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Colonic Neoplasms/drug therapy , Rectal Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Mutation , Observational Studies as Topic
8.
Arch Immunol Ther Exp (Warsz) ; 71(1): 5, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36729313

ABSTRACT

Extracellular vesicles (EVs) and particles (EPs) serve as unique carriers of complex molecular information with increasingly recognized roles in health and disease. Individual EVs/EPs collectively contribute to the molecular fingerprint of their producing cell, reflecting its identity, state, function and phenotype. This property is of particular interest in cancer where enormous heterogeneity of cancer cells is compounded by the presence of altered stromal, vascular and immune cell populations, which is further complicated by systemic responses elicited by the disease in individual patients. These diverse and interacting cellular compartments are dynamically represented by myriads of EVs/EPs released into the circulating biofluids (blood) during cancer progression and treatment. Current approaches of liquid biopsy seek to follow specific elements of the EV/EP cargo that may have diagnostic utility (as biomarkers), such as cancer cell-derived mutant oncoproteins or nucleic acids. However, with emerging technologies enabling high-throughput EV/EP analysis at a single particle level, a more holistic approach may be on the horizon. Indeed, each EV/EP carries multidimensional information (molecular "voxel") that could be integrated across thousands of particles into a larger and unbiased landscape (EV/EP "hologram") reflecting the true cellular complexity of the disease, along with cellular interactions, systemic responses and effects of treatment. Thus, the longitudinal molecular mapping of EV/EP populations may add a new dimension to crucial aspects of cancer biology, personalized diagnostics, and therapy.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Neoplasms/genetics , Biomarkers , Phenotype
9.
Cureus ; 15(12): e50176, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38192931

ABSTRACT

Liquid biopsy stands as an innovative instrument in the realm of precision medicine, enabling non-invasive disease diagnosis and the early detection of cancer. Liquid biopsy helps in the extraction of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and cell-free DNA (cfDNA) from blood samples and other body fluids, thereby facilitating disease diagnosis and prediction of high-risk patients. Various techniques such as advanced sequencing methods and biomarker-based cell capture have led to the isolation and study of the different biomarkers such as ctDNA, cfDNA, and CTCs. These biopsies also have immense potential in the early detection and diagnosis of various diseases across all medical specialties, prediction and screening of high-risk cases, and detection of different immune response patterns in response to infectious diseases, and also help in predicting treatment outcomes. Although liquid biopsy has the potential to disrupt the field of medical diagnosis, it is met by various challenges such as limited tumor-derived components, less specificity, and inadequate advancement in methods to isolate biomarkers. Despite all these challenges, liquid biopsies provide the potential to become a minimally invasive method of diagnosis that would facilitate real-time monitoring of patients, which differentiates them from traditional tissue biopsies. This article aims to provide a complete overview of the current technologies, different biomarkers, and body fluids that can be used in liquid biopsy and its clinical applications and the potential impact that liquid biopsy holds in the field of precision medicine, facilitating early diagnosis and prompt management of various diseases and cancers.

10.
JTO Clin Res Rep ; 3(9): 100386, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36089920

ABSTRACT

Introduction: Whereas tumor biopsy is the reference standard for genomic profiling of advanced NSCLC, there are now multiple assays approved by the Food and Drug Administration for liquid biopsy testing of circulating tumor DNA. Here, we study the incremental value that liquid biopsy comprehensive genomic profiling (CGP) adds to tissue molecular testing. Methods: Patients with metastatic NSCLC were enrolled in a prospective diagnostic study to receive circulating tumor DNA CGP; tissue CGP was optional in addition to their standard tissue testing. Focusing on nine genes listed per the National Comprehensive Cancer Network (NCCN) guidelines, liquid CGP was compared with available tissue testing results across three subcohorts: tissue CGP, standard-of-care testing of up to five biomarkers, or no tissue testing. Results: A total of 515 patients with advanced nonsquamous NSCLC received liquid CGP. Among 131 with tissue CGP results, NCCN biomarkers were detected in 86 (66%) with tissue CGP and 56 (43%) with liquid CGP (p < 0.001). Adding liquid CGP to tissue CGP detected no additional patients with NCCN biomarkers, whereas tissue CGP detected NCCN biomarkers in 30 patients (23%) missed by liquid CGP. Studying 264 patients receiving tissue testing of up to five genes, 102 (39%) had NCCN biomarkers detected in tissue, with an additional 48 (18%) detected using liquid CGP, including 18 with RET, MET, or ERBB2 drivers not studied in tissue. Conclusions: For the detection of patients with advanced nonsquamous NSCLC harboring 9 NCCN biomarkers, liquid CGP increases detection in patients with limited tissue results, but does not increase detection in patients with tissue CGP results available. In contrast, tissue CGP can add meaningfully to liquid CGP for detection of NCCN biomarkers and should be considered as a follow-up when an oncogenic driver is not identified by liquid biopsy.

11.
ACS Nano ; 16(11): 17948-17964, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36112671

ABSTRACT

Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 µL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.


Subject(s)
Brain Neoplasms , Humans , Brain Neoplasms/diagnostic imaging , Liquid Biopsy , Prognosis
12.
Cancers (Basel) ; 14(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010945

ABSTRACT

The prognostic relevance of circulating tumor cells (CTCs) in breast cancer is well established. However, little is known about the association of CTCs and site of first metastasis. In the SUCCESS A trial, 373 out of 3754 randomized high-risk breast cancer patients developed metastatic disease. CTC status was assessed by the FDA-approved CellSearch®-System (Menarini Silicon Biosystems, Bologna, Italy) in 206 of these patients before chemotherapy and additionally in 159 patients after chemotherapy. CTCs were detected in 70 (34.0%) of 206 patients before (median 2 CTCs, 1-827) and in 44 (27.7%) of 159 patients after chemotherapy (median 1 CTC, 1-124); 16 (10.1%) of 159 patients were CTC-positive at both timepoints. The site of first distant disease was bone-only, visceral-only, and other-site-only in 44 (21.4%), 60 (29.1%), and 74 (35.9%) patients, respectively, while 28 (13.6%) patients had multiple sites of first metastatic disease. Patients with CTCs at both timepoints more often showed bone-only first distant disease (37.5% vs. 21.0%) and first distant disease at multiple sites (31.3% vs. 12.6%) than patients without CTCs before and/or after chemotherapy (p = 0.027). In conclusion, the presence of CTCs before and after chemotherapy is associated with multiple-site or bone-only first-distant disease and may trigger intensified follow-up and perhaps further treatment.

13.
Diagnostics (Basel) ; 12(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35885515

ABSTRACT

Primary leptomeningeal melanoma (PLMM) is a very rare disease in childhood with a poor prognosis. NRASQ16K mutation frequently drives malignant transformation in this population, so its evaluation should be considered in childhood PLMM diagnosis. In the presented case, the mutation was detected by Sanger sequencing performed on DNA extracted from cerebrospinal fluid neoplastic cells. Liquid biopsy has been shown to be a safe and reliable technique for the diagnosis of PLMM. Its use can potentially be extended to other neoplasms of the central nervous system bearing well-defined molecular mutations, sparing the patient invasive surgery and finally allowing a more rapid diagnosis and early initiation of targeted therapies.

14.
Front Oncol ; 12: 870411, 2022.
Article in English | MEDLINE | ID: mdl-35646657

ABSTRACT

Objectives: The use of liquid biopsies (LB) in patients with solid malignancies enables comprehensive genomic profiling (CGP) of circulating tumor DNA (ctDNA) and has the potential to guide therapy stratification and support disease monitoring. To examine clinical uptake of LB in a real-world setting, LB implementation was analyzed at two German cancer centers (LMU Munich and Charité - Universitätsmedizin Berlin) between 2017 and 2021, with focus on colorectal cancer (CRC) patients. Methods: In this retrospective analysis, all patients who received a LB between January 2017 and December 2021 as part of routine clinical management were included. To provide adequate context, we collected disease characteristics and technical specifications of the LB methods applied. Additionally, we examined the concordance of RAS status in tumor tissue and LB. Finally, we discuss the potential of LB as a diagnostic tool to drive personalized treatment in CRC patients and how to implement LB in clinical routine. Results: In total, our cohort included 86 CRC patients and 161 LB conducted in these patients between 2017 and 2021. In 59 patients, comparison between tissue-based and liquid-based molecular diagnostics, revealed a divergence in 23 (39%) of the evaluable samples. Conclusion: Our real-world data analysis indicates that the possibilities of LB are not yet exploited in everyday clinical practice. Currently, the variety of methods and lack of standardization, as well as restricted reimbursement for liquid based CGP hinder the use of LB in clinical routine. To overcome these issues, prospective clinical trials are needed to provide evidence driving the implementation of LB into the management of CRC patients and to support their implementation into clinical guidelines.

15.
Front Oncol ; 12: 869108, 2022.
Article in English | MEDLINE | ID: mdl-35600369

ABSTRACT

Liquid biopsies are gaining more traction as non-invasive tools for the diagnosis and monitoring of cancer. In a new paradigm of cancer treatment, a synergistic botanical drug combination (APG-157) consisting of multiple molecules, is emerging as a new class of cancer therapeutics, targeting multiple pathways and providing a durable clinical response, wide therapeutic window and high level of safety. Monitoring the efficacy of such drugs involves assessing multiple molecules and cellular events simultaneously. We report, for the first time, a methodology that uses circulating plasma cell-free RNA (cfRNA) as a sensitive indicator of patient response upon drug treatment. Plasma was collected from six patients with head and neck cancer (HNC) and four healthy controls receiving three doses of 100 or 200 mg APG-157 or placebo through an oral mucosal route, before treatment and on multiple points post-dosing. Circulating cfRNA was extracted from plasma at 0-, 3- and 24-hours post-treatment, followed by RNA sequencing. We performed comparative analyses of the circulating transcriptome and were able to detect significant perturbation following APG-157 treatment. Transcripts associated with inflammatory response, leukocyte activation and cytokine were upregulated upon treatment with APG-157 in cancer patients, but not in healthy or placebo-treated patients. A platelet-related transcriptional signature could be detected in cancer patients but not in healthy individuals, indicating a platelet-centric pathway involved in the development of HNC. These results from a Phase 1 study are a proof of principle of the utility of cfRNAs as non-invasive circulating biomarkers for monitoring the efficacy of APG-157 in HNC.

16.
J Gastrointest Oncol ; 13(1): 438-449, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35284120

ABSTRACT

Objective: In this review, we summarize ongoing clinical trials involving liquid biopsies (LB) for colorectal cancer (CRC), outlining the current landscape and the future implementation of this technology. We also describe the current use of LB in CRC treatment at our institution, the Mayo Clinic Enterprise. Background: The use of LB in CRC treatment merits close attention. Their role is being evaluated in the screening, non-intervention, intervention, and surveillance settings through many active trials. This, coupled with the technique's rapid integration into clinical practice, creates constant evolution of care. Methods: Review of ClinicalTrials.gov was performed identifying relevant and active trials involving LB for CRC. "Colorectal cancer" plus other terms including "liquid biopsies" and "ctDNA" were used as search terms, identifying 35 active trials. Conclusions: LB use for the CRC is actively being investigated and requires close attention. Based on current evidence, Mayo Clinic Enterprise currently uses LB in the non-interventional, interventional and surveillance setting, but not for screening. Results of these trials may further establish the use of LB in the management of CRC.

17.
Expert Rev Mol Diagn ; 22(3): 361-378, 2022 03.
Article in English | MEDLINE | ID: mdl-35234564

ABSTRACT

INTRODUCTION: Sorafenib is currently the first-line therapeutic regimen for patients with advanced hepatocellular carcinoma (HCC). However, many patients did not experience any benefit and suffered extreme adverse events and heavy economic burden. Thus, the early identification of patients who are most likely to benefit from sorafenib is needed. AREAS COVERED: This review focused on the clinical application of circulating biomarkers (including conventional biomarkers, immune biomarkers, genetic biomarkers, and some novel biomarkers) in advanced HCC patients treated with sorafenib. An online search on PubMed, Web of Science, Embase, and Cochrane Library was conducted from the inception to 15 August 2021. Studies investigating the predictive or prognostic value of these biomarkers were included. EXPERT OPINION: The distinction of patients who may benefit from sorafenib treatment is of utmost importance. The predictive roles of circulating biomarkers could solve this problem. Many biomarkers can be obtained by liquid biopsy, which is a less or noninvasive approach. The short half-life of sorafenib could reflect the dynamic changes of tumor progression and monitor the treatment response. Circulating biomarkers obtained from liquid biopsy resulted as a promising assessment method in HCC, allowing for better treatment decisions in the near future. ABBREVIATIONS: Alpha-fetoprotein (AFP); American Association for the Study of Liver Diseases (AASLD); Angiopoietin (Ang); Barcelona Clinic Liver Cancer stage (BCLC); Circulating endothelial progenitor (CEP); Circulating free DNA (cfDNA); Complete response (CR); Des-γ-carboxy prothrombin (DCP); Endothelium-derived nitric oxide synthase (eNOS); Hepatocellular carcinoma (HCC); Hepatocyte growth factor (HGF); Hepatoma arterial-embolization prognosis score (HAP); High mobility group box 1 (HMgb1); Interferon-gamma (IFN-γ); Long non-coding RNA (lncRNAs); Micro RNAs (miRNAs); Monocyte-to-lymphocyte ratio (MLR); National Comprehensive Cancer Network (NCCN); Neutrophil-lymphocyte ratio (NLR); Newcastle-Ottawa Scale (NOS); Nitric oxide (NO); Overall survival (OS); Partial response (PR); Platelet-lymphocyte ratio (PLR); Prediction of survival in advanced sorafenib-treated HCC (PROSASH); Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA); Prognostic nutritional index (PNI); Progression-free survival (PFS); Progressive disease (PD); Randomized controlled trials (RCTs); Response Evaluation Criteria in Solid Tumors (RECIST); Single nucleotide polymorphisms (SNPs); Sorafenib advanced HCC prognosis score (SAP); Stable disease (SD); Time to progression (TTP); Transcatheter arterial chemoembolization (TACE); Vascular endothelial growth factor (VEGF).


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Antineoplastic Agents/therapeutic use , Biomarkers , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Niacinamide/therapeutic use , Phenylurea Compounds/therapeutic use , Sorafenib/therapeutic use
18.
Front Med (Lausanne) ; 8: 721554, 2021.
Article in English | MEDLINE | ID: mdl-34595190

ABSTRACT

Objective: To avoid over-treatment of low-risk prostate cancer patients, it is important to identify clinically significant and insignificant cancer for treatment decision-making. However, no accurate test is currently available. Methods: To address this unmet medical need, we developed a novel gene classifier to distinguish clinically significant and insignificant cancer, which were classified based on the National Comprehensive Cancer Network risk stratification guidelines. A non-invasive urine test was developed using quantitative mRNA expression data of 24 genes in the classifier with an algorithm to stratify the clinical significance of the cancer. Two independent, multicenter, retrospective and prospective studies were conducted to assess the diagnostic performance of the 24-Gene Classifier and the current clinicopathological measures by univariate and multivariate logistic regression and discriminant analysis. In addition, assessments were performed in various Gleason grades/ISUP Grade Groups. Results: The results showed high diagnostic accuracy of the 24-Gene Classifier with an AUC of 0.917 (95% CI 0.892-0.942) in the retrospective cohort (n = 520), AUC of 0.959 (95% CI 0.935-0.983) in the prospective cohort (n = 207), and AUC of 0.930 (95% 0.912-CI 0.947) in the combination cohort (n = 727). Univariate and multivariate analysis showed that the 24-Gene Classifier was more accurate than cancer stage, Gleason score, and PSA, especially in the low/intermediate-grade/ISUP Grade Group 1-3 cancer subgroups. Conclusions: The 24-Gene Classifier urine test is an accurate and non-invasive liquid biopsy method for identifying clinically significant prostate cancer in newly diagnosed cancer patients. It has the potential to improve prostate cancer treatment decisions and active surveillance.

19.
EPMA J ; 12(4): 403-433, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34539937

ABSTRACT

First two decades of the twenty-first century are characterised by epidemics of non-communicable diseases such as many hundreds of millions of patients diagnosed with cardiovascular diseases and the type 2 diabetes mellitus, breast, lung, liver and prostate malignancies, neurological, sleep, mood and eye disorders, amongst others. Consequent socio-economic burden is tremendous. Unprecedented decrease in age of maladaptive individuals has been reported. The absolute majority of expanding non-communicable disorders carry a chronic character, over a couple of years progressing from reversible suboptimal health conditions to irreversible severe pathologies and cascading collateral complications. The time-frame between onset of SHS and clinical manifestation of associated disorders is the operational area for an application of reliable risk assessment tools and predictive diagnostics followed by the cost-effective targeted prevention and treatments tailored to the person. This article demonstrates advanced strategies in bio/medical sciences and healthcare focused on suboptimal health conditions in the frame-work of Predictive, Preventive and Personalised Medicine (3PM/PPPM). Potential benefits in healthcare systems and for society at large include but are not restricted to an improved life-quality of major populations and socio-economical groups, advanced professionalism of healthcare-givers and sustainable healthcare economy. Amongst others, following medical areas are proposed to strongly benefit from PPPM strategies applied to the identification and treatment of suboptimal health conditions:Stress overload associated pathologiesMale and female healthPlanned pregnanciesPeriodontal healthEye disordersInflammatory disorders, wound healing and pain management with associated complicationsMetabolic disorders and suboptimal body weightCardiovascular pathologiesCancersStroke, particularly of unknown aetiology and in young individualsSleep medicineSports medicineImproved individual outcomes under pandemic conditions such as COVID-19.

20.
Semin Cancer Biol ; 77: 99-109, 2021 12.
Article in English | MEDLINE | ID: mdl-34418576

ABSTRACT

Resistance to platinum-based chemotherapy is a major clinical challenge in ovarian cancer, contributing to the high mortality-to-incidence ratio. Management of the platinum-resistant disease has been difficult due to diverse underlying molecular mechanisms. Over the past several years, research has revealed several novel molecular targets that are being explored as biomarkers for treatment planning and monitoring of response. The therapeutic landscape of ovarian cancer is also rapidly evolving, and alternative therapies are becoming available for the recurrent platinum-resistant disease. This review provides a snapshot of platinum resistance mechanisms and discusses liquid-based biomarkers and their potential utility in effective management of platinum-resistant ovarian cancer.


Subject(s)
Biomarkers, Tumor , Carcinoma, Ovarian Epithelial , Drug Resistance, Neoplasm , Liquid Biopsy , Animals , Antineoplastic Agents , Disease Management , Female , Humans , Platinum Compounds
SELECTION OF CITATIONS
SEARCH DETAIL