Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
J Comp Neurol ; 528(6): 953-971, 2020 04.
Article in English | MEDLINE | ID: mdl-31600836

ABSTRACT

Acupuncture increasingly is accepted as a potential therapy for many diseases in the Western world. However, the mechanism of acupuncture is not well understood mechanistically. We have established that manual acupuncture (MA) at the Neiguan (P6) acupoint inhibits excitatory cardiovascular reflex responses through modulation of the autonomic nervous system in the brainstem. It is unclear whether P6 MA activates neurons in the brain regions beyond the brainstem. Thus, we mapped P6 specific neural activation by MA in the forebrain using the Fos-CreER; Ai9 mice model, which allows for enhanced sensitivity and efficiency compared to conventional immunohistochemical staining. Compared to sham-MA control without manual stimulation, we find that MA at P6 markedly increases c-Fos positive neurons in a number of the forebrain regions (n = 5 in each group). These activated regions include accumbens nucleus, caudate putamen, claustrum, bed nucleus of the stria terminalis, amygdaloid nucleus, ventral posterior division of the thalamic nucleus, paraventricular hypothalamic nucleus, arcuate hypothalamic nucleus, primary and secondary somatosensory cortex, ectorhinal cortex, and dorsolateral entorhinal cortex. As MA at P6 activates neurons in relatively broad brain networks beyond the brainstem, our data suggest that acupuncture at this acupoint has the potential to influence physiological functions associated with autonomic and non-autonomic nervous systems through its effects on multiple brain regions.


Subject(s)
Acupuncture Therapy , Brain Mapping/methods , Prosencephalon/physiology , Acupuncture Points , Animals , Genes, Reporter , Genes, fos , Integrases , Mice , Mice, Inbred C57BL , Mice, Transgenic
2.
Inhal Toxicol ; 30(9-10): 397-403, 2018.
Article in English | MEDLINE | ID: mdl-30523721

ABSTRACT

INTRODUCTION: Concerns have been raised regarding occupational exposure to engineered nanomaterials (ENMs). Potential impacts on lung function from inhalation exposures are of concern as the lung is a sensitive ENM target in animals. Epidemiological data suggest that occupational exposure to ENMs may impact respiratory and cardiovascular health. Quantum dots (QDs) are ENMs with outstanding semiconductor and fluorescent properties with uses in biomedicine and electronics. QDs are known to induce inflammation and cytotoxicity in rodents and high dose exposures impact lung function 2 weeks after exposure. However, effects of mouse strain and the temporality of QD effects on lung function at more occupationally relevant doses have not been well-established. OBJECTIVE: We evaluated the impact of QD exposure on respiratory mechanics in C57BL/6J and A/J mice. Previous work found a greater initial inflammatory response to QD exposure in A/J mice compared to C57BL/6J mice. Thus, we hypothesized that A/J mice would be more sensitive to QD-induced effects on lung mechanics. METHODS: C57BL/6J and A/J mice were exposed to 6 µg/kg Cd equivalents of amphiphilic polymer-coated Cd/Se core, ZnS shell QDs via oropharyngeal aspiration. Lung mechanics were measured using forced oscillation, and inflammation was characterized by neutrophils and cytokines in bronchoalveolar lavage fluid. RESULTS: Both strains showed signs of QD-induced acute lung inflammation. However, lung mechanics were impacted by QD exposure in A/J mice only. CONCLUSIONS: Our findings suggest that susceptibility to QDs and similar ENM-induced changes in lung function may depend at least in part on genetic background.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Quantum Dots/toxicity , Respiratory Mechanics , Animals , Bronchoalveolar Lavage Fluid , Cadmium Compounds/toxicity , Cytokines , Inflammation , Lung/physiopathology , Mice , Mice, Inbred A , Mice, Inbred C57BL , Neutrophils , Selenium Compounds/toxicity , Time Factors
3.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29290465

ABSTRACT

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Subject(s)
Apoptosis , Glutathione Peroxidase/metabolism , Seizures/metabolism , Selenium/metabolism , Animals , Cell Survival , Cells, Cultured , Female , Glutathione Peroxidase/genetics , HEK293 Cells , Humans , Hydrogen Peroxide/toxicity , Interneurons/metabolism , Lipid Peroxidation , Male , Mice , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Seizures/etiology
4.
J Biol Chem ; 289(15): 10769-10784, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24515116

ABSTRACT

The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43(A315TKi) mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43(A315TKi) animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation , Mitochondria/pathology , Alleles , Amyotrophic Lateral Sclerosis/genetics , Animals , Behavior, Animal , Blood Glucose/metabolism , Body Weight , CD36 Antigens/metabolism , Cholesterol, HDL/metabolism , DNA, Complementary/metabolism , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Fatty Acids/metabolism , Female , Gene Knock-In Techniques , Genome , Genotype , Heterozygote , Humans , Male , Maze Learning , Mice , Mice, Transgenic , Motor Neurons/metabolism , Mutagenesis, Site-Directed , Mutation , Phenotype , Ubiquitin-Protein Ligases/metabolism
5.
J Biol Chem ; 288(23): 16704-16714, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23612969

ABSTRACT

Exposure to herbal remedies containing the carcinogen aristolochic acid (AA) has been widespread in some regions of the world. Rare A→T TP53 mutations were recently discovered in AA-associated urothelial cancers. The near absence of these mutations among all other sequenced human tumors suggests that they could be biologically silent. There are no cell banks with established lines derived from human tumors with which to explore the influence of the novel mutants on p53 function and cellular behavior. To investigate their impact, we generated isogenic mutant clones by integrase-mediated cassette exchange at the p53 locus of platform (null) murine embryonic fibroblasts and kidney epithelial cells. Common tumor mutants (R248W, R273C) were compared with the AA-associated mutants N131Y, R249W, and Q104L. Assays of cell proliferation, migration, growth in soft agar, apoptosis, senescence, and gene expression revealed contrasting outcomes on cellular behavior following introduction of N131Y or Q104L. The N131Y mutant demonstrated a phenotype akin to common tumor mutants, whereas Q104L clone behavior resembled that of cells with wild-type p53. Wild-type p53 responses were restored in double-mutant cells harboring N131Y and N239Y, a second-site rescue mutation, suggesting that pharmaceutical reactivation of p53 function in tumors expressing N131Y could have therapeutic benefit. N131Y is likely to contribute directly to tumor phenotype and is a promising candidate biomarker of AA exposure and disease. Rare mutations thus do not necessarily point to sites where amino acid exchanges are phenotypically neutral. Encounter with mutagenic insults targeting cryptic sites can reveal specific signature hotspots.


Subject(s)
Aristolochic Acids/adverse effects , Mutagens/adverse effects , Mutation, Missense , Plant Preparations/adverse effects , Tumor Suppressor Protein p53/genetics , Urethral Neoplasms/chemically induced , Urethral Neoplasms/genetics , Amino Acid Substitution , Animals , Aristolochic Acids/pharmacology , Biomarkers, Tumor , Cell Line, Transformed , Humans , Iatrogenic Disease , Mice , Mutagens/pharmacology , Plant Preparations/pharmacology , Tumor Suppressor Protein p53/metabolism , Urethral Neoplasms/metabolism , Urethral Neoplasms/pathology , Urothelium/metabolism , Urothelium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL