Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Front Aging ; 3: 931331, 2022.
Article in English | MEDLINE | ID: mdl-35903083

ABSTRACT

The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer's disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor ß (TGF-ß), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.

2.
Neurobiol Dis ; 165: 105636, 2022 04.
Article in English | MEDLINE | ID: mdl-35091041

ABSTRACT

Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the transcriptional regulator MECP2. Mecp2 loss-of-function leads to the disruption of many cellular pathways, including aberrant activation of the NF-κB pathway. Genetically attenuating the NF-κB pathway in Mecp2-null mice ameliorates hallmark phenotypes of RTT, including reduced dendritic complexity, raising the question of whether NF-κB pathway inhibitors could provide a therapeutic avenue for RTT. Vitamin D is a known inhibitor of NF-κB signaling; further, vitamin D deficiency is prevalent in RTT patients and male Mecp2-null mice. We previously demonstrated that vitamin D rescues the aberrant NF-κB activity and reduced neurite outgrowth of Mecp2-knockdown cortical neurons in vitro, and that dietary vitamin D supplementation rescues decreased dendritic complexity and soma size of neocortical projection neurons in both male hemizygous Mecp2-null and female heterozygous mice in vivo. Here, we have identified over 200 genes whose dysregulated expression in the Mecp2+/- cortex is modulated by dietary vitamin D. Genes normalized with vitamin D supplementation are involved in dendritic complexity, synapses, and neuronal projections, suggesting that the rescue of their expression could underpin the rescue of neuronal morphology. Further, there is a disruption in the homeostasis of the vitamin D synthesis pathway in Mecp2+/- mice, and motor and anxiety-like behavioral phenotypes in Mecp2+/- mice correlate with circulating vitamin D levels. Thus, our data indicate that vitamin D modulates RTT pathology and its supplementation could provide a simple and cost-effective partial therapeutic for RTT.


Subject(s)
Rett Syndrome , Animals , Disease Models, Animal , Female , Humans , Male , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Knockout , Phenotype , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Rett Syndrome/metabolism , Transcriptome , Vitamin D/pharmacology , Vitamin D/therapeutic use
3.
Phytother Res ; 35(2): 835-845, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32929778

ABSTRACT

Inflammatory bowel disease (IBD) is a lifelong and recurrent disease of the gastrointestinal tract that afflicts many people in the world. Growing evidence has currently indicated that dysfunction of immune system, particularly toll-like receptors 4 (TLR4) signaling pathway dysfunction plays a pivotal part in the pathogenesis of IBD. TLR4 signaling is involved both in the pathogenesis and in the efficacy of treatment of IBD. There are some medicinal products and herbal medicines, which their role in the treatment of IBD through modulation of TLR4 signaling has been implicated. The purpose of this review article is to summarize those medicinal products and herbal medicines.


Subject(s)
Inflammatory Bowel Diseases/drug therapy , NF-kappa B/drug effects , Toll-Like Receptor 4/drug effects , Animals , Humans , Toll-Like Receptor 4/metabolism
4.
Biochem Biophys Res Commun ; 532(3): 475-481, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32892947

ABSTRACT

Dimethyl fumarate (DMF) has emerged as a first-line treatment for the relapsing-remitting multiple sclerosis (RRMS) subtype. It is hypothesized that DMF has anti-inflammatory and antioxidant effects although mechanisms are not fully understood. This study used RNA-seq to profile gene expression responses to DMF in cultured astrocytes. Responses were compared with those of isosorbide di-(methyl fumarate) (IDMF), a newly designed fumarate that may partially replicate DMF activity with fewer adverse effects. Both compounds altered the expression of MS-associated genes, including those near MS susceptibility loci and genes dysregulated in MS patient astrocytes. The shared DMF/IDMF transcriptome response involved altered expression of antioxidant genes (e.g., HMOX1) and genes linked to extracellular matrix integrity (TIMP3, MMP9) and migration of pro-inflammatory cells into CNS (CCL2). IDMF-specific transcriptome responses included down-regulation of mitotic genes associated with a proliferative reactive astrocyte phenotype (ICAM1) and repression of genes encoding NF-kappaB subunits (NFKB2, RELA, RELB) and NF-kappaB targets (NCAPG, CXCL1, OAS3). Overall, these results identify astrocyte-centered mechanisms that may contribute to the established efficacy of DMF as an RRMS treatment. Furthermore, our findings support a rationale for further studies of IDMF as a novel fumarate, which may have unique suppressive effects on astrocyte reactivity and glial scar formation. [200 words].


Subject(s)
Astrocytes/drug effects , Dimethyl Fumarate/analogs & derivatives , Astrocytes/metabolism , Cells, Cultured , Dimethyl Fumarate/pharmacology , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Genetic Predisposition to Disease , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Mitosis/drug effects , Mitosis/genetics , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Phenotype , Protein Biosynthesis/drug effects , Transcriptome/drug effects
5.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4912-4917, 2019 Nov.
Article in Chinese | MEDLINE | ID: mdl-31872600

ABSTRACT

The aim of this paper was to observe the effect of triptolide( TP) on cardiovascular function and its possible mechanism by intraperitoneal injection of bacterial lipopolysaccharide in rats with endotoxemia. Sixty male Sprague-Dawley rats were randomly divided intonormal group( NC group),endotoxemia model group( LPS group),TP low concentration intervention group( LPS + TP-L group,25 µg·kg~(-1)),TP middle concentration intervention group( LPS+TP-M group,50 µg·kg~(-1)),TP high concentration intervention group( LPS+TP-H group,100 µg·kg~(-1)) and polymyxin B group( LPS+PMX-B group,0. 2 mg·kg~(-1)). 10 mg·kg~(-1) LPS was injected intraperitoneally for 6 h to replicate the endotoxemia rat model. The rats in TP intervention groups were pre-treated 15 min before intraperitoneal injection of LPS. Rats in each group underwent total arterial intubation to measure hemodynamic parameters: heart rate( HR),left ventricular diastolic pressure( LVDP),the maximum rate of the increase/decrease of left ventricular pressure( ±dp/dtmax). The levels of BNP,CK-MB and c Tn-Ⅰ in serum and levels of TNF-α and IL-6 in plasma were detected by ELISA. The contents of p65 protein in myocardium and contents of p65,TLR4,i NOS and e NOS protein in thoracic aorta were detected by Western blot. As compared with NC group,the hemodynamic indexes in LPS group were significantly decreased; the contents of BNP,CK-MB and c Tn-Ⅰ in serum,TNF-α and IL-6 in plasma,p65 in myocardium,i NOS,e NOS,TLR4 and p65 in vascular tissues were significantly increased. As compared with LPS group,the hemodynamic indexes were significantly improved in LPS+TP-M group,LPS+TP-H group and LPS+PMX-B group; the contents of BNP,CK-MB and c Tn-Ⅰ in serum,TNF-α and IL-6 in plasma,p65 in myocardium,i NOS,e NOS,TLR4 and p65 in vascular tissues were significantly decreased in each treatment group. Triptolide has a protective effect on cardiovascular damage in a dose-dependent manner in endotoxemia rats,probably through TLR4/NF-κB p65 signaling pathway to improve endothelial function.


Subject(s)
Diterpenes/pharmacology , Endotoxemia , Phenanthrenes/pharmacology , Protective Agents/pharmacology , Toll-Like Receptor 4/metabolism , Animals , Endothelium , Epoxy Compounds/pharmacology , Lipopolysaccharides , Male , NF-kappa B , Random Allocation , Rats , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha
6.
Front Immunol ; 10: 2347, 2019.
Article in English | MEDLINE | ID: mdl-31632411

ABSTRACT

Zinc is an essential micronutrient which regulates diverse physiological functions and has been shown to play a crucial role in viral infections. Zinc has a necessary role in the replication of many viruses, however, antiviral action of zinc has also been demonstrated in in vitro infection models most likely through induction of host antiviral responses. Therefore, depending on the host machinery that the virus employs at different stages of infection, zinc may either facilitate, or inhibit virus infection. In this study, we show that zinc plays divergent roles in rotavirus and dengue virus infections in epithelial cells. Dengue virus infection did not perturb the epithelial barrier functions despite the release of virus from the basolateral surface whereas rotavirus infection led to disruption of epithelial junctions. In rotavirus infection, zinc supplementation post-infection did not block barrier disruption suggesting that zinc does not affect rotavirus life-cycle or protects epithelial barriers post-infection suggesting the involvement of cellular pathways in the beneficial effect of zinc supplementation in enteric infections. Zinc depletion by N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibited dengue virus and Japanese encephalitis virus (JEV) infection but had no effect on rotavirus. Time-of-addition experiments suggested that zinc chelation affected both early and late stages of dengue virus infectious cycle and zinc chelation abrogated dengue virus RNA replication. We show that transient zinc chelation induces ER stress and antiviral response by activating NF-kappaB leading to induction of interferon signaling. These results suggest that modulation of zinc homeostasis during virus infection could be a component of host antiviral response and altering zinc homeostasis may act as a potent antiviral strategy against flaviviruses.


Subject(s)
Chelating Agents/pharmacology , Dengue Virus/drug effects , Dengue Virus/physiology , NF-kappa B/metabolism , Virus Replication/drug effects , Zinc/metabolism , Animals , Cell Line , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dengue/drug therapy , Dengue/genetics , Dengue/metabolism , Dengue/virology , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/virology , Epithelium/drug effects , Epithelium/metabolism , Epithelium/virology , Homeostasis , Humans , Signal Transduction
7.
EXCLI J ; 18: 165-186, 2019.
Article in English | MEDLINE | ID: mdl-31217780

ABSTRACT

The traditional uses of Portulaca oleracea L. (PO) with anti-inflammatory and anti-cancer activity as well as antioxidants properties were expressed previously. Glioma is considered the most common primary brain tumor and its malignant form is the most lethal adult brain tumor, that glioblastoma covers about 50 % of glioma tumors. The present study was aimed to evaluate the cytotoxicity and apoptogenic effects of the hydro-ethanolic extract of PO on human glioblastoma cancer cell line (U-87) and the role of NF-κB. Cytotoxicity of the extract in the presence or absence of Vitamin C was evaluated using MTT assay, and the following hypotonic PI and SubG1 peak were performed. Moreover, the reactive oxygen species (ROS), the level of NF-κB protein and nitric oxide (NO) production were investigated. The extract had cytotoxicity and apoptogenic effects on U-87 cells in both the concentration and time-dependent manners. The mechanism of cytotoxicity and apoptosis induction of the extract at the first hours of incubation and low concentrations were dependent on ROS. However, the toxicity was replaced with NO pathway with time-lapse and higher concentrations. Results also indicated that the extract acts as an NF-κB inhibitor with concentration and time-dependent manners. The present study may suggest the anti-NF-κB activity of PO along with two upstream ROS and NO mechanisms. Furthermore, the extract as ethnobotanical may be used as adjunctive anti-cancer therapy against glioblastoma multiforme.

8.
JCI Insight ; 3(19)2018 10 04.
Article in English | MEDLINE | ID: mdl-30282819

ABSTRACT

The acute respiratory distress syndrome (ARDS) causes an estimated 70,000 US deaths annually. Multiple pharmacologic interventions for ARDS have been tested and failed. An unmet need is a suitable laboratory human model to predictively assess emerging therapeutics on organ function in ARDS. We previously demonstrated that the small molecule BC1215 blocks actions of a proinflammatory E3 ligase-associated protein, FBXO3, to suppress NF-κB signaling in animal models of lung injury. Ex vivo lung perfusion (EVLP) is a clinical technique that maintains lung function for possible transplant after organ donation. We used human lungs unacceptable for transplant to model endotoxemic injury with EVLP for 6 hours. LPS infusion induced inflammatory injury with impaired oxygenation of pulmonary venous circulation. BC1215 treatment after LPS rescued oxygenation and decreased inflammatory cytokines in bronchoalveolar lavage. RNA sequencing transcriptomics from biopsies taken during EVLP revealed robust inflammatory gene induction by LPS with a strong signal for NF-κB-associated transcripts. BC1215 treatment reduced the LPS induction of genes associated with inflammatory and host defense gene responses by Gene Ontology (GOterm) and pathways analysis. BC1215 also significantly antagonized LPS-mediated NF-κB activity. EVLP may provide a unique human platform for preclinical study of chemical entities such as FBXO3 inhibitors on tissue physiology.


Subject(s)
Benzylamines/pharmacology , F-Box Proteins/antagonists & inhibitors , Lung/drug effects , Perfusion/methods , Pyridines/pharmacology , Respiratory Distress Syndrome/drug therapy , Adolescent , Adult , Benzylamines/therapeutic use , Drug Evaluation, Preclinical/methods , F-Box Proteins/metabolism , Female , Humans , Lipopolysaccharides/toxicity , Lung/pathology , Male , Middle Aged , Pyridines/therapeutic use , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/pathology , Signal Transduction/drug effects
9.
JCI Insight ; 3(19)2018 10 04.
Article in English | MEDLINE | ID: mdl-30282829

ABSTRACT

The presence of a reservoir of latently infected cells in HIV-infected patients is a major barrier towards finding a cure. One active cure strategy is to find latency-reversing agents that induce viral reactivation, thus leading to immune cell recognition and elimination of latently infected cells, known as the shock-and-kill strategy. Therefore, the identification of molecules that reactivate latent HIV and increase immune activation has the potential to further these strategies into the clinic. Here, we characterized synthetic molecules composed of a TLR2 and a TLR7 agonist (dual TLR2/7 agonists) as latency-reversing agents and compared their activity with that of the TLR2 agonist Pam2CSK4 and the TLR7 agonist GS-9620. We found that these dual TLR2/7 agonists reactivate latency by 2 complementary mechanisms. The TLR2 component reactivates HIV by inducing NF-κB activation in memory CD4+ T cells, while the TLR7 component induces the secretion of TNF-α by monocytes and plasmacytoid dendritic cells, promoting viral reactivation in CD4+ T cells. Furthermore, the TLR2 component induces the secretion of IL-22, which promotes an antiviral state and blocks HIV infection in CD4+ T cells. Our study provides insight into the use of these agonists as a multipronged approach targeting eradication of latent HIV.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV-1/physiology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 7/agonists , Virus Activation/drug effects , Adolescent , Adult , Aged , Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Drug Evaluation, Preclinical , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , Humans , Interleukins/immunology , Interleukins/metabolism , Jurkat Cells , Lipopeptides/pharmacology , Lipopeptides/therapeutic use , Male , Middle Aged , Primary Cell Culture , Pteridines/pharmacology , Pteridines/therapeutic use , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Virus Activation/immunology , Virus Latency/drug effects , Virus Latency/immunology , Young Adult , Interleukin-22
10.
Int Immunopharmacol ; 50: 152-160, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28666238

ABSTRACT

Paeoniflorin is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of paeoniflorin. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of paeoniflorin isolated from the dried peeled root of Paeonia lactiflora Pall. It was further intended to find out the probable mechanism of anti-inflammatory effect of paeoniflorin. The anti-inflammatory effect of paeoniflorin (15, 30 and 45mg/kg) was measured employing TNBS-induced ulcerative colitis model of acute inflammation. The TNBS injection resulted significant colitis formation when compared with un-injected mice. The anti-inflammatory effects of paeoniflorin for ulcerative colitis were assessed by body weight, colonic weight and length, macroscopic scores, and histopathological examinations. In addition, the colonic tissue levels of inflammation markers, including myeloperoxidase (MPO), IL-2, IL-6, IL-10, IL-12, IL-1ß, TNF-α and IFN-γ were also determined to assess the effect of paeoniflorin. In addition, western blot demonstrated that paeoniflorin inhibited NF-kappaB signaling pathway and apoptosis in TNBS-induced ulcerative colitis tissues. In conclusion, all the findings of this study suggested that paeoniflorin has the anti-inflammatory effect in ulcerative colitis via inhibiting MAPK/NF-kappaB pathway and apoptosis in mice.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Colon/immunology , Glucosides/therapeutic use , Inflammation/drug therapy , Monoterpenes/therapeutic use , Animals , Apoptosis , Colitis, Ulcerative/chemically induced , Colon/drug effects , Colon/pathology , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation/chemically induced , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Paeonia/immunology , Signal Transduction , Trinitrobenzenesulfonic Acid/toxicity
11.
Phytomedicine ; 24: 96-103, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-28160867

ABSTRACT

BACKGROUND: Fargesin is a lignan from Magnolia fargesii, an oriental medicine used in the treatment of nasal congestion and sinusitis. The anti-inflammatory properties of this compound have not been fully elucidated yet. PURPOSE: This study focused on assessing the anti-inflammatory effects of fargesin on phorbal ester (PMA)-stimulated THP-1 human monocytes, and the molecular mechanisms underlying them. METHODS: Cell viability was evaluated by MTS assay. Protein expression levels of inflammatory mediators were analyzed by Western blotting, ELISA, Immunofluorescence assay. mRNA levels were measured by Real-time PCR. Promoter activities were elucidated by Luciferase assay. RESULTS: It was found that pre-treatment with fargesin attenuated significantly the expression of two major inflammatory mediators, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Fargesin also inhibited the production of pro-inflammation cytokines (IL-1ß, TNF-α) and chemokine (CCL-5). Besides, nuclear translocation of transcription factors nuclear factor-kappa B (NF-ĸB) and activator protein-1 (AP-1), which regulate multiple pro-inflammatory genes, was suppressed by fargesin in a PKC-dependent manner. Furthermore, among the mitogen-activated protein kinases (MAPKs), only c-Jun N-terminal kinase (JNK) was downregulated by fargesin in a PKC-dependent manner, and this reduction was involved in PMA-induced AP-1 and NF-ĸB nuclear translocation attenuation, demonstrated using a specific JNK inhibitor. CONCLUSION: Taken together, our results found that fargesin exhibits anti-inflammation effects on THP-1 cells via suppression of PKC pathway including downstream JNK, nuclear factors AP-1 and NF-ĸB. These results suggest that fargesin has anti-inflammatory properties with potential applications in drug development against inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Lignans/therapeutic use , Magnolia/chemistry , Monocytes/drug effects , Plant Extracts/therapeutic use , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Humans , Inflammation/metabolism , Mice , Phytotherapy
12.
Int Immunopharmacol ; 36: 86-93, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27107801

ABSTRACT

Periodontitis is a severe inflammatory response, leading to characteristic periodontal soft tissue destruction and alveolar bone resorption. Baicalin possesses potent anti-inflammatory activity; however, it is still unclear whether baicalin regulates toll-like receptor (TLR) 2/4 expression and downstream signaling during the process of periodontitis. In this study, the cervical area of the maxillary second molars of rats was ligated and inoculated with Porphyromonas gingivalis (P. gingivalis) for 4weeks to induce periodontitis. Some rats with periodontitis were treated intragastrically with baicalin (50, 100 or 200mg/kg/day) or vehicle for 4weeks. Compared with the sham group, the levels of TLR2, TLR4 and MyD88 expression and the p38 MAPK and NF-κB activation were up-regulated in the experimental periodontitis group (EPG), accompanied by marked alveolar bone loss and severe inflammation. Treatment with 100 or 200mg/kg/day baicalin dramatically reduced the alveolar bone loss, the levels of HMGB1, TNF-α, IL-1ß, and MPO expression, and the numbers of inflammatory infiltrates in the gingival tissues. Importantly, treatment with 100 or 200mg/kg/day baicalin mitigated the periodontitis-up-regulated TLR2, TLR4 and MyD88 expression, and the p38 MAPK and NF-κB activation. Hence, the blockage of the TLR2 and TLR4/MyD88/p38 MAPK/NF-κB signaling by baicalin may contribute to its anti-inflammatory effects in rat model of periodontitis. In conclusion, these novel findings indicate that baicalin inhibits the TLR2 and TLR4 expression and the downstream signaling and mitigates inflammatory responses and the alveolar bone loss in rat experimental periodontitis. Therefore, baicalin may be a potential therapeutic agent for treatment of periodontitis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Bacteroidaceae Infections/drug therapy , Flavonoids/therapeutic use , Myeloid Differentiation Factor 88/metabolism , Periodontitis/drug therapy , Porphyromonas gingivalis/physiology , Scutellaria baicalensis/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Bacteroidaceae Infections/immunology , Gene Expression Regulation/drug effects , Humans , Male , Models, Animal , Myeloid Differentiation Factor 88/genetics , Periodontitis/immunology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
13.
Clin Rheumatol ; 35(11): 2783-2788, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27053095

ABSTRACT

Secondary osteoporosis is a frequent complication of rheumatoid arthritis (RA) and the result of an imbalance of catabolic and anabolic mechanisms of bone metabolism. The effects of serial low-dose radon and hyperthermia (LDRnHT) exposure in a therapeutic adit (12 applications in 3 weeks) on the serum levels of the cytokines osteoprotegerin (OPG), receptor activator of NF kappa-B ligand (RANKL), tumor necrosis factor-α (TNF-α), and also on the RANKL/OPG ratio were investigated in 25 RA patients and an age-matched control of 24 patients with osteoarthritis (OA). Cytokine measurements were performed at baseline and after completion of LDRnHT. Anti-CCP antibodies (ACPA) were measured in RA patients in parallel. Medication in both groups was limited to non-steroidal anti-inflammatory drugs, and low-dose prednisolone (16 of 24 RA patients) as needed. RA and OA patients showed a significant decrease of TNF-α levels (p < 0.001). Both groups showed significantly decreased levels of RANKL (RA: p < 0.001, OA: p < 0.01). Only the RA patients presented a significant increase of OPG (p < 0.01) and decrease of the RANKL/OPG ratio (p < 0.01), and the ACPA levels (p < 0.001). LDRnHT results in a reduction of osteocatabolic and an increase of osteoanabolic cytokines, which represents the molecular basis for inhibiting osteoclastic activity in secondary osteoporosis and explains in part the effect of LDRnHT this physical therapy modality in a key inflammatory disease. Although reduced ACPA levels were observed under the therapy and although this could potentially contribute to an osteoprotective effect, in this case, it is rather uncertain as the reduction was only minor in magnitude.


Subject(s)
Arthritis, Rheumatoid/therapy , Hyperthermia, Induced , Osteoarthritis/therapy , Osteoprotegerin/blood , RANK Ligand/blood , Radon/therapeutic use , Tumor Necrosis Factor-alpha/blood , Aged , Arthritis, Rheumatoid/blood , Female , Humans , Male , Middle Aged , Osteoarthritis/blood , Treatment Outcome
14.
Neoplasma ; 63(3): 462-70, 2016.
Article in English | MEDLINE | ID: mdl-26952512

ABSTRACT

Nuclear factor-kappaB (NF-κB), especially p65 subunit, has been associated with origin and progression of cancer as well as with the resistance to radiotherapy and chemotherapy in experimental models. The aim of the present study was to determine expression of NF-κB/p65 in tumor specimens before and after treatment of rectal cancer patients and to evaluate possible relationship between expression of NF-κB/p65 before and after (chemo)radiotherapy, other tumor characteristics and the clinical outcome. Furthermore, NF-κB/p65 was studied in relationship to pathologic response to preoperative (chemo)radiotherapy. Fifty patients with rectal cancer undergoing neoadjuvant (chemo)radiotherapy and surgery were included in the study. Pre-treatment rectal cancer specimens were obtained from diagnostic colonoscopy. Post-treatment rectal cancer specimens were obtained from surgically removed part of the rectum with the tumor. NF-κB/p65 expression was determined by immunohistochemistry and analysis was performed both in biopsies and in post-treatment tumor samples. Cytoplasmic positivity in tumor cells and nuclear positivity in lymphocytes were detected. High NF-κB/p65 positivity in pre-treatment tumor samples was significantly associated with shortened overall survival (OS). Disease-free survival (DFS) tends to be shortened as well. In post-treatment tumor samples, high NF-κB/p65 positivity was neither associated with shortened OS nor with shortened DFS. In post-treatment samples residual tumor cells deeply infiltrating the wall of the rectum with high NF-κB/p65 expression were found. The cells were linked to significantly worse clinical outcome in terms of shortened OS and DFS. NF-κB/p65 positivity did not correlate with pathologic response to preoperative (chemo)radiotherapy. In conclusion, our data suggest that high level of NF-κB/p65 subunit may be associated with more aggressive features of the tumor, higher metastatic potential, and shortened overall survival, but it does not correlate with resistance to (chemo)radiotherapy. Consequently, the level of NF-κB/p65 may help to select those patients who have poor prognosis and are candidates for more intensive anticancer therapy. For these purposes both pre-treatment and post-treatment tumor samples may be used.


Subject(s)
NF-kappa B/biosynthesis , Rectal Neoplasms/metabolism , Rectal Neoplasms/therapy , Transcription Factor RelA/biosynthesis , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/biosynthesis , Chemoradiotherapy, Adjuvant , Disease Progression , Female , Fluorouracil/administration & dosage , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Middle Aged , Neoadjuvant Therapy , Rectal Neoplasms/pathology , Survival Rate
15.
Article in English | WPRIM | ID: wpr-727995

ABSTRACT

Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activatingTLR4-NF-kappaB signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-kappaB pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPSinduced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.


Subject(s)
Adult , Animals , Humans , Mice , Apoptosis , Brain , Bromodeoxyuridine , Dentate Gyrus , Hippocampus , Inflammation , Lipopolysaccharides , Microglia , Neural Stem Cells , Neurodegenerative Diseases , Neurogenesis , Neurons , Tea , Toll-Like Receptors
16.
Article in English | WPRIM | ID: wpr-728522

ABSTRACT

The present study showed that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibited lipopolysaccharide (LPS)-induced morphological changes in the mouse RAW264.7 macrophage cell line. We also showed that silymarin inhibited the nuclear translocation and transactivation activities of nuclear factor-kappa B (NF-kappaB), which is important for macrophage activation-associated changes in cell morphology and gene expression of inflammatory cytokines. BAY-11-7085, an NF-kappaB inhibitor, abrogated LPS-induced morphological changes and NO production, similar to silymarin. Treatment of RAW264.7 cells with silymarin also inhibited LPS-stimulated activation of mitogen-activated protein kinases (MAPKs). Collectively, these experiments demonstrated that silymarin inhibited LPS-induced morphological changes in the RAW264.7 mouse macrophage cell line. Our findings indicated that the most likely mechanism underlying this biological effect involved inhibition of the MAPK pathway and NF-kappaB activity. Inhibition of these activities by silymarin is a potentially useful strategy for the treatment of inflammation because of the critical roles played by MAPK and NF-kappaB in mediating inflammatory responses in macrophages.


Subject(s)
Animals , Mice , Cell Line , Cytokines , Gene Expression , Inflammation , Macrophages , Silybum marianum , Mitogen-Activated Protein Kinases , Negotiating , NF-kappa B , Silymarin , Transcriptional Activation
17.
Integr Cancer Ther ; 13(5): 386-95, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24867960

ABSTRACT

The large majority of clinical prostate cancers remain dependent on androgen receptor (AR) activity for proliferation even as they lose their responsiveness to androgen deprivation or antagonism. AR activity can be maintained in these circumstances by increased AR synthesis--often reflecting increased NF-κB activation; upregulation of signaling pathways that promote AR activity in the absence of androgens; and by emergence of AR mutations or splice variants lacking the ligand-binding domain, which render the AR constitutively active. Drugs targeting the N-terminal transactivating domain of the AR, some of which are now in preclinical development, can be expected to inhibit the activity not only of unmutated ARs but also of the mutant forms and splice variants selected for by androgen deprivation. Concurrent measures that suppress AR synthesis or boost AR turnover could be expected to complement the efficacy of such drugs. A number of nutraceuticals that show efficacy in prostate cancer xenograft models--including polyphenols from pomegranate, grape seed, and green tea, the crucifera metabolite diindolylmethane, and the hormone melatonin--have the potential to suppress AR synthesis via downregulation of NF-κB activity; clinical doses of salicylate may have analogous efficacy. The proteasomal turnover of the AR is abetted by diets with a high ratio of long-chain omega-3 to omega-6 fatty acids, which are beneficial in prostate cancer xenograft models; berberine and sulforaphane, by inhibiting AR's interaction with its chaperone Hsp90, likewise promote AR proteasomal degradation and retard growth of human prostate cancer in nude mice. Hinge region acetylation of the AR is required for optimal transactivational activity, and low micromolar concentrations of the catechin epigallocatechin-3-gallate (EGCG) can inhibit such acetylation--possibly explaining the ability of EGCG administration to suppress androgenic activity and cell proliferation in prostate cancer xenografts. Hence, it is proposed that regimens featuring an N-terminal domain-targeting drug, various nutraceuticals/drugs that downregulate NF-κB activity, and/or supplemental intakes of fish oil, berberine, sulforaphane, and EGCG have potential for blocking proliferation of prostate cancer by targeting its characteristic addiction to androgen receptor activity.


Subject(s)
Antineoplastic Agents/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/drug effects , Androgen Receptor Antagonists/pharmacology , Animals , Cell Proliferation , Dietary Supplements , Down-Regulation/drug effects , Humans , Male , Mice , NF-kappa B/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
18.
Article in English | WPRIM | ID: wpr-51353

ABSTRACT

BACKGROUND/OBJECTIVES: Rubus Coreanus Miquel (RCM), used as a traditional Korean medicine, reduces chronic inflammatory diseases such as cancer and rheumatoid arthritis. However, its mechanism has not been elucidated. In this study, we examine the anti-inflammatory effects of RCM and their possible mechanisms using RAW 264.7 cells. MATERIALS/METHODS: Unripe RCM ethanol extract (UE), unripe RCM water extract (UH), ripe RCM ethanol extract (RE), and ripe RCM water extract (RH) were prepared. Inflammatory response was induced with LPS treatment, and expression of pro-inflammatory mediators (iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6) and NO and PGE2 productions were assessed. To determine the anti-inflammatory mechanism of RCM, we measured NF-kappaB and MAPK activities. RESULTS: UE and UH treatment significantly reduced NF-kappaB activation and JNK and p38 phosphorylation and reduced transcriptional activities decreased iNOS, COX-2, and pro-inflammatory cytokines expressions, and NO and PGE2 productions. RE and RH treatments reduced IL-1beta and IL-6 expressions through suppressions of JNK and p38 phosphorylation. CONCLUSIONS: In this study, we showed that RCM had anti-inflammatory effects by suppression of pro-inflammatory mediator expressions. Especially, unripe RCM showed strong anti-inflammatory effects through suppression of NF-kappaB and MAPK activation. These findings suggest that unripe RCM might be used as a potential functional material to reduce chronic inflammatory responses.


Subject(s)
Arthritis, Rheumatoid , Cytokines , Dinoprostone , Ethanol , Inflammation , Interleukin-6 , NF-kappa B , Phosphorylation , Phosphotransferases , Tumor Necrosis Factor-alpha , Water
19.
Article in Korean | WPRIM | ID: wpr-116980

ABSTRACT

Glucosamine is commonly taken by the elderly without prescription as a nutritional supplement to attenuate the progression or symptoms of osteoarthritis. Previous studies demonstrated that glucosamine shows anti-inflammatory effects in tissues such as blood vessels and the heart. However, there have been few reports about the effects of glucosamine on oral inflammatory diseases. Therefore, in this study, the effects of glucosamine on lipopolysaccharide (LPS)-induced inflammatory responses were investigated using human periodontal ligament fibroblasts (HPDLFs). HPDLFs were incubated in the presence and absence of glucosamine (10 mM) for 24 h, followed by treatment with E. coli LPS (100 ng/ml) or vehicle. Quantitative RT-PCR and ELISA results showed that LPS exposure significantly increased the levels of IL-6 and IL-8 mRNA and protein, while the effect was significantly suppressed by glucosamine treatment. Glucosamine did not attenuate, but slightly increased, the LPS-induced activation of mitogen activated kinases (ERK, p38, JNK). However, it suppressed the LPS-induced increase in the DNA binding affinity and transcriptional activity of NF-kappaB. These results suggest that glucosamine exerts anti-inflammatory effects on HPDLFs exposed to LPS via inhibition of NF-kappaB activity, necessitating further studies using animal periodontitis models.


Subject(s)
Aged , Animals , Humans , Blood Vessels , DNA , Enzyme-Linked Immunosorbent Assay , Fibroblasts , Glucosamine , Heart , Inflammation , Interleukin-6 , Interleukin-8 , NF-kappa B , Osteoarthritis , Periodontal Ligament , Periodontitis , Phosphotransferases , Prescriptions , RNA, Messenger
20.
Immune Network ; : 107-115, 2014.
Article in English | WPRIM | ID: wpr-121971

ABSTRACT

Phellinus linteus has been used as a traditional herbal medicine in Asian countries and is known to have anti-tumor, immunomodulatory, anti-inflammatory, and anti-allergic activities. However, the protective effects of P. linteus against experimental asthma have not been fully investigated. The objective of this study was to determine whether P. linteus ethanol extract (PLE) suppresses inflammatory response in an OVA-induced asthma model. As expected, the oral administration of PLE significantly inhibited eosinophilic airway inflammation and airway hyperresponsiveness in OVA-challenged BALB/c mice. Supporting these data, the augmentation of Th2 cytokines (IL-4, IL-5, and IL-13), eotaxin, and adhesion molecules in lung tissues and bronchoalveolar lavage fluid after OVA inhalation was markedly attenuated by PLE. Furthermore, PLE reduced OVA-induced activation of NF-kappaB and p38 MAPK in lung tissues. Therefore, our results suggest the potential of P. linteus as a therapeutic agent for asthma.


Subject(s)
Animals , Humans , Mice , Administration, Oral , Asian People , Asthma , Bronchoalveolar Lavage Fluid , Cytokines , Eosinophils , Ethanol , Herbal Medicine , Inflammation , Inhalation , Interleukin-5 , Lung , NF-kappa B , Ovum , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL