Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Toxicon ; 216: 115-124, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35835234

ABSTRACT

Encephalopathy associated with hemolytic uremic syndrome is produced by enterohemorrhagic E. coli (EHEC) infection, which releases the virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS). Neurological compromise is a poor prognosis and mortality factor of the disease, and the thalamus is one of the brain areas most frequently affected. We have previously demonstrated the effectiveness of anti-inflammatory drugs to ameliorate the deleterious effects of these toxins. However, the thalamic production of cytokines involved in pro-inflammatory processes has not yet been acknowledged. The aim of this work attempts to determine whether systemic sublethal Stx2a or co-administration of Stx2a with LPS are able to rise a proinflammatory profile accompanying alterations of the neurovascular unit in anterior and lateral ventral nuclei of the thalamus (VA-VL) and motor behavior in mice. After 4 days of treatment, Stx2a affected the lectin-bound microvasculature distribution while increasing the expression of GFAP in reactive astrocytes and producing aberrant NeuN distribution in degenerative neurons. In addition, increased swimming latency was observed in a motor behavioral test. All these alterations were heightened when Stx2a was co-administered with LPS. The expression of pro-inflammatory cytokines TNFα, INF-γ and IL-2 was detected in VA-VL. All these effects were concomitant with increased expression of the Stx receptor globotriaosylceramide (Gb3), which hints at receptor involvement in the neuroinflammatory process as a key finding of this study. In conclusion, Stx2a to Gb3 may be determinant in triggering a neuroinflammatory event, which may resemble clinical outcomes and should thus be considered in the development of preventive strategies.


Subject(s)
Escherichia coli Infections , Shiga Toxin 2 , Animals , Cytokines/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/toxicity , Mice , Shiga Toxin/metabolism , Shiga Toxin 2/toxicity , Thalamus/metabolism , Trihexosylceramides
2.
Ecol Appl ; 32(2): e2523, 2022 03.
Article in English | MEDLINE | ID: mdl-34921463

ABSTRACT

Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace-of-life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops. Campylobacter spp. were the most prevalent enteric pathogen (8.0%), while Salmonella and Shiga-toxin producing Escherichia coli (STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically, Campylobacter and STEC-associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively. Campylobacter was also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy-foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest-eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win-win-win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait-based framework suggests a path forward for co-managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under-studied species.


Subject(s)
Animals, Wild , Shiga-Toxigenic Escherichia coli , Animals , Birds , Cattle , Farms , Salmonella , United States
3.
Braz J Microbiol ; 51(3): 1021-1027, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32449119

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) pathotype secretes two types of AB5 cytotoxins (Stx1 and Stx2), responsible for complications such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in infected patients, which could lead to sequels and death. Currently, there is no effective treatment against the cytotoxic effect of these toxins. However, in order to approve any therapy molecule, an animal experiment is required in order to evaluate the efficacy and safety of therapeutic approaches. The use of alternative small host models is growing among human infectious disease studies, particularly the vertebrate zebrafish model, since relevant results have been described for pathogen-host interaction. In this sense, the present work aimed to analyze the toxic effect of Shiga toxins in zebrafish embryo model in order to standardize this method in the future to be used as a fast, simple, and efficient methodology for the screening of therapeutic molecules. Herein, we demonstrated that the embryos were sensitive in a dose-dependent manner to both Stx toxins, with LD50 of 22 µg/mL for Stx1 and 33 µg/mL for Stx2, and the use of anti-Stx polyclonal antibody abolished the toxic effect. Therefore, this methodology can be a rapid alternative method for selecting promising compounds against Stx toxins, such as recombinant antibodies.


Subject(s)
Antitoxins/pharmacology , Shiga Toxin/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , Embryo, Nonmammalian , Lethal Dose 50 , Shiga Toxin/toxicity , Shiga-Toxigenic Escherichia coli/chemistry , Zebrafish
4.
Carbohydr Polym ; 212: 323-333, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30832864

ABSTRACT

Gut pathogenic enterohemorrhagic Escherichia coli (EHEC) release Shiga toxins (Stxs) as major virulence factors, which bind to globotriaosylceramide (Gb3Cer, Galα1-4 Galß1-4Glcß1-1Cer) on human target cells. The aim of this study was the production of neoglycolipids (neoGLs) using citrus pectin-derived oligosaccharides and their application as potential inhibitors of Stxs. The preparation of neoGLs starts with the reduction of the carboxylic acid group of the pectic poly(α1-4)GalUA core structure to the corresponding alcohol, followed by hydrolytic cleavage of resulting poly(α1-4)Gal into (α1-4)Galn oligosaccharides and their linkage to phosphatidylethanolamine (PE). Thin-layer chromatography overlay assays of the produced (α1-4)Galn-PE and corresponding Amadori (α1-4)Galn=PE neoGLs revealed distinguishable binding patterns for Stx1a, Stx2a, and Stx2e. Furthermore, prepared neoGLs protected Vero cells against the cytotoxic action of Stxs when applied as multivalent glycovesicles. The produced neoGLs are applicable for differentiation of Stx subtypes and represent a promising approach to combat infections of EHEC by blocking their major toxins.


Subject(s)
Glycolipids/pharmacology , Pectins/pharmacology , Shiga Toxin/antagonists & inhibitors , Shiga Toxin/toxicity , Animals , Cell Survival/drug effects , Cell Survival/physiology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Glycolipids/chemistry , Pectins/chemistry , Shiga Toxin/classification , Vero Cells
5.
J Anim Physiol Anim Nutr (Berl) ; 102(5): 1167-1180, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29905984

ABSTRACT

Vitamin E (vit E), an essential antioxidant for maintaining the stability of biological membranes and the function of the immune system, is considered to support adaptive immune responses and performance in cattle. The principal virulence factor of Shiga toxin (Stx)-producing Escherichia coli (STEC), the eponymous Stx, modulates cellular immune responses in cattle, the primary STEC reservoir. Active and passive immunization of calves with Shiga toxoids (rStxMUT ) was recently shown to reduce the STEC shedding. Here, we examined the influence of vit E on calves' serum α-tocopherol, performance, haematology, blood chemistry and its interaction with rStxMUT immunization. Data from calves having received passive (colostrum from immunized cows) and active (intramuscularly at 5th and 8th weeks of life) vaccination with rStxMUT (n = 24) were compared to unvaccinated controls (n = 24; fed with low anti-Stx colostrum, placebo injected). For each vaccination group, data were analysed according to the level of vit E supplementation offered by milk replacer (188 IU all-rac-α-tocopheryl acetate daily [VitEM ] vs. 354 IU [VitEH ]). An increase by 79% in daily vit E supplementation led to slightly higher serum α-tocopherol level and earlier concentrate intake at the beginning of the experiment without significant differences in live weight gain, haematology, blood chemistry parameters and peripheral CD4+ and CD8+ T-cell subpopulations. rStxMUT vaccination modulated the CD4+ /CD8+ ratio irrespective of vit E supplementation but decreased concentrate intake in VitEH in a time-dependent manner. Results of our study indicate that an increase in daily vit E supplementation vastly fails to exert effects on laboratory parameters and growth performance. However, observed interactive effects of vit E supply and vaccination on the regulation of feed intake deserves further attention.


Subject(s)
Cattle/blood , Cattle/growth & development , Toxoids/immunology , Vitamin E/pharmacology , alpha-Tocopherol/blood , Animal Feed , Animals , Bacterial Vaccines/immunology , Dietary Supplements , Male , Vaccination/veterinary
6.
J Appl Microbiol ; 124(2): 389-397, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29152837

ABSTRACT

AIMS: Enterohaemorrhagic Escherichia coli serotype O157:H7 as a major human pathogen is responsible for food borne outbreaks, bloody diarrhoea, haemorrhagic colitis and haemolytic uraemic syndrome and even death. In this study, the antibacterial activity of the Zataria multiflora essential oil (ZMEO) and nanoliposome-encapsulated ZMEO was evaluated on the pathogenicity of E. coli O157:H7. METHODS AND RESULTS: The minimum inhibitory concentrations (MIC) of essential oil (EO) were determined against the bacterium before and after encapsulation into nanoliposome. Then, the effect of subinhibitory concentrations was evaluated on Shiga toxin 2 (Stx2) production. The effect of free and nanoliposomal EO was also studied on the gene expression of Stx2 by real-time PCR. It was found that inhibitory activity of EO was improved after incorporation into nanoliposomes (P < 0·05). The MIC of free EO against E. coli O157:H7 was 0·03% (v/v), while this value decreased to 0·015%, after encapsulation of EO into nanoliposomes. Furthermore, subinhibitory concentrations of liposomal EO (50 and 75% MIC) had significantly higher inhibitory effect on Stx2 titre than its free form (P < 0·05). Sub-MICs of nanoencapsulated EO also showed a better activity in reduction of Stx2A gene expression than free EO. Using 75% MIC of nanoliposomal EO, the relative transcriptional level of Stx2A gene was decreased from 0·721 to 0·646. CONCLUSIONS: The findings of present study suggest that application of nanoliposomes can improve the antibacterial effect of EOs like ZMEO. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to the enhancement of antimicrobial activity, nanoencapsulation of plant EOs and extracts may increase their commercial application not only in food area but also in the pharmaceutics, cosmetics and health products.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Escherichia coli O157/genetics , Lamiaceae/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Shiga Toxin 2/metabolism , Anti-Bacterial Agents/chemistry , Escherichia coli Infections/microbiology , Escherichia coli O157/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Liposomes/chemistry , Liposomes/pharmacology , Microbial Sensitivity Tests , Plant Extracts/chemistry
7.
J Vet Med Sci ; 79(10): 1637-1643, 2017 Oct 07.
Article in English | MEDLINE | ID: mdl-28867678

ABSTRACT

Swine edema disease is caused by Shiga toxin (Stx) 2e-producing Escherichia coli (STEC). Addition of highly concentrated zinc formulations to feed has been used to treat and prevent the disease, but the mechanism of the beneficial effect is unknown. The purpose of the present study was to investigate the effects of highly concentrated zinc formulations on bacterial growth, hemolysin production, and an Stx2e release by STEC in vitro. STEC strain MVH269 isolated from a piglet with edema disease was cultured with zinc oxide (ZnO) or with zinc carbonate (ZnCO3), each at up to 3,000 ppm. There was no effect of zinc addition on bacterial growth. Nonetheless, the cytotoxic activity of Stx2e released into the supernatant was significantly attenuated in the zinc-supplemented media compared to that in the control, with the 50% cytotoxic dose values of 163.2 ± 12.7, 211.6 ± 33.1 and 659.9 ± 84.2 after 24 hr of growth in the presence of ZnO, ZnCO3, or no supplemental zinc, respectively. The hemolytic zones around colonies grown on sheep blood agar supplemented with zinc were significantly smaller than those of colonies grown on control agar. Similarly, hemoglobin absorbance after exposure to the supernatants of STEC cultures incubated in sheep blood broth supplemented with zinc was significantly lower than that resulting from exposure to the control supernatant. These in vitro findings indicated that zinc formulations directly impair the factors associated with the virulence of STEC, suggesting a mechanism by which zinc supplementation prevents swine edema disease.


Subject(s)
Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/drug effects , Zinc/pharmacology , Animals , Dose-Response Relationship, Drug , In Vitro Techniques , Shiga-Toxigenic Escherichia coli/metabolism , Swine/microbiology
8.
Food Chem ; 227: 245-254, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28274429

ABSTRACT

Shiga toxin (Stx)-producing, food-contaminating Escherichia coli (STEC) is a major health concern. Plant-derived pectin and pectic-oligosaccharides (POS) have been considered as prebiotics and for the protection of humans from Stx. Of five structurally different citrus pectic samples, POS1, POS2 and modified citrus pectin 1 (MCP1) were bifidogenic with similar fermentabilities in human faecal cultures and arabinose-rich POS2 had the greatest prebiotic potential. Pectic oligosaccharides also enhanced lactobacilli growth during mixed batch faecal fermentation. We demonstrated that all pectic substrates were anti-adhesive for E. coli O157:H7 binding to human HT29 cells. Lower molecular weight and deesterification enhanced the anti-adhesive activity. We showed that all pectic samples reduced Stx2 cytotoxicity in HT29 cells, as measured by the reduction of human rRNA depurination detected by our novel TaqMan-based RT-qPCR assay, with POS1 performing the best. POS1 competes with Stx2 binding to the Gb3 receptor based on ELISA results, underlining the POS anti-STEC properties.


Subject(s)
Bacterial Adhesion , Escherichia coli Infections/microbiology , Escherichia coli O157/physiology , Oligosaccharides/chemistry , Pectins/metabolism , Prebiotics/analysis , Shiga Toxin/toxicity , Escherichia coli O157/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Feces/microbiology , HT29 Cells , Humans , Oligosaccharides/metabolism , Pectins/chemistry , Shiga Toxin/metabolism
9.
Anim Sci J ; 88(5): 826-831, 2017 May.
Article in English | MEDLINE | ID: mdl-28145027

ABSTRACT

Porcine edema disease (ED) is a toxemia caused by enteric infection with Shiga toxin 2e (Stx2e)-producing Escherichia coli (STEC). ED occurs most frequently during the weaning period and is manifested as emaciation associated with high mortality. In our experimental infection with a specific STEC strain, we failed to cause the suppression of weight gain in piglets, which is a typical symptom of ED, in two consecutive experiments. Therefore, we examined the effects of deprivation of colostrum on the sensitivity of newborn piglets to STEC infection. Neonatal pigs were categorized into two groups: one fed artificial milk instead of colostrum in the first 24 h after birth and then returned to the care of their mother, the other breastfed by a surrogate mother until weaning. The oral challenge with 1011  colony-forming units of virulent STEC strain on days 25, 26 and 27 caused suppression of weight gain and other ED symptoms in both groups, suggesting that colostrum deprivation from piglets was effective in enhancing susceptibility to STEC. Two successive STEC infection experiments using colostrum-deprived piglets reproduced this result, leading us to conclude that this improved ED piglet model is more sensitive to STEC infection than the previously established models.


Subject(s)
Colostrum/physiology , Disease Models, Animal , Disease Susceptibility , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Animals , Edema Disease of Swine/microbiology , Escherichia coli Infections/microbiology , Shiga Toxin 2/biosynthesis , Shiga-Toxigenic Escherichia coli/metabolism , Swine
10.
J Appl Microbiol ; 121(6): 1777-1788, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27588570

ABSTRACT

AIMS: A batch chlorination system was optimized for on-site wastewater treatment and reuse system (OWRS) and its efficiency was evaluated for reducing viruses, protozoa, bacteria and antimicrobial resistance in cold and warm seasons. METHODS AND RESULTS: The OWRS performance in reducing microbial contaminants was determined by assessing three different faecal indicators (Escherichia coli, F-specific coliphages and Clostridium perfringens for measuring the disinfection efficiency of bacteria, viruses and spore-formers and surrogate for protozoa, respectively) using culture-based methods. Quantitative PCR was used to quantify pathogenic bacteria (Shiga-toxin-producing E. coli (STEC), Campylobacter spp., and Arcobacter spp.), a human-associated faecal marker (gyrB), and tetracycline resistant bacteria (tetQ). The levels of E. coli, coliphages and Cl. perfringens showed 5·4, 2·3, 2·5 log reduction, respectively, upon disinfection. In the final effluents, coliphages (1·7 × 102 PFU 100 ml-1 ) and Cl. perfringens (3·4 CFU 100 ml-1 ) were detected in 80 and 100% of the samples, but E. coli was not found. The removal and inactivation of E. coli and Cl. perfringens were not significantly different across the seasons, however, efficacy of removal and inactivation of F-specific coliphage was significantly reduced during the winter/spring season compared to the summer/autumn season (P = 0·009). The reduction of Arcobacter, gyrB and tetQ by 3·1, 2·3 and 2·3 log, respectively, was mostly due to peat biofiltration under the study conditions. CONCLUSIONS: This study demonstrated that peat biofiltration was the most important step of the OWRS to remove microbes and genes from wastewater before spray irrigation of the effluents. The irrigation system is not suitable for edible crops because of the potential presence of residual pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: On-site wastewater treatment systems are a practical option for reusing the wastewater for landscape, especially for those areas where geological and seasonal limitations impact the removal of microbial contaminants by soil infiltration.


Subject(s)
Disinfection , Wastewater/microbiology , Water Purification/methods , Bacteria/genetics , Bacteria/isolation & purification , Clostridium perfringens/isolation & purification , Coliphages/isolation & purification , Escherichia coli/isolation & purification , Feces/microbiology , Genes, Bacterial , Halogenation , Humans , Seasons , Soil , Tetracycline Resistance , Water Microbiology
11.
Emerg Infect Dis ; 22(9): 1604-12, 2016 09.
Article in English | MEDLINE | ID: mdl-27533474

ABSTRACT

We describe the epidemiology, clinical features, and molecular characterization of enterohemorrhagic Escherichia coli (EHEC) infections caused by the singular hybrid pathotype O80:H2, and we examine the influence of antibiotics on Shiga toxin production. In France, during 2005-2014, a total of 54 patients were infected with EHEC O80:H2; 91% had hemolytic uremic syndrome. Two patients had invasive infections, and 2 died. All strains carried stx2 (variants stx2a, 2c, or 2d); the rare intimin gene (eae-ξ); and at least 4 genes characteristic of pS88, a plasmid associated with extraintestinal virulence. Similar strains were found in Spain. All isolates belonged to the same clonal group. At subinhibitory concentrations, azithromycin decreased Shiga toxin production significantly, ciprofloxacin increased it substantially, and ceftriaxone had no major effect. Antibiotic combinations that included azithromycin also were tested. EHEC O80:H2, which can induce hemolytic uremic syndrome complicated by bacteremia, is emerging in France. However, azithromycin might effectively combat these infections.


Subject(s)
Enterohemorrhagic Escherichia coli/classification , Enterohemorrhagic Escherichia coli/genetics , Hemolytic-Uremic Syndrome/epidemiology , Hemolytic-Uremic Syndrome/microbiology , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Disease Outbreaks , Drug Resistance, Bacterial , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/pathogenicity , Female , Follow-Up Studies , France/epidemiology , Genotype , Geography, Medical , Hemolytic-Uremic Syndrome/diagnosis , Hemolytic-Uremic Syndrome/drug therapy , Humans , Incidence , Infant , Male , Microbial Sensitivity Tests , Multilocus Sequence Typing , Serogroup , Serotyping , Shiga Toxin/biosynthesis , Shiga Toxin/genetics , Virulence , Virulence Factors/genetics , Young Adult
12.
Int J Food Microbiol ; 229: 24-32, 2016 Jul 16.
Article in English | MEDLINE | ID: mdl-27099982

ABSTRACT

Non-O157 Shiga toxin producing Escherichia coli (STECs) have become a growing concern to the food industry. Grape seed extract (GSE), a byproduct of wine industry, is abundant in polyphenols that are known to be beneficial to health. The objective of this study was to evaluate the effect of GSE on the growth, quorum sensing, and virulence factors of Centers for Disease Control and Prevention (CDC) "top-six" non-O157 STECs. Minimal inhibitory concentration (MIC) of GSE was 2mg/ml against E. coli O26:H11, and 4mg/ml against the other non-O157 STECs tested. Minimal bactericidal concentration (MBC) was the same as MIC for all six non-O157 STECs tested. At 5×10(5)CFU/ml inoculation level, 4mg/ml GSE effectively inhibited the growth of all tested strains, while 0.25-2mg/ml GSE delayed bacterial growth. At a higher inoculation level (1×10(7)CFU/ml), GSE had less efficacy against the growth of the selected six non-O157 STECs. Its impact on bacterial virulence was then assessed at this inoculation level. Autoinducer-2 (AI-2) is a universal signal molecule mediating quorum sensing (QS). GSE at concentration as low as 0.5mg/ml dramatically reduced AI-2 production of all non-O157 STECs tested, with the inhibitory effect proportional to GSE levels. Consistent with diminished QS, GSE at concentration of 0.125mg/ml caused marked reduction of swimming motility of all motile non-O157 STECs tested. In agreement, GSE treatment reduced the production of flagella protein FliC and its regulator FliA in E. coli O103:H2 and E. coli O111:H2. Furthermore, 4mg/ml GSE inhibited the production of Shiga toxin, a major virulence factor, in E. coli O103:H2 and E. coli O111:H2. In summary, GSE inhibits the growth of "top-six" non-O157 STECs at the population level relevant to food contamination. At higher initial population, GSE suppresses QS with concomitant decrease in motility, flagella protein expression and Shiga toxin production. Thus, GSE has the potential to be used in food industry to control non-O157 STEC.


Subject(s)
Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Grape Seed Extract/pharmacology , Quorum Sensing/drug effects , Shiga-Toxigenic Escherichia coli/drug effects , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/growth & development
13.
Toxins (Basel) ; 8(1)2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26742075

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) are foodborne pathogens responsible for the development of bloody diarrhea and renal failure in humans. Many environmental factors have been shown to regulate the production of Shiga toxin 2 (Stx2), the main virulence factor of EHEC. Among them, soluble factors produced by human gut microbiota and in particular, by the predominant species Bacteroides thetaiotaomicron (B. thetaiotaomicron), inhibit Stx2 gene expression. In this study, we investigated the molecular mechanisms underlying the B. thetaiotaomicron-dependent inhibition of Stx2 production by EHEC. We determined that Stx2-regulating molecules are resistant to heat treatment but do not correspond to propionate and acetate, two short-chain fatty acids produced by B. thetaiotaomicron. Moreover, screening of a B. thetaiotaomicron mutant library identified seven mutants that do not inhibit Stx2 synthesis by EHEC. One mutant has impaired production of BtuB, an outer membrane receptor for vitamin B12. Together with restoration of Stx2 level after vitamin B12 supplementation, these data highlight vitamin B12 as a molecule produced by gut microbiota that modulates production of a key virulence factor of EHEC and consequently may affect the outcome of an infection.


Subject(s)
Bacteroides/drug effects , Enterohemorrhagic Escherichia coli/metabolism , Shiga Toxin 2/biosynthesis , Vitamin B 12/pharmacology , Bacteroides/genetics , Bacteroides/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Mutation
14.
J Neurol Sci ; 356(1-2): 175-83, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26189050

ABSTRACT

INTRODUCTION: The underlying pathophysiology of neurological complications in patients with hemolytic-uremic syndrome (HUS) remains unclear. It was recently attributed to a direct cytotoxic effect of Shiga toxin 2 (Stx2) in the thalamus. Conventional MRI of patients with Stx2-caused HUS revealed - despite severe neurological symptoms - only mild alterations if any, mostly in the thalamus. Against this background, we questioned: Does diffusion tensor imaging (DTI) capture the thalamic damage better than conventional MRI? Are neurological symptoms and disease course better reflected by thalamic alterations as detected by DTI? Are other brain regions also affected? METHODS: Three women with serious neurological deficits due to Stx2-associated HUS were admitted to MRI/DTI at disease onset. Two of them were longitudinally examined. Fractional anisotropy (FA) and mean diffusivity were computed to assess Stx2-caused microstructural damage. RESULTS: Compared to 90 healthy women, all three patients had significantly reduced thalamic FA. Thalamic mean diffusivity was only reduced in two patients. DTI of the longitudinally examined women demonstrated slow normalization of thalamic FA, which was paralleled by clinical improvement. CONCLUSION: Whereas conventional MRI only shows slight alterations based on subjective evaluation, DTI permits quantitative, objective, and longitudinal assessment of cytotoxic cerebral damage in individual patients.


Subject(s)
Hemolytic-Uremic Syndrome/chemically induced , Hemolytic-Uremic Syndrome/diagnosis , Recovery of Function , Shiga Toxin 2/toxicity , Thalamus/pathology , Adult , Anisotropy , Diffusion Tensor Imaging , Female , Hemolytic-Uremic Syndrome/physiopathology , Hemolytic-Uremic Syndrome/therapy , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Plasmapheresis/methods
15.
Pathol Biol (Paris) ; 63(3): 136-43, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25845294

ABSTRACT

Hemolytic uremic syndrome is a rare disease, frequently responsible for renal insufficiency in children. Recent findings have led to renewed interest in this pathology. The discovery of new gene mutations in the atypical form of HUS and the experimental data suggesting the involvement of the complement pathway in the typical form, open new perspectives for treatment. This review summarizes the current state of knowledge on both typical and atypical hemolytic uremic syndrome pathophysiology and examines new perspectives for treatment.


Subject(s)
Hemolytic-Uremic Syndrome/physiopathology , Animals , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Bacterial Infections/complications , Bacterial Toxins/adverse effects , Clinical Trials as Topic , Complement System Proteins/physiology , Disease Models, Animal , Drug Evaluation, Preclinical , Escherichia coli Infections/complications , Escherichia coli Infections/microbiology , Forecasting , Genetic Predisposition to Disease , Hemolytic-Uremic Syndrome/classification , Hemolytic-Uremic Syndrome/etiology , Hemolytic-Uremic Syndrome/genetics , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/therapy , Humans , Kidney Transplantation , Liver Transplantation , Mice , Papio , Plasma , Plasma Substitutes , Shiga Toxin/adverse effects , Shiga-Toxigenic Escherichia coli/immunology , Shiga-Toxigenic Escherichia coli/pathogenicity , Thrombophilia/etiology , Vascular Endothelial Growth Factor A/therapeutic use
16.
Food Microbiol ; 40: 25-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24549194

ABSTRACT

Most fresh produce, such as strawberries, receives minimal processing and is often eaten raw. Contamination of produce with pathogenic bacteria may occur during growth, harvest, processing, transportation, and storage (abuse temperature) and presents a serious public health risk. Strawberries have been implicated in an outbreak of Escherichia coli O157:H7 infection that sickened 15 people, including one death. Strawberries may also be contaminated by other serogroups of non-O157 Shiga toxin-producing E. coli (STEC), including O26, O45, O103, O111, O121 and O145, which have become known as the "Big Six" or "Top Six" non-O157 STECs. The objective of this research was to explore the potential application of high pressure processing (HPP) treatment to reduce or eliminate STECs in fresh strawberry puree (FSP). FSP, inoculated with a six-strain cocktail of the "Big Six" non-O157 STEC strains or a five-strain cocktail of E. coli O157:H7 in vacuum-sealed packages, were pressure-treated at 150, 250, 350, 450, 550, and 650 MPa (1 MPa = 10(6) N/m(2)) for 5, 15, and 30 min. HPP treatment, at 350 MPa for ≥5 min, significantly reduced STECs in FSP by about 6-log CFU/g from the initial cell population of ca. 8-log CFU/g. Cell rupture, observed by scanning electron microscopy (SEM), demonstrated that the HPP treatments can be potentially used to control both non-O157 and O157:H7 STECs in heat sensitive products.


Subject(s)
Food Preservation/methods , Fragaria/microbiology , Fruit/microbiology , Shiga-Toxigenic Escherichia coli/growth & development , Consumer Product Safety , Food Contamination/analysis , Food Preservation/instrumentation , Fragaria/chemistry , Fruit/chemistry , Microbial Viability , Pressure , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification
17.
Microb Pathog ; 65: 57-62, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24120399

ABSTRACT

Previously, we reported that minocycline, kanamycin and norfloxacin improved the survival rate in the E32511 model that we developed (FEMS Immunol Med Microbiol 26, 101-108, 1999), but fosfomycin did not. In this study, we investigated the effectiveness of azithromycin (AZM) against Stx2d-producing EHEC O91:H21 strain B2F1 or Stx2c-producing Escherichia coli strain E32511 treated with mitomycin C in vivo. Recently, we reported the effectiveness of AZM in our model and AZM strongly inhibited the release of Stx2c from E32511 in vitro (PLOS ONE e58959, 2013). However, it was very difficult to completely eliminate E32511 in the mouse feces by treatment with AZM alone. In this report, only AZM or Daio effectively promoted survival of mice infected with B2F1 compared to untreated mice. Furthermore, Daio inhibited the colonization of GFP-expressing B2F1 in the mouse intestine. Similarly, a combination of AZM and Daio in the E32511-infected mice reduced E32511 in the mouse feces and significantly improved survival.


Subject(s)
Azithromycin/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Escherichia coli O157/drug effects , Hemolytic-Uremic Syndrome/drug therapy , Shiga-Toxigenic Escherichia coli/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Colon/microbiology , Escherichia coli O157/pathogenicity , Feces/microbiology , Female , Medicine, Chinese Traditional , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , Mitomycin/pharmacology , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/pathogenicity
18.
Article in Chinese | WPRIM | ID: wpr-420969

ABSTRACT

Objective To investigate the tellurite resistance level,the presence of tellurite resistance (ter) gene cluster and their relationships in non-O157 Shiga toxin-producing Escherichia coli(STEC) isolates.Methods Tellurite resistance level was evaluated by plate dilution method and the ter gene cluster was tested by PCR.Results Only 5 of 39 non-O157 STEC isolates tested in this study were identified to have ter gene cluster,which showed relatively high levels of tellurite resistance ranging from 128 μg/ml to 512 μg/ml.In contrast,the other 34 isolates without ter gene cluster were sensitive to potassium tellurite and showed very low levels of tellurite resistance,the minimal inhibitory concentration (MIC) was <1 μg/ml for 29 isolates,8 μg/ml for 2 isolates and 2 μg/ml for 3 isolates.Conclusion Most non-O157 STEC isolates were sensitive to potassium tellurite.It could be concluded that much attention should be paid when screening the non-O157 STEC isolates using the selective medium supplemented with potassium tellurite.

SELECTION OF CITATIONS
SEARCH DETAIL