Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
BMC Complement Med Ther ; 24(1): 155, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589838

ABSTRACT

Gels loaded with nanocarriers offer interesting ways to create novel therapeutic approaches by fusing the benefits of gel and nanotechnology. Clinical studies indicate that lavender oil (Lav-O) has a positive impact on accelerating wound healing properly based on its antimicrobial and anti-inflammatory effects. Initially Lav-O loaded Solid Lipid Nanoparticles (Lav-SLN) were prepared incorporating cholesterol and lecithin natural lipids and prepared SLNs were characterized. Next, a 3% SLN containing topical gel (Lav-SLN-G) was formulated using Carbopol 940. Both Lav-SLN and Lav-SLN-G were assessed in terms antibacterial effects against S. aureus. Lav-SLNs revealed a particle size of 19.24 nm, zeta potential of -21.6 mv and EE% of 75.46%. Formulated topical gel presented an acceptable pH and texture properties. Minimum Inhibitory/Bactericidal Concentration (MIC/MBC) against S. aureus for LAv-O, Lav-SLN and Lav-SLN-G were 0.12 and 0.24 mgml- 1, 0.05 and 0.19 mgml- 1 and 0.045, 0.09 mgml- 1, respectively. Therefore, SLN can be considered as an antimicrobial potentiating nano-carrier for delivery of Lav-O as an antimicrobial and anti-inflammatory agent in topical gel.


Subject(s)
Anti-Infective Agents , Lavandula , Liposomes , Nanoparticles , Staphylococcus aureus , Lipids , Gels
2.
ACS Appl Bio Mater ; 7(4): 2175-2185, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38478917

ABSTRACT

Lung cancer and Mycobacterium avium complex infection are lung diseases associated with high incidence and mortality rates. Most conventional anticancer drugs and antibiotics have certain limitations, including high drug resistance rates and adverse effects. Herein, we aimed to synthesize mannose surface-modified solid lipid nanoparticles (SLNs) loaded with curcumin (Man-CUR SLN) for the effective treatment of lung disease. The synthesized Man-CUR SLNs were analyzed using various instrumental techniques for structural and physicochemical characterization. Loading curcumin into SLNs improved the encapsulation efficiency and drug release capacity, as demonstrated by high-performance liquid chromatography analysis. Furthermore, we characterized the anticancer effect of curcumin using the A549 lung cancer cell line. Cells treated with Man-CUR SLN exhibited an increased cellular uptake and cytotoxicity. Moreover, treatment with free CUR could more effectively reduce cancer migration than treatment with Man-CUR SLNs. Similarly, free curcumin elicited a stronger apoptosis-inducing effect than that of Man-CUR SLNs, as demonstrated by reverse transcription-quantitative PCR analysis. Finally, we examined the antibacterial effects of free curcumin and Man-CUR SLNs against Mycobacterium intracellulare (M.i.) and M.i.-infected macrophages, revealing that Man-CUR SLNs exerted the strongest antibacterial effect. Collectively, these findings indicate that mannose-receptor-targeted curcumin delivery using lipid nanoparticles could be effective in treating lung diseases. Accordingly, this drug delivery system can be used to target a variety of cancers and immune cells.


Subject(s)
Curcumin , Liposomes , Lung Neoplasms , Nanoparticles , Humans , Curcumin/pharmacology , Curcumin/chemistry , Mannose , Lipids , Lung Neoplasms/drug therapy
3.
Polymers (Basel) ; 15(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36771843

ABSTRACT

The goal of current research was to develop a new form of effective drug, curcumin-loaded solid lipid nanoparticles (Cur-SLNs) and test its efficacy in the treatment of lung cancer. Different batches of SLNs were prepared by the emulsification-ultrasonication method. For the optimization of formulation, each batch was evaluated for particle size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). The formulation components and process parameters largely affected the quality of SLNs. The SLNs obtained with particle size, 114.9 ± 1.36 nm; PI, 0.112 ± 0.005; ZP, -32.3 ± 0.30 mV; EE, 69.74 ± 2.03%, and DL, 0.81 ± 0.04% was designated as an optimized formulation. The formulation was freeze-dried to remove excess water to improve the physical stability. Freeze-dried Cur-SLNs showed 99.32% of drug release and demonstrated a burst effect trailed by sustained release up to 120 h periods. The erythrocyte toxicity study of Cur-SLNs and its components demonstrated moderate hemolytic potential towards red blood cells (RBCs). The cytotoxic potential of the formulation and plain curcumin was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against A549 cell line. After 48 h of incubation, Cur-SLNs demonstrated more cytotoxicity (IC50 = 26.12 ± 1.24 µM) than plain curcumin (IC50 = 35.12 ± 2.33 µM). Moreover, the cellular uptake of curcumin was found to be significantly higher from Cur-SLNs (682.08 ± 6.33 ng/µg) compared to plain curcumin (162.4 ± 4.2 ng/µg). Additionally, the optimized formulation was found to be stable over the period of 90 days of storage. Hence, curcumin-loaded SLNs can be prepared using the proposed cost effective method, and can be utilized as an effective drug delivery system for the treatment of lung cancer, provided in vivo studies warrant a similar outcome.

4.
Pharm Nanotechnol ; 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36045536

ABSTRACT

Pulmonary arterial hypertension (PAH) is an uncommon condition marked by elevated pulmonary artery pressure that leads to right ventricular failure. The majority of drugs are now been approved by FDA for PAH, however, several biopharmaceutical hindrances lead to failure of the therapy. Various novel drug delivery systems are available in the literature from which lipid-based nanoparticles i.e. solid lipid nanoparticle is widely investigated for improving the solubility and bioavailability of drugs. In this paper, the prototype phytoconstituents used in pulmonary arterial hypertension have limited solubility and bioavailability. We highlighted the novel concepts of SLN for lipophilic phytoconstituents with their potential applications. This paper also reviews the present state of the art regarding production techniques for SLN like High-Pressure Homogenization, Micro-emulsion Technique, and Phase Inversion Temperature Method, etc. Furthermore, toxicity aspects and in vivo fate of SLN are also highlighted in this review. In a nutshell, safer delivery of phytoconstituents by SLN added a novel feather to the cap of successful drug delivery technologies.

5.
Nanomaterials (Basel) ; 12(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080090

ABSTRACT

Ferrous sulfate is one type of iron that is commonly used in iron supplementation and fortification in food products, but it has low stability and an unfavorable flavor, causing its use to be limited. Encapsulation in a solid lipid nanoparticle (SLN) system is one technology that offers stable active compound protection and a good delivery system; however, a solid lipid matrix should be selected which has good health effects, such as glycerol monolaurate or monolaurin. The purpose of this study was to obtain SLN-ferrous sulfate based on stearic acid and fat rich in monolaurin. SLN-Ferrous sulfate was synthesized at various concentrations of monolaurin-rich fat (20%; 30%; 40% w/w lipid) and various concentrations of ferrous sulfate (5%; 10%; 15% w/w lipid). The results showed that the use of monolaurin-rich fat 40% w/w lipid and 15% w/w ferrous sulfate produced the best characteristics with high entrapment efficiency and loading capacity of 0.06%. The Z-average value of SLN was 292.4 nm with a polydispersity index (PI) of 1.03. SLN-ferrous sulfate showed a spherical morphology, where the Fe trapped in the SLN was evenly dispersed in the lipid matrix to form a nanosphere system. Preparation of SLN-ferrous sulfate by double emulsion method based on stearic acid and fat rich in monolaurin effectively encapsulated ferrous sulfate with high entrapment efficiency and good physicochemical properties.

6.
Int J Pharm ; 601: 120538, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33781879

ABSTRACT

The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.


Subject(s)
Nanoparticles , Oils, Volatile , Humans , Lipids , Liposomes , Plant Oils , Polymers
7.
Molecules ; 26(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572168

ABSTRACT

Solid lipid nanoparticles (SLNs) have the potential to enhance the systemic availability of an active pharmaceutical ingredient (API) or reduce its toxicity through uptake of the SLNs from the gastrointestinal tract or controlled release of the API, respectively. In both aspects, the responses of the lipid matrix to external challenges is crucial. Here, we evaluate the effects of lyophilization on key responses of 1:1 beeswax-theobroma oil matrix SLNs using three model drugs: amphotericin B (AMB), paracetamol (PAR), and sulfasalazine (SSZ). Fresh SLNs were stable with sizes ranging between 206.5-236.9 nm. Lyophilization and storage for 24 months (4-8 °C) caused a 1.6- and 1.5-fold increase in size, respectively, in all three SLNs. Zeta potential was >60 mV in fresh, stored, and lyophilized SLNs, indicating good colloidal stability. Drug release was not significantly affected by lyophilization up to 8 h. Drug release percentages at end time were 11.8 ± 0.4, 65.9 ± 0.04, and 31.4 ± 1.95% from fresh AMB-SLNs, PAR-SLNs, and SSZ-SLNs, respectively, and 11.4 ± 0.4, 76.04 ± 0.21, and 31.6 ± 0.33% from lyophilized SLNs, respectively. Thus, rate of release is dependent on API solubility (AMB < SSZ < PAR). Drug release from each matrix followed the Higuchi model and was not affected by lyophilization. The above SLNs show potential for use in delivering hydrophilic and lipophilic drugs.


Subject(s)
Cacao/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Pharmaceutical Preparations/chemistry , Plant Oils/chemistry , Waxes/chemistry , Acetaminophen/chemistry , Amphotericin B/chemistry , Drug Compounding , Freeze Drying , Hydrophobic and Hydrophilic Interactions , Sulfasalazine/chemistry
8.
Carbohydr Polym ; 252: 117180, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33183627

ABSTRACT

The investigation is to increase the cytotoxicity of soluble curcumin (SC) by loading it onto pectin and skimmed milk powder (SMP) dual layered solid lipid nanoparticles (DL-SLN). The DL-SLN exhibited significantly higher encapsulation efficiency (83.94 ± 6.16), better stability (90 days), and sustained the drug release in different gastro intestional (GI) environments upto 72 h. Molecular docking revealed that the Vander Waals (57420.669 Kcal-mol-1) and electrostatic (-197.533) bonds were involved in the DL-SLN complex formation. The in vivo toxicity of DL-SLN was performed by the zebrafish model, the cell cycle arrest at G2/M phase (64.34 %) by flow cytometry, and western blot investigation was recognized molecular level cell death using SW480 cells. Pharmacokinetic (PK) evaluation (Cmax-5.78 ± 3.26 µg/mL; Tmax-24 h) and organ distribution studies confirmed that the co-functionalized pectin based SLN could efficiently improve the oral bioavailability (up to 72 h) of curcumin (CMN) on colon-targeted release.


Subject(s)
Antineoplastic Agents , Cell Death/drug effects , Colorectal Neoplasms/pathology , Curcumin , Drug Carriers/chemistry , Nanoparticles/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Curcumin/pharmacokinetics , Curcumin/pharmacology , Drug Liberation , Humans , Lipids/chemistry , Male , Milk , Molecular Docking Simulation , Pectins/chemistry , Rats , Rats, Wistar , Zebrafish
9.
Eur J Pharmacol ; 884: 173392, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32735985

ABSTRACT

The Leishmaniasis treatment currently available involves some difficulties, such as high toxicity, variable efficacy, high cost, therefore, it is crucial to search for new therapeutic alternatives. Over the past few years, research on new drugs has focused on the use of natural compounds such as chalcones and nanotechnology. In this context, this research aimed at assessing the in vitro leishmanicidal activity of free 4-nitrochalcone (4NC) on promastigotes and encapsulated 4NC on L. amazonensis-infected macrophages, as well as their action mechanisms. Free 4NC was able to reduce the viability of promastigotes, induce reactive oxygen species production, decrease mitochondrial membrane potential, increase plasma membrane permeability, and expose phosphatidylserine, in addition to altering the morphology and lowering parasite cellular volume. Treatment containing encapsulated 4NC in beeswax-copaiba oil nanoparticles (4NC-beeswax-CO Nps) did not alter the viability of macrophages. Furthermore, 4NC-beeswax-CO Nps reduced the percentage of infected macrophages and the number of amastigotes per macrophages, increasing the production of reactive oxygen species, NO, TNF-α, and IL-10. Therefore, free 4NC proved to exert anti-promastigote effect, while 4NC-beeswax-CO Nps showed a leishmanicidal effect on L. amazonensis-infected macrophages by activating the macrophage microbicidal machinery.


Subject(s)
Chalcones/pharmacology , Drug Carriers , Fabaceae , Leishmania/drug effects , Leishmaniasis, Cutaneous/drug therapy , Macrophages, Peritoneal/drug effects , Nanoparticles , Plant Oils/chemistry , Trypanocidal Agents/pharmacology , Waxes/chemistry , Animals , Apoptosis/drug effects , Chalcones/chemistry , Cytokines/metabolism , Disease Models, Animal , Drug Compounding , Fabaceae/chemistry , Inflammation Mediators/metabolism , Leishmania/growth & development , Leishmania/ultrastructure , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/parasitology , Macrophage Activation/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C , Nitric Oxide/metabolism , Plant Oils/isolation & purification , Reactive Oxygen Species/metabolism , Trypanocidal Agents/chemistry
10.
J Drug Target ; 28(10): 1110-1123, 2020 12.
Article in English | MEDLINE | ID: mdl-32546016

ABSTRACT

The use of compounds from natural or synthetic sources and nanotechnology may represent an alternative to develop new drugs for the leishmaniasis treatment. DETC is an inhibitor of the SOD1 enzyme, which leads to increased ROS production, important for the elimination of Leishmania. Thus, our objective was to assess the leishmanicidal in vitro effect of free Diethydithiocarbamate (DETC) and DETC loaded in beeswax-copaiba oil nanoparticles (DETC-Beeswax-CO Nps) on L. amazonensis forms and elucidate the possible mechanisms involved in the parasite death. DETC-Beeswax-CO Nps presented size below 200 nm, spherical morphology, negative zeta potential, and high encapsulation efficiency. Free DETC reduced the viability of promastigotes and increase ROS production, lower the mitochondrial membrane potential, cause phosphatidylserine exposure, and enhance plasma membrane permeability, in addition to promoting morphological changes in the parasite. Free DETC proved toxic in the assessment of toxicity to murine macrophages, however, the encapsulation of this compound was able to reduce these toxic effects on macrophages. DETC-Beeswax-CO Nps exerted anti-amastigote effect by enhancing the production of ROS, superoxide anion, TNF-α, IL-6, and reduced IL-10 in macrophages. Therefore, free DETC induces antipromastigote effect by apoptosis-like; and DETC-Beeswax-CO Nps exerted anti-leishmanial effect due to pro-oxidant and pro-inflammatory response.


Subject(s)
Ditiocarb/pharmacology , Leishmania/drug effects , Macrophages/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Animals , Apoptosis/drug effects , Ditiocarb/administration & dosage , Mice, Inbred BALB C , Plant Preparations/chemistry , Surface Properties , Waxes/chemistry
11.
Food Res Int ; 126: 108601, 2019 12.
Article in English | MEDLINE | ID: mdl-31732055

ABSTRACT

Nanostructured lipid carriers (NLCs) are a type of colloidal delivery system that was developed in the pharmaceutical industry to combine the advantages and eliminate the shortcomings of oil-in-water (O/W) nanoemulsions and solid lipid nanoparticles (SLNs). The hydrophobic core of the particles within NLCs consists of a solidified fat phase with a partially disorganized structure, which inhibits morphological changes and bioactive expulsion. In the present study, we formulated NLCs using a hot-homogenization approach using fully hydrogenated soybean oil (HSO) as the lipid phase and quillaja saponins as a natural surfactant. The NLCs formed had a low viscosity and milky white appearance similar to that of O/W nanoemulsions. The fabrication conditions were optimized, including the number of passes through the microfluidizer, stirring conditions, cooling rate, and emulsifier level. Unlike bulk HSO, the emulsified form had to be supercooled substantially to promote crystallization of the lipid droplets, which was attributed to differences in nucleation behavior. The crystallization temperature decreased with increasing saponin concentration, which was probably because smaller droplets were formed at higher emulsifier levels. For instance, at 3, 6, 9, and 12 wt% saponin, the degree of supercooling was 10, 15, 18, and 18 °C, while the mean particle diameter was 0.82, 0.53, 0.41, and 0.44 µm, respectively. The melting and crystallization behavior of the NLCs was characterized using an optical microscope and differential scanning calorimetry (DSC), while the morphology of the NLCs was characterized using transmission electron microscopy (TEM). This analysis showed that the NLCs contained spherical particles with a crystallization temperature around 31 °C. This information may be useful for formulating NLC from natural ingredients for application in the food and beverage industry.


Subject(s)
Emulsifying Agents/chemistry , Emulsions/chemistry , Lipids/chemistry , Nanostructures/chemistry , Quillaja Saponins/chemistry , Colloids/chemistry , Crystallization , Drug Carriers/chemistry , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Particle Size , Quillaja/chemistry , Soybean Oil/chemistry , Surface-Active Agents , Temperature
12.
Curr Pharm Des ; 25(21): 2323-2337, 2019.
Article in English | MEDLINE | ID: mdl-31584367

ABSTRACT

The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.


Subject(s)
Drug Carriers , Lipids , Nanoparticles , Plant Preparations/administration & dosage , Skin Diseases/drug therapy , Administration, Cutaneous , Administration, Topical , Humans , Nanomedicine , Skin Absorption
13.
Drug Dev Ind Pharm ; 45(9): 1506-1514, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31215261

ABSTRACT

Epigallocatechin-3-gallate (EGCG), derived from green tea, is an active phytochemical against many types of cancer, cardiovascular, neurological and inflammatory diseases. However, its pharmaceutical activity is limited due to low bioavailability and chemical instability. To overcome these limitations, we fabricated spherical, EGCG loaded solid lipid nanoparticles (SLN-EGCG) as an oral delivery system. The SLN-EGCG showed a hydrodynamic diameter of 300.2 ± 3.8 nm with the drug encapsulation efficiency of 81 ± 1.4%. Additionally, a slow and sustained release of EGCG was noted. Mathematical modeling of release kinetic data suggested that the SLN-EGCG followed the Higuchi model and released EGCG via fickian diffusion method. The data on pharmacokinetic parameters indicated significantly improved bioavailability and protection of EGCG from degradation due to encapsulation into SLN. The SLN-EGCG did not show any acute or sub-chronic toxicity when compared with free EGCG in the rat model. Together these data supported the hypothesis that SLN-EGCG is capable of enhancing the bioavailability and stability of EGCG and can be used as an alternative system for oral administration of EGCG.


Subject(s)
Catechin/analogs & derivatives , Drug Carriers/chemistry , Drug Compounding/methods , Administration, Oral , Animals , Biological Availability , Catechin/administration & dosage , Catechin/pharmacokinetics , Chemistry, Pharmaceutical , Drug Evaluation, Preclinical , Drug Liberation , Lipids/chemistry , Male , Models, Animal , Models, Chemical , Nanoparticles/chemistry , Rats , Tissue Distribution , Toxicokinetics
14.
Cell Biol Int ; 43(1): 2-11, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30080277

ABSTRACT

Indirubin, an ingredient in traditional Chinese medicine, is considered as an anti-cancer agent. However, due to its hydrophobic nature, clinical efficiency has been limited. Drug delivery via nanotechnology techniques open new windows toward treatment of cancerous patients. Glioblastoma multiforme (GBM) is the most severe and common type of brain primary tumors. Of common problems in targeting therapies of glioblastoma is the availability of drug in tumoric tissues. In this study, Indirubin loaded solid lipid nanoparticles were prepared and their therapeutic potentials and antitumoric effects were assessed on GBM cell line (U87MG). The SLNs were prepared with Cetyl palmitate and Polysorbat 80 via high-pressure homogenization (HPH) methods in hot mode. Then, properties of SLNs including size, zeta potential, drug encapsulation efficacy (EE %) and drug loading were characterized. SLNs morphology and size were observed using SEM and TEM. The crystalinity of formulation was determined by different scattering calorimetry (DSC). The amount of drug release and antitumor efficiency were evaluated at both normal brain pH of 7.2 and tumoric pH of 6.8. The prapared SLNs had mean size of 130 nm, zeta potential of -16 mV and EE of 99.73%. The results of DSC showed proper encapsulation of drug into SLNs. Drug release assessment in both pH displayed sustain release property. The result of MTT test exhibited a remarkable increment in antitumor activity of Indirubin loaded SLN in comparison with free form of drug and blank SLN on multiform GB. This study indicated that Indirubin loaded SLNs could act as a useful anticancer drugs.


Subject(s)
Antineoplastic Agents/therapeutic use , Glioblastoma/drug therapy , Lipids/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Calorimetry, Differential Scanning , Cell Death/drug effects , Cell Line, Tumor , Drug Liberation , Drug Stability , Glioblastoma/pathology , Humans , Indoles/pharmacology , Indoles/therapeutic use , Nanoparticles/ultrastructure , Particle Size , Static Electricity
15.
Int J Nanomedicine ; 13: 1869-1879, 2018.
Article in English | MEDLINE | ID: mdl-29636606

ABSTRACT

INTRODUCTION: The incidence of central nervous system disease has increased in recent years. However, the transportation of drug is restricted by the blood-brain barrier, contributing to the poor therapeutic effect in the brain. Therefore, the development of a new brain-targeting drug delivery system has become the hotspot of pharmacy. MATERIALS AND METHODS: Borneol, a simple bicyclic monoterpene extracted from Dryobalanops aromatica, can direct drugs to the upper body parts according to the theory of traditional Chinese medicine. Dioleoyl phosphoethanolamine (DOPE) was chemically modified by borneol as one of the lipid materials of solid lipid nanoparticle (SLN) in the present study. RESULTS: The borneol-modified chemically solid lipid nanoparticle (BO-SLN/CM), borneol-modified physically solid lipid nanoparticle (BO-SLN/PM), and SLN have similar diameter (of about 87 nm) and morphological characteristics. However, BO-SLN/CM has a lower cytotoxicity, higher cell uptake, and better blood-brain barrier permeability compared with BO-SLN/PM and SLN. BO-SLN/CM has a remarkable targeting function to the brain, while BO-SLN/ PM and SLNs are concentrated at the lung. CONCLUSION: The present study provides an excellent drug delivery carrier, BO-SLN/CM, having the application potential of targeting to the brain and permeating to the blood-brain barrier.


Subject(s)
Blood-Brain Barrier/drug effects , Camphanes/chemistry , Drug Carriers/chemistry , Nanoparticles/administration & dosage , Animals , Brain , Drug Delivery Systems/methods , Lipids/chemistry , Mice , Nanoparticles/chemistry , Particle Size , Permeability , Phosphatidylethanolamines/chemistry , Tissue Distribution
16.
Mater Today Commun ; 17: 200-213, 2018 Dec.
Article in English | MEDLINE | ID: mdl-32289062

ABSTRACT

Rheumatoid arthritis (RA) is the most common complex multifactorial joint related autoimmune inflammatory disease with unknown etiology accomplished with increased cardiovascular risks. RA is characterized by the clinical findings of synovial inflammation, autoantibody production, and cartilage/bone destruction, cardiovascular, pulmonary and skeletal disorders. Pro-inflammatory cytokines such as IL-1, IL-6, IL-8, and IL-10 were responsible for the induction of inflammation in RA patients. Drawbacks such as poor efficacy, higher doses, frequent administration, low responsiveness, and higher cost and serious side effects were associated with the conventional dosage forms for RA treatment. Nanomedicines were recently gaining more interest towards the treatment of RA, and researchers were also focusing towards the development of various anti-inflammatory drug loaded nanoformulations with an aid to both actively/passively targeting the inflamed site to afford an effective treatment regimen for RA. Alterations in the surface area and nanoscale size of the nanoformulations elicit beneficial physical and chemical properties for better pharmacological activities. These drug loaded nanoformulations may enhances the solubility of poorly water soluble drugs, improves the bioavailability, affords targetability and may improve the therapeutic activity. In this regimen, the present review focus towards the novel nanoparticulate formulations (nanoparticles, nanoemulsions, solid lipid nanoparticles, nanomicelles, and nanocapsules) utilized for the treatment of RA. The recent advancements such as siRNA, peptide and targeted based nanoparticulate systems for RA treatment were also discussed. Special emphasis was provided regarding the pathophysiology, prevalence and symptoms towards the development of RA.

17.
Skin Pharmacol Physiol ; 31(1): 1-9, 2018.
Article in English | MEDLINE | ID: mdl-29131088

ABSTRACT

The use of sunscreen products is widely promoted by schools, government agencies, and health-related organizations to minimize sunburn and skin damage. In this study, we developed stable solid lipid nanoparticles (SLNs) containing the chemical UV filter octyl methoxycinnamate (OMC). In parallel, we produced similar stable SLNs in which 20% of the OMC content was replaced by the botanical urucum oil. When these SLNs were applied to the skin of human volunteers, no changes in fluorescence lifetimes or redox ratios of the endogenous skin fluorophores were seen, suggesting that the formulations did not induce toxic responses in the skin. Ex vivo (skin diffusion) tests showed no significant penetration. In vitro studies showed that when 20% of the OMC was replaced by urucum oil, there was no reduction in skin protection factor (SPF), suggesting that a decrease in the amount of chemical filter may be a viable alternative for an effective sunscreen, in combination with an antioxidant-rich vegetable oil, such as urucum. There is a strong trend towards increasing safety of sun protection products through reduction in the use of chemical UV filters. This work supports this approach by producing formulations with lower concentrations of OMC, while maintaining the SPF. Further investigations of SPF in vivo are needed to assess the suitability of these formulations for human use.


Subject(s)
Lipids/chemistry , Nanoparticles/chemistry , Plant Oils/chemistry , Sunscreening Agents/chemistry , Chemistry, Pharmaceutical/methods , Cinnamates/administration & dosage , Cinnamates/chemistry , Humans , Permeability/drug effects , Plant Oils/administration & dosage , Skin/drug effects , Skin Absorption/drug effects , Sunscreening Agents/administration & dosage , Ultraviolet Rays/adverse effects
18.
Int J Pharm ; 535(1-2): 164-171, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29107614

ABSTRACT

Hydroxysafflor yellow A (HSYA) is the main bioactive flavonoid extracted from the flower of Carthamus tinctorius L., which is widely used in traditional Chinese medicine for the treatment of myocardial ischemia and cerebral ischemia. HSYA has high water solubility but poor intestinal membrane permeability, resulting in low oral bioavailability. Currently, only HSYA sodium chloride injection has been approved for clinical use and oral formulations are urgently needed. In this study, HSYA solid lipid nanoparticles (SLNs) with the structure of w/o/w were prepared by a warm microemulsion process using approved drug excipients for oral delivery to increase the oral absorption of HSYA. The optimized HSYA SLNs are spherical with an average size of 214nm and the encapsulation efficiency is 55%. HSYA SLNs exhibited little cytotoxicity in Caco-2 and Hela cells, but increased the oral absorption of HSYA about 3.97-fold in rats, compared to HSYA water solution. In addition, cycloheximide pretreatment significantly decreased the oral absorption of HSYA delivered by SLNs. Importantly, the pharmacodynamics evaluation demonstrated that SLNs further decreased the infarct areas in rats. In conclude, SLNs could be a promising delivery system to enhance the oral absorption and pharmacological activities of HSYA.


Subject(s)
Chalcone/analogs & derivatives , Drug Carriers/chemistry , Flavonoids/administration & dosage , Lipids/chemistry , Nanoparticles/chemistry , Quinones/administration & dosage , Administration, Oral , Animals , Brain Ischemia/drug therapy , Caco-2 Cells , Cell Survival/drug effects , Chalcone/administration & dosage , Chalcone/pharmacology , Chalcone/therapeutic use , Drug Liberation , Flavonoids/pharmacology , Flavonoids/therapeutic use , HeLa Cells , Humans , Male , Medicine, Chinese Traditional , Oral Mucosal Absorption , Quinones/pharmacology , Quinones/therapeutic use , Rats, Sprague-Dawley
19.
Int J Pharm ; 504(1-2): 11-9, 2016 May 17.
Article in English | MEDLINE | ID: mdl-26969080

ABSTRACT

A reproducible double emulsion/solvent evaporation procedure is developed to formulate magnetic solid lipid nanoparticles (average size≈180 nm) made of iron oxide cores embedded within a glyceryl trimyristate solid matrix. The physicochemical characterization of the nanocomposites ascertained the efficacy of the preparation conditions in their production, i.e. surface properties (electrokinetic and thermodynamic data) were almost indistinguishable from those of the solid lipid nanomatrix, while electron microscopy characterizations and X-ray diffraction patterns confirmed the satisfactory coverage of the magnetite nuclei. Hemocompatibility of the particles was established in vitro. Hysteresis cycle determinations defined the appropriate magnetic responsiveness of the nanocomposites, and their heating characteristics were investigated in a high frequency alternating gradient of magnetic field: a constant maximum temperature of 46 °C was obtained within 40 min. Finally, in vitro tests performed on human HT29 colon adenocarcinoma cells demonstrated a promising decrease in cell viability after treatment with the nanocomposites and exposure to that alternating electromagnetic field. To the best of our knowledge, this is the first time that such type of nanoformulation with very promising hyperthermia characteristics has been developed for therapeutic aims.


Subject(s)
Colonic Neoplasms/therapy , Hyperthermia, Induced/methods , Magnetite Nanoparticles/administration & dosage , Nanocomposites/administration & dosage , Adult , Blood Coagulation/drug effects , Cell Survival/drug effects , Female , HT29 Cells , Hemolysis/drug effects , Humans , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Platelet Activation/drug effects , Triglycerides/chemistry , Young Adult
20.
J Pharm Biomed Anal ; 123: 195-204, 2016 May 10.
Article in English | MEDLINE | ID: mdl-26897464

ABSTRACT

The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi's model) with an estimated diffusion coefficient (D) of 1.3.10(-6) cm(2)/s. The LF-loaded SLNs were non-toxic to murine macrophages (20-80 µg mL(-1) range) and exerted a prominent anti-leishmanial effect (20 µg mL(-1)). These data suggest this new and well-characterized lipid nanoparticle delivery system safely and effectively kills Leishmania and warrants further clinical investigation.


Subject(s)
Antiparasitic Agents/administration & dosage , Antiparasitic Agents/chemistry , Biological Products/administration & dosage , Biological Products/chemistry , Leishmania/drug effects , Leishmaniasis/drug therapy , Animals , Biological Assay/methods , Brazil , Chemistry, Pharmaceutical/methods , Diffusion , Drug Carriers/chemistry , Drug Delivery Systems/methods , Kinetics , Leishmaniasis/parasitology , Lignans/administration & dosage , Lignans/chemistry , Lipids/administration & dosage , Lipids/chemistry , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Microscopy, Atomic Force/methods , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Ocotea/chemistry , Particle Size , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Skin/parasitology , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL