Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
Add more filters

Publication year range
1.
Mol Neurobiol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578356

ABSTRACT

Maternal nutrition was recognized as a significant part of brain growth and maturation in most mammalian species. Timely intervention with suitable nutraceuticals would provide long-term health benefits. We aim to unravel the molecular mechanisms of perinatal undernutrition-induced impairments in cognition and synaptic plasticity, employing animal model based on dietary nutraceutical supplementation. We treated undernourished dams at their gestational, lactational, and at both the time point with Astaxanthin (AsX) and Docosahexaenoic acid (DHA), and their pups were used as experimental animals. We evaluated the cognitive function by subjecting the pups to behavioral tests in their adult life. In addition, we assessed the expression of genes in the hippocampus related to cognitive function and synaptic plasticity. Our results showed downregulation of Brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT-3), cAMP response-element-binding protein (CREB), and uncoupling protein-2 (UCP2) gene expression in pups born to undernourished dams in their adult life, which AsX and DHA modulated. Maternal AsX and DHA supplementation ameliorated the undernutrition-induced learning impairment in novel object recognition (NOR) tests and partially baited radial arm maze (RAM) tasks in offspring's. The expressions of Synapsin-1 and PSD-95 decreased in perinatally undernourished groups compared to control and AsX-DHA treated groups at CA1, CA2, CA3, and DG. AsX and DHA supplementation upregulated BDNF, NT-3, CREB, and UCP2 gene expressions in perinatally undernourished rats, which are involved in intracellular signaling cascades like Ras, PI3K, and PLC. The results of our study give new insights into neuronal differentiation, survival, and plasticity, indicating that the perinatal period is the critical time for reversing maternal undernutrition-induced cognitive impairment in offspring's.

2.
Vet Med Sci ; 10(3): e1461, 2024 05.
Article in English | MEDLINE | ID: mdl-38648257

ABSTRACT

BACKGROUND: Astaxanthin is the most prevalent carotenoid in the marine environment and is widely used as an additive in formulated aquafeeds. OBJECTIVES: A 60-day feeding trial was conducted to consider the effect of dietary nanoliposome-coated astaxanthin (NA) on haematological parameters, serum antioxidant activities and immune responses of rainbow trout, Oncorhynchus mykiss. METHODS: A total of 450 healthy fish weighing 31.00 ± 2.09 g were randomly assigned in triplicate (30 fish per replicate) to 5 dietary treatments: 0 (control), 25.00, 50.00, 75.00, and 100.00 mg kg-1 NA. RESULTS: Fish fed the diet supplemented with 50.00 mg kg-1 NA exhibited the highest values of red blood cells, white blood cells, haemoglobin and haematocrit of 1.64 ± 0.01 × 106 mm-3, 5.54 ± 0.21 × 103 mm-3, 8.73 ± 0.24 g dL-1 and 46.67% ± 0.88%, respectively, which were significantly higher than those fed the basal diet (p < 0.05). The lowest and highest percentages of lymphocytes (67.67% ± 0.33%) and neutrophils (27.33% ± 1.20%) were also obtained in fish fed 50.00 mg kg-1 NA compared to those fed the basal diet (p < 0.05). Fish receiving diet supplemented with 50.00 mg kg-1 NA revealed the highest serum activity in superoxide dismutase, catalase, glutathione peroxidase, lysozyme and alternative complement and the lowest level of total cholesterol, cortisol, aspartate aminotransferase and alanine aminotransferase than fish receiving the basal diet (p < 0.05). Serum immunoglobulin (Ig) and ACH50 contents significantly increased with increasing dietary NA supplementation to the highest values of 43.17 ± 1.46 and 293.33 ± 2.03 U mL-1, respectively, in fish fed diet supplemented with 50 mg kg-1 NA (p < 0.05). CONCLUSIONS: Supplementation of NA in rainbow trout diet at 50 mg kg-1 exhibited a positive effect on haematological parameters, antioxidant capacity and immune responses. Administration of such dosage can enhance rainbow trout immune responses against unfavourable or stressful conditions, for example disease outbreaks, hypoxic condition, thermal stress and sudden osmotic fluctuations, which usually happen in an intensive culture system.


Subject(s)
Animal Feed , Antioxidants , Diet , Dietary Supplements , Oncorhynchus mykiss , Xanthophylls , Animals , Xanthophylls/administration & dosage , Xanthophylls/pharmacology , Antioxidants/metabolism , Diet/veterinary , Animal Feed/analysis , Dietary Supplements/analysis , Random Allocation , Liposomes , Dose-Response Relationship, Drug
3.
Fish Physiol Biochem ; 50(3): 1205-1224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512396

ABSTRACT

The growth, immune response, and reproductive performance of broodstock of Nile tilapia (Oreochromis niloticus) under winter stress conditions were investigated the effects of supplementary diets with astaxanthin-enriched Paracoccus carotinifaciens. Throughout an eight-week period in the winter season, male and female tilapia were fed with diets containing different levels of P. carotinifaciens dietary supplementation: 0 g/kg (T1; control), 5 g/kg (T2), 10 g/kg (T3), and 20 g/kg (T4). Subsequently, a four-week mating system was implemented during the winter stress period. The results revealed that there were no significant differences observed in growth, hematological indices, and blood chemical profiles among all treatment groups for both male and female tilapia. However, a significant increase in cholesterol content was noted in both male and female tilapia fed with the T4 diet (p<0.05). The total carotenoid content in the muscle was evaluated, and significantly higher values were found in both male and female tilapia that fed T4 supplementation (p<0.05). Moreover, immunological parameters such as myeloperoxidase and antioxidant parameters in the liver including superoxide dismutase activity and catalase enzyme activity showed significant increases in tilapia fed with the T4 diet. The impact of P. carotinifaciens supplementation on broodstock tilapia indicated a significant increase in spermatozoa concentration in males and increased egg production in females after consumption of the T4 diet (p<0.05). Thus, this study highlighted that the presence of astaxanthin-enriched P. carotinifaciens in the diet of broodstock Nile tilapia can lead to the accumulation of carotenoids in their muscle tissue, improvement in antioxidant status, enhancement of immune function, and potential enhancement of reproductive capabilities, even under overwintering conditions.


Subject(s)
Cichlids , Dietary Supplements , Reproduction , Seasons , Xanthophylls , Animals , Xanthophylls/pharmacology , Reproduction/drug effects , Cichlids/growth & development , Cichlids/immunology , Cichlids/metabolism , Cichlids/physiology , Female , Male , Diet/veterinary , Animal Feed/analysis , Paracoccus , Liver/metabolism , Liver/drug effects
4.
Biomass Convers Biorefin ; 14(7): 8127-8152, 2024.
Article in English | MEDLINE | ID: mdl-38510795

ABSTRACT

Biorefinery approaches offer the potential to improve the economics of the microalgae industry by producing multiple products from a single source of biomass. Chromochloris zofingiensis shows great promise for biorefinery due to high biomass productivity and a diverse range of products including secondary carotenoids, predominantly astaxanthin; lipids such as TAGs; carbohydrates including starch; and proteins and essential amino acids. Whilst this species has been demonstrated to accumulate multiple products, the development of an integrated downstream process to obtain these is lacking. The objective of this review paper is to assess the research that has taken place and to identify the steps that must be taken to establish a biorefinery approach for C. zofingiensis. In particular, the reasons why C. zofingiensis is a promising species to target for biorefinery are discussed in terms of cellular structure, potential products, and means to accumulate desirable components via the alteration of culture conditions. Future advances and the challenges that lie ahead for successful biorefinery of this species are also reviewed along with potential solutions to address them. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-022-02955-7.

5.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185392

ABSTRACT

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Subject(s)
Ammonia , Gastropoda , Animals , Diet , Antioxidants/metabolism , Gastropoda/metabolism , Immunity, Innate , Gene Expression , Muscles/metabolism , Superoxide Dismutase/metabolism , Animal Feed/analysis , Dietary Supplements , Xanthophylls
6.
Int Immunopharmacol ; 128: 111553, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38281337

ABSTRACT

This study aimed to investigate the function of gut microbiota in astaxanthin's adjuvant anticancer effects. Our prior research demonstrated that astaxanthin enhanced the antitumor effects of sorafenib by enhancing the body's antitumor immune response; astaxanthin also regulated the intestinal flora composition of tumor-bearing mice. However, it is presently unknown whether this beneficial effect is dependent on the gut microbiota. We first used broad-spectrum antibiotics to eradicate gut microbiota of tumor-bearing mice, followed by the transplantation of fecal microbiota. The results of this study indicate that the beneficial effects of astaxanthin when combined with molecular targeting are dependent on the presence of intestinal microbiota. Astaxanthin facilitates the infiltration of CD8+ T lymphocytes into the tumor microenvironment and increases Granzyme B production by modulating the intestinal flora. Therefore, it strengthens the body's anti-tumor immune response and synergistically boosts the therapeutic efficacy of drugs. Astaxanthin stimulates the production of cuprocytes and mucus in the intestines by promoting the proliferation of Akkermansia. In addition, astaxanthin enhances the intestinal mucosal immunological function. Our research supports the unique ability of astaxanthin to sustain intestinal flora homeostasis and its function as a dietary immune booster for individuals with tumors.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Immunity, Mucosal , Intestines/pathology , Intestinal Mucosa , Xanthophylls
7.
J Sci Food Agric ; 104(3): 1408-1419, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37782057

ABSTRACT

BACKGROUND: Astaxanthin (AST) is approved by the US Food and Drug Administration (FDA) as a safe dietary supplement for humans. As a potent lipid-soluble keto-carotenoid, it is widely used in food, cosmetics, and the pharmaceutical industry. However, its low solubility limits its powerful biological activity and its application in these fields. This study aims to develop a delivery system to address the low solubility and bioavailability of AST and to enhance its antioxidant capacity. RESULTS: Astaxanthin-loaded composite micelles were successfully prepared via coaxial electrospray technology. Astaxanthin existed in the amorphous state in the electro-sprayed formulation with an approximate particle size of 186.28 nm and with a polydispersity index of 0.243. In this delivery system, Soluplus and copovidone (PVPVA 64) were the main polymeric matrix for AST, which then released the drug upon contact with aqueous media, resulting in an overall increase in drug solubility and a release rate of 94.08%. Meanwhile, lecithin, and Polyethylene glycol-grafted Chitosan (PEG-g-CS) could support the absorption of AST in the gastrointestinal tract, assisting transmembrane transport. The relative bioavailability reached about 308.33% and the reactive oxygen species (ROS) scavenging efficiency of the formulation was 44.10%, which was 1.57 times higher than that of free astaxanthin (28.10%) when both were at the same concentration level based on astaxanthin. CONCLUSION: Coaxial electrospray could be applied to prepare a composite micelles system for the delivery of poorly water-soluble active ingredients in functional food, cosmetics, and medicine. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Micelles , Humans , Drug Carriers , Biological Availability , Solubility , Particle Size , Water , Administration, Oral
8.
Phytother Res ; 38(1): 321-330, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37874168

ABSTRACT

Astaxanthin (ASX) is a natural carotenoid compound found in several of microorganisms and seafood. It may have numerous therapeutic benefits for polycystic ovarian syndrome (PCOS) patients. The aim of this study was to investigate the effect of ASX on lipid profile, insulin resistance (IR), blood pressure (BP), and oxidative stress (OS) levels in infertile PCOS patients. Overall, 58 infertile women with diagnosed PCOS participated in this triple-blind randomized clinical trial. They were randomly assigned to two groups, taking either a placebo or ASX (2 × 6 mg/day) for 8 weeks. Blood serum samples were collected from patients before and after the intervention. Fasting Insulin (FI), fasting blood glucose (FBS), OS markers (malondialdehyde [MDA], superoxide dismutase [SOD], and total antioxidant capacity [TAC]), and lipid profiles were evaluated in serum. Moreover, based on the relevant formula, several indices associated with IR were calculated. BP was also assessed at the start and end of the study. After 8 weeks of ASX consumption, a significant reduction was observed in fasting blood sugar, HOMA-IR, FI, MDA, low-density lipoprotein-cholesterol, and TC/HDL-C. Conversely, ASX significantly increased TAC, HDL-C, and QUICKI. After adjusting the analysis for the baseline values of age, body mass index, and biochemical parameters, non-significant values were obtained for QUICKI and FI, along with no changes in other findings. Overall, ASX appears to be an effective and safe supplement that alleviates insulin metabolism, lipid profile parameters, and OS in infertile PCOS patients.


Subject(s)
Infertility, Female , Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Insulin Resistance/physiology , Polycystic Ovary Syndrome/drug therapy , Blood Pressure , Insulin , Dietary Supplements , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Cholesterol, LDL , Blood Glucose/metabolism , Xanthophylls
9.
J Adv Res ; 57: 59-76, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37931655

ABSTRACT

BACKGROUND: The processing of the three major crustaceans (shrimp, lobster, and crab) is associated with inevitable by-products, high waste disposal costs, environmental and human health issues, loss of multiple biomaterials (chitin, protein hydrolysates, lipids, astaxanthin and minerals). Nowadays, these bioresources are underutilized owing to the lack of effective and standardized technologies to convert these materials into valued industrial forms. AIM OF REVIEW: This review aims to provide a holistic overview of the various bioactive ingredients and applications within major crustaceans by-products. This review aims to compare various extraction methods in crustaceans by-products, which will aid identify a more workable platform to minimize waste disposal and maximize its value for best valorization practices. KEY SCIENTIFIC CONCEPTS OF REVIEW: The fully integrated applications (agriculture, food, cosmetics, pharmaceuticals, paper industries, etc.) of multiple biomaterials from crustaceans by-products are presented. The pros and cons of the various extraction methods, including chemical (acid and alkali), bioprocesses (enzymatic or fermentation), physical (microwave, ultrasound, hot water and carbonic acid process), solvent (ionic liquids, deep eutectic solvents, EDTA) and electrochemistry are detailed. The rapid development of corresponding biotechnological attempts present a simple, fast, effective, clean, and controllable bioprocess for the comprehensive utilization of crustacean waste that has yet to be applied at an industrial level. One feasible way for best valorization practices is to combine innovative extraction techniques with industrially applicable technologies to efficiently recover these valuable components.


Subject(s)
Brachyura , Decapoda , Humans , Animals , Nephropidae , Seafood , Biocompatible Materials
10.
Mol Nutr Food Res ; 68(2): e2300569, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38059808

ABSTRACT

SCOPE: The optimization of anti-cancer drug effectiveness through dietary modifications has garnered significant attention among researchers in recent times. Astaxanthin (AST) has been identified as a safe and biologically active dietary supplement. METHODS AND RESULTS: The tumor-bearing mice are treated with sorafenib, along with supplementation of 60 mg kg-1 AST during the treatment. The coadministration of AST and a subclinical dosage of 10 mg kg-1 sorafenib demonstrates a tumor inhibition rate of 76.5%, which is notably superior to the 45% inhibition rate observed with the clinical dosage of 30 mg kg-1 sorafenib (p < 0.05). The administration of AST leads to a tumor inhibition increase of around 25% when combined with the clinical dose of 30 mg kg-1 sorafenib (p <0.05). AST enhances the inhibitory effect of sorafenib on tumor angiogenesis through the JAK2/STAT3 signaling pathway. Furthermore, AST exhibits a reduction in hypoxia within the tumor microenvironment. CONCLUSION: The results suggest that AST supplement enhances the inhibitory effects of sorafenib on hepatocellular carcinoma. This study presents a new dietary management program for oncology patients.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , STAT3 Transcription Factor , Humans , Mice , Animals , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Tumor Microenvironment , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Signal Transduction , Apoptosis , Hypoxia/drug therapy , Niacinamide/pharmacology , Janus Kinase 2/metabolism , Janus Kinase 2/pharmacology , Xanthophylls
11.
Phytomedicine ; 123: 155249, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056144

ABSTRACT

BACKGROUND: Astaxanthin (AST) is a natural compound with anti-inflammatory/immunomodulatory properties that has been found to have probiotic properties. However, the role and mechanism of AST in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) are still not fully understood. PURPOSE: The aim of this study was to evaluate the effect of AST on CP/CPPS and elucidate the mediating role of the gut microbiota. MATERIALS AND METHODS: An experimental autoimmune prostatitis (EAP) mouse model was utilized to test the potential role of AST on CP/CPPS. Antibiotic cocktail (ABX) treatment and fecal microbiota transplantation (FMT) were used to elucidate the gut microbiota-mediated effects on AST. In addition, 16S rRNA gene sequencing and qRT-PCR analyses were used to analyze changes in the gut microbiota of EAP mice and CP/CPPS patients. Finally, the mechanism by which AST exerts a protective effect on CP/CPPS was explored by untargeted metabolomics and gut barrier function assays. RESULTS: Oral administration of AST reduced prostate inflammation scores, alleviated tactile sensitization of the pelvic region in EAP mice, reduced CD4+ T cell and CD68+ macrophage infiltration in the prostatic interstitium, and inhibited the up-regulation of systemic and localized pain/pro-inflammatory mediators in the prostate. After ABX, the protective effect of AST against CP/CPPS was attenuated, whereas colonization with fecal bacteria from AST-treated EAP mice alleviated CP/CPPS. 16S rRNA gene sequencing and qRT-PCR analyses showed that Akkermansia muciniphila in the feces of EAP mice and CP/CPPS patients showed a trend toward a decrease, which was associated with poor progression of CP/CPPS. In contrast, oral administration of AST increased the relative abundance of A. muciniphila, and oral supplementation with A. muciniphila also alleviated inflammation and pain in EAP mice. Finally, we demonstrated that both AST and A. muciniphila interventions increased serum levels of SCFAs acetate, up-regulated expression of colonic tight junction markers, and decreased serum lipopolysaccharide levels in EAP mice. CONCLUSION: Our results showed that AST improved CP/CPPS by up-regulating A. muciniphila, which provides new potentially effective strategies and ideas for CP/CPPS management.


Subject(s)
Chronic Pain , Prostatitis , Humans , Male , Mice , Animals , Prostatitis/drug therapy , RNA, Ribosomal, 16S , Inflammation/drug therapy , Pelvic Pain/drug therapy , Pelvic Pain/metabolism , Intestines , Akkermansia , Xanthophylls
12.
Mol Nutr Food Res ; 68(2): e2300414, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991232

ABSTRACT

SCOPE: Astaxanthin (AST) is ubiquitous in aquatic foods and microorganisms. The study previously finds that docosahexaenoic acid-acylated AST monoester (AST-DHA) improves cognitive function in Alzheimer's disease (AD), although the underlying mechanism remains unclear. Moreover, autophagy is reportedly involved in amyloid-ß (Aß) clearance and AD pathogenesis. Therefore, this study aims to evaluate the preventive effect of AST-DHA and elucidates the mechanism of autophagy modulation in Aß pathology. METHODS AND RESULTS: In the cellular AD model, AST-DHA significantly reduces toxic Aß1-42 levels and alleviated the accumulation of autophagic markers (LC3II/I and p62) in Aß25-35 -induced SH-SY5Y cells. Notably, AST-DHA restores the autophagic flux in SH-SY5YmRFP-GFP-LC3 cells. In APP/PS1 mice, a 3-month dietary supplementation of AST-DHA exceeded free-astaxanthin (F-AST) capacity to increase hippocampal and cortical autophagy. Mechanistically, AST-DHA restores autophagy by activating the ULK1 signaling pathway and restoring autophagy-lysosome fusion. Moreover, AST-DHA relieves ROS production and mitochondrial stress affecting autophagy in AD. As a favorable outcome of restored autophagy, AST-DHA mitigates cerebral Aß and p-Tau deposition, ultimately improving neuronal function. CONCLUSION: The findings demonstrate that AST-DHA can rectify autophagic impairment in AD, and confer neuroprotection in Aß-related pathology, which supports the future application of AST as an autophagic inducer for maintaining brain health.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Mice , Animals , Alzheimer Disease/metabolism , Docosahexaenoic Acids/pharmacology , Amyloid beta-Peptides/metabolism , Autophagy , Mice, Transgenic , Disease Models, Animal , Xanthophylls
13.
Fish Physiol Biochem ; 50(1): 97-126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36607534

ABSTRACT

Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin's unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.


Subject(s)
Antioxidants , Carotenoids , Animals , Antioxidants/pharmacology , Carotenoids/pharmacology , Xanthophylls/pharmacology , Aquaculture
14.
Biomedicines ; 11(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38137376

ABSTRACT

Autism spectrum disorder (ASD) prevalence is emerging with an unclear etiology, hindering effective therapeutic interventions. Recent studies suggest potential renin-angiotensin system (RAS) alterations in different neurological pathologies. However, its implications in ASD are unexplored. This research fulfills the critical gap by investigating dual arms of RAS and their interplay with Notch signaling in ASD, using a valproic acid (VPA) model and assessing astaxanthin's (AST) modulatory impacts. Experimentally, male pups from pregnant rats receiving either saline or VPA on gestation day 12.5 were divided into control and VPA groups, with subsequent AST treatment in a subset (postnatal days 34-58). Behavioral analyses, histopathological investigations, and electron microscopy provided insights into the neurobehavioral and structural changes induced by AST. Molecular investigations of male pups' cortices revealed that AST outweighs the protective RAS elements with the inhibition of the detrimental arm. This established the neuroprotective and anti-inflammatory axes of RAS (ACE2/Ang1-7/MasR) in the ASD context. The results showed that AST's normalization of RAS components and Notch signaling underscore a novel therapeutic avenue in ASD, impacting neuronal integrity and behavioral outcomes. These findings affirm the integral role of RAS in ASD and highlight AST's potential as a promising treatment intervention, inviting further neurological research implications.

15.
Mar Drugs ; 21(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132951

ABSTRACT

Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.


Subject(s)
Arthritis, Rheumatoid , Microalgae , Humans , Microalgae/metabolism , Arthritis, Rheumatoid/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Dietary Supplements , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism
16.
Animals (Basel) ; 13(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958112

ABSTRACT

Fish, constantly exposed to environmental stressors due to their aquatic habitat and high metabolic rates, are susceptible to oxidative stress. This review examines the interplay between oxidative stress and fish reproduction, emphasizing the potent antioxidant properties of astaxanthin. Our primary objective is to highlight astaxanthin's role in mitigating oxidative stress during critical reproductive stages, leading to improved gamete quality, ovary development, and hormone levels. We also explore its practical applications in aquaculture, including enhanced pigmentation and overall fish health. We conducted a comprehensive literature review, analyzing studies on astaxanthin's antioxidant properties and its impact on fish reproduction. Astaxanthin, a carotenoid pigment, effectively combats reactive oxygen species, inhibiting lipid peroxidation and maintaining membrane integrity. It significantly enhances reproductive success in fish and improves overall fish health in aquaculture settings. This review reveals astaxanthin's multifaceted benefits in fish health and reproduction, offering economic advantages in aquaculture. Future research should delve into species-specific responses, optimal dosages, and the long-term effects of astaxanthin supplementation to inform sustainable aquaculture strategies.

17.
F1000Res ; 12: 895, 2023.
Article in English | MEDLINE | ID: mdl-37767025

ABSTRACT

Background: Globally, alternative medicine is used widely by most patients for several health challenges. To evaluate the effectiveness and safety of PeaNoc XL Tablet in managing pain and inflammation, a randomized clinical trial and systematic study was designed. PeaNoc XL Tablet has been widely utilized for pain and inflammation management, but no previous studies have examined its efficacy and safety. The aim of this study was to determine the clinical effectiveness and safety profile of PeaNoc XL in patients with arthritis experiencing joint pain and inflammation. Methods: A randomized, controlled, and an open-label trial was conducted. A total of 155 patients (18 to 60 years) with arthritis were enrolled for participation. Using computer-generated random sequences, the study population was divided into two groups in a randomized manner. Group A received Standard therapy and Group B received Standard therapy with PeaNoc XL Tablet 400mg (two tablets OD after food). Results: Out of 155 patients, a total of 83 individuals were excluded from the study, leaving 72 patients who were randomly assigned to either Group A (n=36) or Group B (n=36). The administration of PeaNoc XL as an adjunct to standard therapy resulted in a significant reduction in levels of TNF-α (P<0.01), IL-1ß (P<0.001), IL-6 (P<0.01), and CRP (P<0.01) in arthritis patients experiencing joint pain and inflammation. Conversely, no notable differences were observed from the baseline in the standard therapy group. Conclusions: After 12 weeks of supplementation of PeaNoc XL tablets, as an add-on therapy helps in the reduction of pain score, joint stiffness, and physical stiffness. Trial registration:  CTRI/2022/10/046693.


Subject(s)
Arthritis , Humans , Arthritis/complications , Arthritis/drug therapy , Inflammation/drug therapy , Arthralgia/drug therapy , Arthralgia/etiology , Pain , Tablets
18.
Mar Drugs ; 21(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37755080

ABSTRACT

BACKGROUND: The use of conventional astaxanthin extraction methods, typically involving organic solvents, leads to a heightened environmental impact. The aim of this study was to explore the potential use of environmentally friendly extraction solvents, such as vegetable oils, for recovering the shrimp by-product astaxanthin. METHODS: Ultrasound-assisted extraction (UAE) in vegetable oils, including olive oil (OO), sunflower oil (SO), and flaxseed oil (FO), was employed to extract astaxanthin. The astaxanthin antioxidant activity was evaluated using an ABTS assay, and a mixture of gum Arabic and soy lecithin was used to form coacervates to produce astaxanthin encapsulation. RESULTS: A by-product-vegetable oil ratio of 1:60, extraction time of 210 min, 60% amplitude of the extraction process, and the use of OO as the extracting medium resulted in an astaxanthin yield of 235 ± 4.07 µg astaxanthin/g by-products. The astaxanthin encapsulation efficiency on day 0 and astaxanthin recovery on day 1 were recorded at 66.6 ± 2.7% and 94.4 ± 4.6%, respectively. CONCLUSIONS: The utilization of OO as an extraction solvent for astaxanthin from shrimp by-products in UAE represents a novel and promising approach to reducing the environmental impact of shrimp by-products. The effective astaxanthin encapsulation efficiency highlights its potential application in food industries.


Subject(s)
Plant Oils , Ultrasonics , Animals , Xanthophylls , Crustacea , Solvents
19.
Chem Biol Interact ; 383: 110684, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37648051

ABSTRACT

Ferroptosis is a form of regulated cell death closely associated with oxidative stress and mitochondrial dysfunction and is characterised by the accumulation of reactive oxygen species (ROS) and lipid species and iron overload. Damage to human lens epithelial cells (LECs) is associated with age-related cataract progression. Astaxanthin (ATX), a carotenoid with natural antioxidant properties, counteracts ferroptosis in the treatment of various degenerative diseases. However, this mechanism has not been reported with respect to cataract treatment. In this study, the differential expression levels of glutathione peroxidase 4 (GPX4) in the lens of young and aged mice were analysed. Continuous ATX supplementation for 8 months upregulated GPX4 expression in the mouse LECs and delayed the progression of ferroptosis. Upon treatment with erastin, ROS and malondialdehyde accumulated and the mitochondrial membrane potential decreased. At the same time, the expressions of GPX4, SLC7A11, and ferritin were suppressed in human LECs. All of these phenomena were partially reversed by ATX and Fer-1, a ferroptosis inhibitor. This study confirmed that the ATX-mediated targeting of GPX4 might alleviate human LECs damage by inhibiting ferroptosis and ameliorating oxidative stress and that this could represent a promising therapeutic approach for age-related cataract.


Subject(s)
Cataract , Ferroptosis , Humans , Animals , Mice , Reactive Oxygen Species , Oxidative Stress , Cataract/drug therapy , Cataract/prevention & control , Epithelial Cells
20.
Antioxidants (Basel) ; 12(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37627546

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a significant public health issue owing to its high incidence and consequences, and its global prevalence is presently 30% and rising, necessitating immediate action. Given the current controversies related to NAFLD, the search for novel therapeutic interventions continues. Astaxanthin is a carotenoid that primarily originates from marine organisms. It is the best antioxidant among carotenoids and one of the most significant components in treating NAFLD. The use of astaxanthin, a xanthophyll carotenoid, as a dietary supplement to treat chronic metabolic diseases is becoming more evident. According to growing data, astaxanthin may be able to prevent or even reverse NAFLD by reducing oxidative stress, inflammation, insulin resistance, lipid metabolism, and fibrosis. Astaxanthin might become a viable therapeutic or treatment option for NAFLD in the upcoming years. Elucidating the impact and mechanism of astaxanthin on NAFLD would not only establish a scientific basis for its clinical application, but also potentially enhance the precision of experimental methodology for future investigations targeting NAFLD treatment. This review explores the potential preventive and therapeutic effects of astaxanthin on liver disorders, especially NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL