Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Lasers Med Sci ; 39(1): 56, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329547

ABSTRACT

Photobiomodulation (PBM) induced by non-ionizing radiations emitted from low-power lasers and light-emitting diodes (LEDs) has been used for various therapeutic purposes due to its molecular, cellular, and systemic effects. At the molecular level, experimental data have suggested that PBM modulates base excision repair (BER), which is responsible for restoring DNA damage. There is a relationship between the misfunction of the BER DNA repair pathway and the development of tumors, including breast cancer. However, the effects of PBM on cancer cells have been controversial. Breast cancer (BC) is the main public health problem in the world and is the most diagnosed type of cancer among women worldwide. Therefore, the evaluation of new strategies, such as PBM, could increase knowledge about BC and improve therapies against BC. Thus, this work aims to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the mRNA levels from BER genes in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm-2, 0.77 W cm-2) and blue LED (482 J cm-2, 5.35 W cm-2), alone or in combination, and the relative mRNA levels of the APTX, PolB, and PCNA genes were assessed by reverse transcription-quantitative polymerase chain reaction. The results suggested that exposure to low-power red laser and blue LED decreased the mRNA levels from APTX, PolB, and PCNA genes in human breast cancer cells. Our research shows that photobiomodulation induced by low-power red laser and blue LED decreases the mRNA levels of repair genes from the base excision repair pathway in MCF-7 and MDA-MB-231 cells.


Subject(s)
Breast Neoplasms , Low-Level Light Therapy , Humans , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Proliferating Cell Nuclear Antigen/metabolism , Lasers , DNA Repair/genetics , Low-Level Light Therapy/methods
2.
Acta Pharm Sin B ; 12(2): 511-531, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35256932

ABSTRACT

Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.

3.
Redox Biol ; 41: 101877, 2021 05.
Article in English | MEDLINE | ID: mdl-33607499

ABSTRACT

Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability.


Subject(s)
Selenium , Trace Elements , Copper , Genomic Instability , Humans , Neurons , Zinc
4.
Angew Chem Int Ed Engl ; 59(19): 7450-7455, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32109332

ABSTRACT

Direct measurement of DNA repair enzyme activities is important both for the basic study of cellular repair pathways as well as for potential new translational applications in their associated diseases. NTH1, a major glycosylase targeting oxidized pyrimidines, prevents mutations arising from this damage, and the regulation of NTH1 activity is important in resisting oxidative stress and in suppressing tumor formation. Herein, we describe a novel molecular strategy for the direct detection of damaged DNA base excision activity by a ratiometric fluorescence change. This strategy utilizes glycosylase-induced excimer formation of pyrenes, and modified DNA probes, incorporating two pyrene deoxynucleotides and a damaged base, enable the direct, real-time detection of NTH1 activity in vitro and in cellular lysates. The probe design was also applied in screening for potential NTH1 inhibitors, leading to the identification of a new small-molecule inhibitor with sub-micromolar potency.


Subject(s)
DNA Repair , Deoxyribonuclease (Pyrimidine Dimer)/chemistry , Antimutagenic Agents/pharmacology , DNA Damage , Deoxyribonuclease (Pyrimidine Dimer)/antagonists & inhibitors , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Oxidation-Reduction , Oxidative Stress , Pyrimidines/chemistry
5.
Acta Neuropathol Commun ; 8(1): 7, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005289

ABSTRACT

DNA damage is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, relationships between DNA damage accumulation, DNA damage response (DDR), and upper and lower motor neuron vulnerability in human ALS are unclear; furthermore, it is unknown whether epigenetic silencing of DNA repair pathways contributes to ALS pathogenesis. We tested the hypotheses that DNA damage accumulates in ALS motor neurons along with diminished DDR, and that DNA repair genes undergo hypermethylation. Human postmortem CNS tissue was obtained from ALS cases (N = 34) and age-matched controls without neurologic disease (N = 15). Compared to age-matched controls, abasic sites accumulated in genomic DNA of ALS motor cortex and laser capture microdissection-acquired spinal motor neurons but not in motor neuron mitochondrial DNA. By immunohistochemistry, DNA damage accumulated significantly in upper and lower motor neurons in ALS cases as single-stranded DNA and 8-hydroxy-deoxyguanosine (OHdG) compared to age-matched controls. Significant DDR was engaged in ALS motor neurons as evidenced by accumulation of c-Abl, nuclear BRCA1, and ATM activation. DNA damage and DDR were present in motor neurons at pre-attritional stages and throughout the somatodendritic attritional stages of neurodegeneration. Motor neurons with DNA damage were also positive for activated p53 and cleaved caspase-3. Gene-specific promoter DNA methylation pyrosequencing identified the DNA repair genes Ogg1, Apex1, Pnkp and Aptx as hypomethylated in ALS. In human induced-pluripotent stem cell (iPSC)-derived motor neurons with familial ALS SOD1 mutations, DNA repair capacity was similar to isogenic control motor neurons. Our results show that vulnerable neurons in human ALS accumulate DNA damage, and contrary to our hypothesis, strongly activate and mobilize response effectors and DNA repair genes. This DDR in ALS motor neurons involves recruitment of c-Abl and BRCA1 to the nucleus in vivo, and repair of DNA double-strand breaks in human ALS motor neurons with SOD1 mutations in cell culture.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Damage , DNA Repair , Motor Cortex/metabolism , Motor Neurons/metabolism , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Adult , Aged , Aged, 80 and over , Cell Death/genetics , Female , Genes, BRCA1 , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Mutation , Neuroglia/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Up-Regulation
6.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G464-G478, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31984785

ABSTRACT

The frequency of esophageal adenocarcinoma is rising despite widespread use of proton pump inhibitors (PPIs), which heal reflux esophagitis but do not prevent reflux of weakly acidic gastric juice and bile in Barrett's esophagus patients. We aimed to determine if weakly acidic (pH 5.5) bile salt medium (WABM) causes DNA damage in Barrett's cells. Because p53 is inactivated frequently in Barrett's esophagus and p38 can assume p53 functions, we explored p38's role in DNA damage response and repair. We exposed Barrett's cells with or without p53 knockdown to WABM, and evaluated DNA damage, its response and repair, and whether these effects are p38 dependent. We also measured phospho-p38 in biopsies of Barrett's metaplasia exposed to deoxycholic acid (DCA). WABM caused phospho-H2AX increases that were blocked by a reactive oxygen species (ROS) scavenger. WABM increased phospho-p38 and reduced bromodeoxyuridine incorporation (an index of S phase entry). Repair of WABM-induced DNA damage proceeded through p38-mediated base excision repair (BER) associated with reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease I (Ref-1/APE1). Cells treated with WABM supplemented with ursodeoxycholic acid (UDCA) exhibited enhanced p38-mediated responses to DNA damage. All of these effects were observed in p53-intact and p53-deficient Barrett's cells. In patients, esophageal DCA perfusion significantly increased phospho-p38 in Barrett's metaplasia. WABM exposure generates ROS, causing oxidative DNA damage in Barrett's cells, a mechanism possibly underlying the rising frequency of esophageal adenocarcinoma despite PPI usage. p38 plays a central role in oxidative DNA damage response and Ref-1/APE1-associated BER, suggesting potential chemopreventive roles for agents like UDCA that increase p38 activity in Barrett's esophagus.NEW & NOTEWORTHY We found that weakly acidic bile salt solutions, with compositions similar to the refluxed gastric juice of gastroesophageal reflux disease patients on proton pump inhibitors, cause oxidative DNA damage in Barrett's metaplasia that could contribute to the development of esophageal adenocarcinoma. We also have elucidated a critical role for p38 in Barrett's metaplasia in its response to and repair of oxidative DNA damage, suggesting a potential chemopreventive role for agents like ursodeoxycholic acid that increase p38 activity in Barrett's esophagus.


Subject(s)
Barrett Esophagus/enzymology , DNA Damage , DNA Repair , Deoxycholic Acid/toxicity , Epithelial Cells/drug effects , Esophageal Mucosa/drug effects , Oxidative Stress/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Cell Line, Transformed , Cell Proliferation/drug effects , Epithelial Cells/enzymology , Epithelial Cells/pathology , Esophageal Mucosa/enzymology , Esophageal Mucosa/pathology , Female , Histones/metabolism , Humans , Hydrogen-Ion Concentration , Male , Phosphorylation , Primary Cell Culture , S Phase Cell Cycle Checkpoints/drug effects , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ursodeoxycholic Acid/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics
7.
Int J Mol Sci ; 20(19)2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31546611

ABSTRACT

Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.


Subject(s)
5-Methylcytosine/metabolism , DNA Demethylation , DNA Glycosylases/metabolism , DNA, Plant/genetics , Plants/enzymology , DNA Glycosylases/chemistry , DNA Methylation , DNA, Plant/chemistry , Endosperm/metabolism , Gene Expression Regulation, Plant , Genomic Instability/genetics , Ovule/metabolism , Pollen/metabolism , Stress, Physiological/genetics
8.
J Cell Mol Med ; 23(10): 6797-6804, 2019 10.
Article in English | MEDLINE | ID: mdl-31338966

ABSTRACT

Berberine (BBR) is a natural isoquinoline alkaloid, which is used in traditional medicine for its anti-microbial, anti-protozoal, anti-diarrhoeal activities. Berberine interacts with DNA and displays anti-cancer activities, yet its effects on cellular DNA repair and on synthetic treatments with chemotherapeutic drugs remain unclear. In this study, we investigated the effects of BBR on DNA repair and on sensitization of breast cancer cells to different types of DNA damage anti-tumoural drugs. We found BBR arrested cells in the cell cycle S phase and induced DNA breaks. Cell growth analysis showed BBR sensitized MDA-MB-231 cells to cisplatin, camptothecin and methyl methanesulfonate; however, BBR had no synergistic effects with hydroxurea and olaparib. These results suggest BBR only affects specific DNA repair pathways. Western blot showed BBR down-regulated XRCC1 expressions, and the rescued XRCC1 recovered the resistance of cancer cells to BBR. Therefore, we conclude that BBR interferes with XRCC1-mediated base excision repair to sensitize cancer cells to chemotherapeutic drugs. These finding can contribute to understanding the effects of BBR on cellular DNA repair and the clinical employment of BBR in treatment of breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Berberine/pharmacology , Breast Neoplasms/pathology , DNA Repair/drug effects , X-ray Repair Cross Complementing Protein 1/metabolism , Camptothecin/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , DNA Breaks/drug effects , Down-Regulation/drug effects , Female , Humans , Hydroxyurea/pharmacology , Neoplasm Proteins/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , S Phase/drug effects
9.
Zhongguo Zhong Yao Za Zhi ; 43(14): 2985-2990, 2018 Jul.
Article in Chinese | MEDLINE | ID: mdl-30111059

ABSTRACT

To study the protective effects of Wuzi Yanzong recipe on DNA oxidative damage of testis germ cells in natural ageing rats based on Nrf2/HO-1 signaling pathway and base excision repair (BER). In the study, 16-month-old SPF grade male SD rats were randomly divided into three groups, namely ageing model group, and low and high-dose Wuzi Yanzong recipe groups (WZ, 1, 4 g·kg⁻¹). In addition, 2-month-old SD rats were used as adult control group (10 rats in each group). The ageing model group and the adult control group were fed with normal diet for 4 months. WZ groups were given medicated feed for 4 months. After fasting for 12 hours, the rats were put to death. Then, the testes were immediately removed. The vitality of superoxide dismutase (SOD) and malondialdehyde (MDA) content in testis were detected by xanthine oxidase method and thiobarbituric acid (TBA) method. The levels of Nrf2 and 8-OHdG were detected by immunofluorescence. The protein expression levels of Nrf2, HO-1, NQO1, APE1, OGG1 and XRCC1 were detected by Western blot. Compared with the ageing model group, WZ significantly increased the SOD vitality and decreased MDA content of testis. In addition, immunofluorescence results showed that WZ significantly attenuated testicular DNA oxidative damage and improved antioxidant capacity. Such changes were accompanied by the down-regulation of DNA oxidative damage response protein 8-OHdG levels and the up-regulation of Nrf2 levels. Moreover, Western blot results showed that WZ significantly increased the protein expression levels of Nrf2, HO-1 and NQO1 of the testis germ cells, when compared with ageing model group. In parallel, the protein expression levels of APE1, OGG1 and XRCC1 were significantly decreased. In conclusion, WZ improves ageing-related DNA oxidative damage via Nrf2/HO-1 and BER pathways.


Subject(s)
Testis , Aging , Animals , DNA , Drugs, Chinese Herbal , Male , NF-E2-Related Factor 2 , Oxidative Stress , Rats , Rats, Sprague-Dawley
10.
Neurochem Res ; 41(1-2): 270-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26801173

ABSTRACT

It is well established now that dietary calorie restriction (CR) leads to extension of life span in many species, although the exact mechanism of this effect is still eluding. In the present study, we examined the effect of 40 % CR imposed during a prolonged period of life span (from 6 to 30 months) of rats on the activity of DNA polymerase ß (pol ß) in view of its role in short gap base excision DNA repair and template driven primer extension. DNA pol ß activity is very low at this late age. However, cortical neuronal extracts prepared from CR rats of 30 months age showed significantly higher pol ß protein levels and activity when compared to control 30 month old rats. Yet, one-nucleotide gap repair in old control neurons and an improved efficiency in CR neurons could be visualized only after supplementation of the extracts with T4 DNA ligase indicating the lack of CR affect on ligase activity. No impressive primer extension activity is seen either in the CR or old control neurons. These results are taken to convey that extended CR through adult life leads to improved pol ß activity and therefore, pol ß dependent DNA gap repair activity.


Subject(s)
Caloric Restriction , Cerebral Cortex/metabolism , DNA Polymerase beta/metabolism , DNA Repair , Diet , Neurons/metabolism , Adenosine Triphosphate/metabolism , Animals , Cerebral Cortex/cytology , Cerebral Cortex/enzymology , DNA Ligases/metabolism , Neurons/enzymology , Rats
11.
Bioorg Med Chem ; 23(5): 1102-11, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25650313

ABSTRACT

Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50=2.6µM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavonoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease.


Subject(s)
DNA Glycosylases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Cell Line, Tumor , DNA Repair , Drug Evaluation, Preclinical , Flavonoids/chemistry , Humans , Models, Molecular , Structure-Activity Relationship
12.
DNA Repair (Amst) ; 13: 50-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24286669

ABSTRACT

Tandem helical repeats have emerged as an important DNA binding architecture. DNA glycosylase AlkD, which excises N3- and N7-alkylated nucleobases, uses repeating helical motifs to bind duplex DNA and to selectively pause at non-Watson-Crick base pairs. Remodeling of the DNA backbone promotes nucleotide flipping of the lesion and the complementary base into the solvent and toward the protein surface, respectively. The important features of this new DNA binding architecture that allow AlkD to distinguish between damaged and normal DNA without contacting the lesion are poorly understood. Here, we show through extensive mutational analysis that DNA binding and N3-methyladenine (3mA) and N7-methylguanine (7mG) excision are dependent upon each residue lining the DNA binding interface. Disrupting electrostatic or hydrophobic interactions with the DNA backbone substantially reduced binding affinity and catalytic activity. These results demonstrate that residues seemingly only involved in general DNA binding are important for catalytic activity and imply that base excision is driven by binding energy provided by the entire substrate interface of this novel DNA binding architecture.


Subject(s)
Adenine/analogs & derivatives , DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Guanine/analogs & derivatives , Adenine/metabolism , Catalytic Domain , DNA Glycosylases/genetics , DNA Repair , DNA-Binding Proteins/genetics , Guanine/metabolism , Models, Molecular , Mutation , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Substrate Specificity
13.
Mol Metab ; 2(4): 480-90, 2013.
Article in English | MEDLINE | ID: mdl-24327963

ABSTRACT

Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans.

SELECTION OF CITATIONS
SEARCH DETAIL