Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564033

ABSTRACT

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Subject(s)
Cymbopogon , Drinking Water , Kidney Calculi , Polyethylene Glycols , Polyethyleneimine , Urolithiasis , Animals , Rats , Petroselinum , Ammonium Chloride , Gum Arabic , Emulsions , Catalase , Magnesium , Nanogels , Urolithiasis/chemically induced , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Seeds , Antioxidants/therapeutic use , Ethanol , Glutathione , Oxalates , Ethylene Glycols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
2.
Article in English | MEDLINE | ID: mdl-38436528

ABSTRACT

This study aimed to assess the technical feasibility of incorporating selenized Lactobacillus spp. microencapsulated via spray drying into cattle feed. Gum Arabic and maltodextrin were used as encapsulating agents. The encapsulation process was carried out with a drying air flow rate of 1.75 m3 /min, inlet air temperature of 90°C, and outlet air temperature of 75°C. The viability of the encapsulated microorganisms and the technological characteristics of the obtained microparticles were evaluated. Microorganisms were incorporated into beef cattle feed to supplement their diet with up to 0.3 mg of Se per kilogram of feed. The encapsulated particles, consisting of a 50/50 ratio of gum Arabic/maltodextrin at a 1:20 proportion of selenized biomass to encapsulant mixture, exhibited superior technical viability for application in beef cattle feed. Supplemented feeds displayed suitable moisture, water activity, and hygroscopicity values, ensuring the preservation of viable microorganisms for up to 5 months of storage, with an approximate count of 4.5 log CFU/g. Therefore, supplementing beef cattle feed with selenized and microencapsulated lactic acid bacteria represents a viable technological alternative, contributing to increased animal protein productivity through proper nutrition.

3.
Phytother Res ; 38(3): 1509-1521, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272848

ABSTRACT

Gum arabic/acacia (GA), derived from Acacia trees, is a versatile natural product offering a broad spectrum of applications. Its rich content of soluble dietary fibers, coupled with a low caloric profile, renders GA a valuable dietary component associated with numerous health benefits. Furthermore, its fermentation by gut microbiota yields short-chain fatty acids, renowned for their positive impact on health. Immunomodulation, a crucially regulated mechanism in the body, serves to fend off pathogenic infections by releasing pro-inflammatory cytokines. However, prolonged synthesis of these cytokines can lead to chronic inflammation, tissue damage, and potentially contribute to the development of autoimmune diseases and cancer. Hence, there is an urgent need to identify plant-based biomolecules that can effectively reduce inflammation and inhibit inflammation-induced complications or disorders. In this context, edible biomolecules like GA are gaining prominence for their noteworthy immunomodulatory properties. Therefore, in the present review we have explored the role of GA in immunomodulation, inflammation, and inflammation-associated metabolic diseases, and cancer.


Subject(s)
Acacia , Neoplasms , Humans , Gum Arabic/pharmacology , Inflammation , Dietary Fiber , Cytokines
4.
J Sci Food Agric ; 104(3): 1335-1346, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37782290

ABSTRACT

BACKGROUND: Extract of ciriguela residue was microencapsulated by spray-drying and freeze-drying using maltodextrin (M), gum arabic (GA) and their mixture (50% M; 50% GA on dry basis) as encapsulating agents. Total phenolic compounds (TPC), antioxidant activity, physicochemical properties, profile of phenolic compounds by HPLC with diode-array detection and storage stability were evaluated. RESULTS: TPC content of powders ranged from 306.9 to 451.2 mg gallic acid equivalent g-1 dry powder. The spray-dried powder prepared using GA as encapsulating agent had higher TPC content and antioxidant activity, whereas the freeze-dried powder had lower moisture and water activity. Spray-dried microcapsules had spherical shape, whereas freeze-dried products had irregular structures. The profile of phenolic compounds identified in samples was similar, with rutin (342.59 and 72.92 µg g-1 ) and quercetin (181.02 and 43.24 µg g-1 ) being the major compounds in liquid and freeze-dried extracts, respectively, whereas myricetin (97.41 µg g-1 ) was predominant in spray-dried ones. Storage stability tests carried out for 45 days at 7 or 25 °C revealed no statistically significant difference in TPC. CONCLUSION: Ciriguela residue can be considered a source of TPC and used as ingredient with good antioxidant activity in the food industry. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Phenols , Antioxidants/chemistry , Powders/chemistry , Phenols/chemistry , Freeze Drying , Plant Extracts/chemistry , Gum Arabic/chemistry
5.
Int J Biol Macromol ; 253(Pt 4): 126969, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37730006

ABSTRACT

Microencapsulation techniques establish a protective barrier around a sensitive compound, reducing vulnerability to external influences and offering controlled release. This work evaluates microencapsulation of Brazilian seed known as pink pepper (Schinus terebinthifolius) extract incorporated with green propolis extract, (main propolis font from the South America native plant Baccharis dracunculifolia DC) to enhancement antioxidant activity through synergic interaction, comparing to the extracts individually. Four treatments were produced using maltodextrin and combined with gum arabic as encapsulating agent, employing two different microencapsulation technique applied (spray drying and freeze drying) to assess their impact on physicochemical properties. The incorporation of gum arabic into matrix yielded higher encapsulation efficiency values, exhibiting significant differences for both encapsulation techniques. Combining the two encapsulation agents afforded greater protection of the bioactive compounds, resulting in an increase of approximately 31 % in the inhibition of the DPPH● radical. In controlled release analysis, maltodextrin exhibits the best protective effect on total phenolic compounds during intestinal release, whereas combining maltodextrin and gum arabic enhanced protection during gastric phase. Microcapsules may contribute to the protection of important bioactive compound, possessing a wide range of applications such as flavors encapsulation in food industry, lipids, antioxidants and pharmaceutical industry for controlled drug release.


Subject(s)
Gum Arabic , Propolis , Gum Arabic/chemistry , Delayed-Action Preparations , Antioxidants/pharmacology , Antioxidants/chemistry , Freeze Drying , Capsules , Plant Extracts/chemistry
6.
Int J Biol Macromol ; 233: 123554, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740109

ABSTRACT

Glycated conjugation of plant protein such as soy protein isolate (SPI) with saccharides is one popular strategy to modify the physicochemical characteristics of these plant protein resources, which may be affected by the glycation methods including dry-heating and wet-heating. In this study, the impact of these two glycation methods on the rheological and emulsifying properties of a binary system made by SPI-gum Arabic (GA) was studied. The results indicated that dry-heating conjugates had higher viscosity and more elastic characteristics than those wet-heating conjugates. The emulsifying properties of SPI-GA conjugates by different preparation routes were evaluated by various oil phases including eugenol, cinnamaldehyde and soybean oil. Overall, emulsions stabilized by dry-heating conjugates showed lower zeta-potential value than those with wet heating conjugates. The interfacial properties of these conjugates were compared using soybean oil emulsion as a model. Higher emulsifying ability and stability were obtained by emulsions with dry-heating conjugates, which was attributed to their more compact structures, higher protein adsorption capacity and thicker viscoelastic films formed at the interface, and therefore enhanced electrostatic repulsion between droplets. The findings in this study are useful for fabrication and utilization of protein-polysaccharide glycation conjugates as emulsifiers in functional foods.


Subject(s)
Gum Arabic , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Gum Arabic/chemistry , Maillard Reaction , Soybean Oil , Emulsifying Agents/chemistry , Plant Proteins
7.
Food Chem ; 400: 134052, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36067691

ABSTRACT

The perceived health properties of hemp seed oil, as one of the few plant-basedsources of omega-3 and omega-6 fatty acids with an ideal ratio of 1:3, suggest its incorporation in food-grade emulsions to improve its water solubility and oxidative stability. The current research's main aim was nanoemulsification of hemp seed oil using the oil-in-water emulsification method followed by ultrasonication. The entrapment efficiency of the nanoemulsions for antioxidant ascorbyl palmitate and its impact on oxidative stability of the oil was also evaluated. Gum arabic: maltodextrin in 75:25 ratio could result in nanoemulsion with entrapment efficiency of 97.10 % for ascorbyl palmitate and radical scavenging activity of oil-soluble bioactives of 92.13 %. Moreover, incorporation of ascorbyl palmitate could effectively retard the oxidation, specifically in nanoemulsions containing gum Arabic. The optimum formulation of nanoemulsion having an average droplet size of 293 nm can be applied as an ideal vegetarian source of omega-3 fatty acids.


Subject(s)
Antioxidants , Fatty Acids, Omega-3 , Ascorbic Acid/analogs & derivatives , Cannabis , Emulsifying Agents , Emulsions , Fatty Acids, Omega-6 , Gum Arabic , Plant Extracts , Water
8.
J Tradit Complement Med ; 12(6): 599-607, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325241

ABSTRACT

Background & aim: Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the large intestine and rectum that oxidative stress and severe inflammation are the main features of this disease. Previous studies have shown that separate consumption of basil and gum arabic can reduce inflammation and oxidative stress. The aim of the study was evaluating the effect of treatment with basil seeds given together with gum arabic on healing, inflammation and oxidative stress in the course of experimental colitis in rats. Experimental procedure: A total number of 50 male rats were used, randomly assigned to five groups of 10 rats each. Colitis was induced in rats by enemas with 4% solution od acetic acid. Four days after induction of colitis, rats were treated for next 4 days with saline or combination of basil seeds plus gum arabic (1 mg/kg) or sulfasalazine (100 mg/g) rectally. The experiment was terminated after last dose of treatment. Rats without induction of colitis were used as a sham group. Results: Acetic acid-induced colitis increased the macroscopic and histopathological damage scores of the colon as well as colon levels of MDA(Malondialdehyde), MPO(Myeloperoxidase), TNFα(Tissue necrosis factor α), IL6 (Interleukin 6)and IL17(Interleukin 17) and decreased SOD(Superoxide Dismutase), GPx (Glutathione Peroxidase) and IL10 (Interleukin 10) levels compared with the control group(P < 0.001). Treatment with basil and gum arabic reduced macroscopic and histopathological damage scores (P < 0.01) of the colon, MDA, MPO, TNFα, IL6(P < 0.001) and IL17 (P < 0.01) levels of the colon and increased SOD, GPx and IL10 levels compared to the colitis group (P < 0.01). Conclusion: Rectal administration of combination of basil seeds plus gum arabic after induction of colitis, exhibits antioxidant and anti-inflammatory effects, and accelerates the healing of the colon in experimental colitis evoked by acetic acid.

9.
Plants (Basel) ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365342

ABSTRACT

Acacia nilotica (synonym: Vachellia nilotica (L.) P.J.H.Hurter and Mabb.) is considered an important plant of the family Fabaceae that is used in traditional medicine in many countries all over the world. In this work, the antiviral potentialities of the chemically characterized essential oils (EOs) obtained from the bark and fruits of A. nilotica were assessed in vitro against HAV, HSV1, and HSV2. Additionally, the in silico evaluation of the main compounds in both EOs was carried out against the two proteins, 3C protease of HAV and thymidine kinase (TK) of HSV. The chemical profiling of the bark EOs revealed the identification of 32 compounds with an abundance of di- (54.60%) and sesquiterpenes (39.81%). Stachene (48.34%), caryophyllene oxide (19.11%), and spathulenol (4.74%) represented the main identified constituents of bark EO. However, 26 components from fruit EO were assigned, with the majority of mono- (63.32%) and sesquiterpenes (34.91%), where trans-caryophyllene (36.95%), Z-anethole (22.87%), and γ-terpinene (7.35%) represented the majors. The maximum non-toxic concentration (MNTC) of the bark and fruits EOs was found at 500 and 1000 µg/mL, respectively. Using the MTT assay, the bark EO exhibited moderate antiviral activity with effects of 47.26% and 35.98% and a selectivity index (SI) of 2.3 and 1.6 against HAV and HSV1, respectively. However, weak activity was observed via the fruits EO with respective SI values of 3.8, 5.7, and 1.6 against HAV, HSV1, and HSV2. The in silico results exhibited that caryophyllene oxide and spathulenol (the main bark EO constituents) showed the best affinities (ΔG = -5.62, -5.33, -6.90, and -6.76 kcal/mol) for 3C protease and TK, respectively. While caryophyllene (the major fruit EO component) revealed promising binding capabilities against both proteins (ΔG = -5.31, -6.58 kcal/mol, respectively). The molecular dynamics simulation results revealed that caryophyllene oxide has the most positive van der Waals energy interaction with 3C protease and TK with significant binding free energies. Although these findings supported the antiviral potentialities of the EOs, especially bark EO, the in vivo assessment should be tested in the intraoral examination for these EOs and/or their main constituents.

10.
Polymers (Basel) ; 14(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36236142

ABSTRACT

This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.

11.
BMC Complement Med Ther ; 22(1): 149, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35650596

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are important effectors of the innate defense system. Cathelicidins, (CRAMP in mouse/rat, LL-37 in human) is one of the two major classes of AMPs in humans. The upregulation of LL-37 synthesis is a novel non-antibiotic approach to prevent or treat infectious diseases. Butyrate was found to induce Cathelicidin expression. Gum Arabic (GA), an exudate from Acacia senegaltree, is known for its prebiotic effects. Fermentation of GA by colonic bacteria increases serum butyrate concentrations. This study was conducted to investigate if GA supplementation can increase Cathelicidin expression in macrophages. METHODS: The study was an in-vivo experiment in mice. Thirty mice were randomly divided into three groups, ten mice per group. The two intervention groups received GA dissolved in drinking water in two different concentrations (15% w/v and 30% w/v) for 28 days. The third group served as a control. Blood was collected on Day 29 to isolate peripheral blood mononuclear cells (PBMC) which were cultured to obtain monocyte derived macrophages (MDMs). The transcription level of CRAMP was determined in MDMsby qPCR. RESULTS: We detected a significant increase (p = 0.023) in CRAMP expression in MDMs following 28 days of 15% GA supplementation, compared to the control group, but there was no significant change in the group on 30% GA supplementation (p = 0.055). CONCLUSION: GAsupplementation can induce Cathelicidin expression in MDMs and the effect is dose dependent.


Subject(s)
Acacia , Gum Arabic , Animals , Antimicrobial Cationic Peptides , Butyrates , Dietary Supplements , Gum Arabic/metabolism , Gum Arabic/pharmacology , Leukocytes, Mononuclear , Macrophages/metabolism , Mice , Rats , Cathelicidins
12.
J Sci Food Agric ; 102(11): 4830-4842, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35229290

ABSTRACT

BACKGROUND: The emulsifying, antioxidant and foaming properties of soy protein isolate hydrolysates (SPH) can be improved by the addition of gum arabic (GA). We investigated the effects of different hydrolysis conditions on the complexation of SPH and GA, and the effects of the complex on the properties of emulsions. RESULTS: Fluorescence spectroscopy showed that the addition of GA had a stronger effect on bromelain and pepsin hydrolysates than trypsin hydrolysate, and therefore had a higher binding constant (KA ) and a larger number of binding sites (n). The addition of GA could also improve protein solubility and emulsifying ability. The emulsions prepared with complexes, especially the complex of GA and SPH obtained by pepsin hydrolysis for 3 h, had a high absolute charge value, uniform particle size distribution, stable morphology, and good storage stability. After storage, the emulsification index (CI) of the emulsion only increased to 23.08%; its 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity was 24.37 ± 1.22% and its 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+ ) free radical scavenging activity was largely retained. CONCLUSION: During long-term storage, pepsin-treated protein (especially protein treated for 3 h) and GA can form a stable emulsion with antioxidant properties. This work provides new ideas for the development of natural and safe emulsifiers that have antioxidant properties and can be stored long-term and used in the food industry. © 2022 Society of Chemical Industry.


Subject(s)
Acacia , Gum Arabic , Antioxidants , Emulsions/chemistry , Free Radicals , Gum Arabic/chemistry , Hydrolysis , Pepsin A , Protein Hydrolysates/chemistry , Soybean Proteins , Water/chemistry
13.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208961

ABSTRACT

Acacia seyal is an important source of gum Arabic. The availability, traditional, medicinal, pharmaceutical, nutritional, and cosmetic applications of gum acacia have pronounced its high economic value and attracted global attention. In addition to summarizing the inventions/patents applications related to gum A. seyal, the present review highlights recent updates regarding its phytoconstituents. Traditional, cosmetic, pharmaceutical, and medicinal uses with the possible mechanism of actions have been also reviewed. The patent search revealed the identification of 30 patents/patent applications of A. seyal. The first patent related to A. seyal was published in 1892, which was related to its use in the prophylaxis/treatment of kidney and bladder affections. The use of A. seyal to treat cancer and osteoporosis has also been patented. Some inventions provided compositions and formulations containing A. seyal or its ingredients for pharmaceutical and medical applications. The inventions related to agricultural applications, food industry, cosmetics, quality control of gum Arabic, and isolation of some chemical constituents (L-rhamnose and arabinose) from A. seyal have also been summarized. The identification of only 30 patents/patent applications from 1892 to 15 November 2021 indicates a steadily growing interest and encourages developing more inventions related to A. seyal. The authors recommend exploring these opportunities for the benefit of society.


Subject(s)
Acacia/chemistry , Cosmetics , Gum Arabic , Phytochemicals , Cosmetics/chemistry , Cosmetics/therapeutic use , Gum Arabic/chemistry , Gum Arabic/therapeutic use , Humans , Patents as Topic , Phytochemicals/chemistry , Phytochemicals/therapeutic use
14.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35163718

ABSTRACT

Silver nanoparticles (AgNPs) are the most commercialized nanomaterials and presumed to be biocompatible based on the biological effects of the bulk material. However, their physico-chemical properties differ significantly to the bulk materials and are associated with unique biological properties. The study investigated the antimicrobial and cytotoxicity effects of AgNPs synthesized using gum arabic (GA), sodium borohydride (NaBH4), and their combination as reducing agents. The AgNPs were characterized using ultraviolet-visible spectrophotometry (UV-Vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The anti-bacterial activity was assessed using agar well diffusion and microdilution assays, and the cytotoxicity effects on Caco-2, HT-29 and KMST-6 cells using MTT assay. The GA-synthesized AgNPs (GA-AgNPs) demonstrated higher bactericidal activity against all bacteria, and non-selective cytotoxicity towards normal and cancer cells. AgNPs reduced by NaBH4 (C-AgNPs) and the combination of GA and NaBH4 (GAC-AgNPs) had insignificant anti-bacterial activity and cytotoxicity at ≥50 µg/mL. The study showed that despite the notion that AgNPs are safe and biocompatible, their toxicity cannot be overruled and that their toxicity can be channeled by using biocompatible polymers, thereby providing a therapeutic window at concentrations that are least harmful to mammalian cells but toxic to bacteria.


Subject(s)
Acacia , Metal Nanoparticles , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Caco-2 Cells , Gum Arabic/pharmacology , Humans , Mammals , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Silver/chemistry , Spectroscopy, Fourier Transform Infrared
15.
Food Chem ; 381: 132199, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35121320

ABSTRACT

Pomegranate seed oil (PSO) is rich in highly oxidizable bioactive conjugated linolenic acids (cLnA), limiting food applications. This study aimed to investigate the oxidative stability (room temperature for 90 days; 60 °C, for 10 days, vacuum-sealed or not), physical and morphological properties of PSO microparticles produced by complex coacervation (CC). An instant caffè latte beverage was formulated with PSO microparticles (30%) as a proof-of-application vehicle for the microparticles and physical properties were evaluated. CC was compared with spray drying. Although non-coacervated microparticles showed superior oxidative stability, coacervated microparticles were overall stable for 60 days and cLnA retention reduced 42% after γ-tocopherol exhaustion. Coacervated microparticles' structure was collapsed after 90 days. Storage under vacuum increased the oxidative stability at 60 °C. Microparticles showed high solubility and thermal stability, addition to the product promoted negligible changes in physical properties. This study brings new insights regarding cLnA stability and PSO application in food.


Subject(s)
Lythraceae , Pomegranate , Beverages , Plant Oils/chemistry , Seeds/chemistry
16.
Food Chem ; 373(Pt B): 131252, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34758432

ABSTRACT

Novel bioactive nanoparticles derived from crude palm oil (CPO), palm olein, and palm stearin for use in foodstuff products were produced, and their physicochemical characteristics and stability were evaluated. The nanoparticles were prepared by homogenization, using biodegradable casein or gum arabic as an encapsulating material. The encapsulation efficiency (EE), morphology, long-term stability, particle size, polydispersity index, zeta potential, pH, apparent viscosity, color parameters, total carotenoids, and antioxidant activity were determined. All nanoparticles methods produced spherical nanoparticles with EE higher than 85%. Highly homogeneous small particles (<300 nm) showing a tendency toward a yellow color were observed after 60 days of storage at 4 °C. The nanoparticles showed a carotenoid retention index higher than 40% and an antioxidant activity higher than 1,000 µM Trolox/g oil. The bioactive nanoparticles retained the carotenoids and are proposed as a green innovative product to replace synthetic colorants and antioxidants in foodstuffs.


Subject(s)
Nanoparticles , Petroleum , Antioxidants , Carotenoids , Palm Oil
17.
Animals (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36611720

ABSTRACT

Semen cryopreservation is very important in animal agriculture to maximize the number of daughters of genetically superior males and to distribute the cryopreserved semen of good males all over the world. However, the freezing process generates some damage to sperm that reduce their fertilizing ability after thawing. Moreover, egg yolk, which is the most common animal-origin cryoprotectant used in semen dilution, is considered a source of biosecurity risk. In the current study, we aimed to compare the replacement of egg yolk in the extender by gum arabic (5%) along with supplementation with antioxidant cysteine or ascorbic acid on semen quality and freezability in Noemi rams in vitro. Semen from six rams were collected with an artificial vagina two times per week. Semen evaluation parameters such as color, volume, pH, general motility, percentage motility, concentration and cell viability ratio were assessed. Spermatozoa motility and concentration were estimated with the computer-assisted semen analysis system. The semen samples were frozen using a Tris extender containing either 15% egg yolk or 5% gum arabic. For antioxidant-supplemented extenders, cysteine or ascorbic acid was dissolved at concentrations of 0.10, 0.50 or 1.0 mM in egg yolk or gum arabic extender. The semen from each ejaculate of each ram were resuspended with a specific extender with glycerol (5%); the final volume after dilution was 1 mL semen to 4 mL extender. The samples were then cooled to 4 °C for 120 min, loaded into 0.5 mL straws and frozen in liquid nitrogen for 7 days. Supplementation of gum arabic or egg yolk extenders for ram semen with antioxidants such as cysteine or ascorbic acid has beneficial effects on semen quality after cold storage or cryopreservation. However, supplementation of a 5% gum arabic extender with cysteine at 0.5 or 1 mM concentration or ascorbic acid at 0.5 mM concentration improved the quality of spermatozoa postcryopreservation. It could be concluded that gum arabic is a good alternative for egg yolk in Noemi ram semen extenders. Antioxidants are necessary to support the addition of gum arabic to the extender to help the ram spermatozoa to survive freezing-thawing and oxidative stresses.

18.
Food Chem ; 367: 129982, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34375887

ABSTRACT

Rutin, a plant flavonol characterized by a wide range of biological effects, has limited application in foods because of its low water solubility and scarce bioavailability. This work aimed to investigate the encapsulation of a rutin-rich extract (200.6 ±â€¯1.5 mg/g of rutin) from Ruta chalepensis L. in zein nanoparticles (hydrodynamic diameter of 80-170 nm) prepared by antisolvent precipitation and stabilized by gum arabic (GA). The addition of GA (1:1 mass ratio with zein) significantly reduced the instability phenomena of zein nanoparticles through the deposition of a negatively charged layer as evidenced by the zeta potential and the UV-visible measurement, suggesting an electrostatic interaction between zein and GA. It also contributed to enhancing the encapsulation efficiency of rutin and inducing a rapid release during simulated digestion. These findings show that zein/GA nanoparticles represent a promising delivery system for natural extracts, fabricated through a facile and versatile process.


Subject(s)
Nanoparticles , Ruta , Zein , Gum Arabic , Particle Size , Plant Extracts , Rutin
19.
J Am Nutr Assoc ; 41(3): 291-300, 2022.
Article in English | MEDLINE | ID: mdl-33856969

ABSTRACT

OBJECTIVE: Loss of vital bioactive components of Ficus palmata fruit extract during food processing is a major issue. Therefore, to retain the antioxidant potential and to increase the mineral bioavailability, gum arabic stabilized nanoemulsion of Fig fruit extract was prepared. METHOD: . Nanoemulsion was formulated using three different levels (1, 3, and 5%) of fig extract, however, to optimize the fig extract concentration, the amount of gum arabic and linoleic acid was kept constant. RESULTS: The average droplet size of nanoemulsion was observed in the range of 22.88-37.87 nm, whereas the Fourier Transform Infrared (FTIR) Spectroscopy confirmed the presence of functional groups in the emulsion system. Also, increased ionic concentration significantly (p < 0.05) increased the average droplet size and zeta potential of nanoemulsion during storage. Increased shear rate and temperature unveiled a slight decrease in apparent viscosity of the nanoemulsion. Non-significant (p < 0.05) difference in TBA value confirmed the oxidative stability of the emulsion. Significantly (p < 0.05) higher mineral bioavailability for calcium was observed as compared to iron and zinc. CONCLUSION: Our results manifested improved anti-oxidant activity, mineral bioavailability, and oxidative stability of Fig extract nanoemulsion, suggesting its potential use as a therapeutic alternative.


Subject(s)
Ficus , Antioxidants/analysis , Emulsions/analysis , Fruit/chemistry , Gum Arabic/analysis , Minerals/analysis , Plant Extracts/analysis
20.
Foods ; 10(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34945595

ABSTRACT

The encapsulation of bioactive-rich plant extracts is an effective method of preventing their damage or loss of activity during processing and storage. Here, the techno-functional properties of microcapsules developed from Moringa oleifera leaf powder (MoLP) extract (core) with maltodextrin (MD), gum Arabic (GA), and a combination (MDGA) (coatings) were assessed. The bulk and tap density were 0.177, 0.325 and 0.297 g/mL and 0.13, 0.295 and 0.259 g/mL for GA, MD and MDGA microcapsules, respectively. Flowability properties of microcapsules indicated an intermediate flow except for GA which had a poor flow. The moisture content of the microcapsules ranged from 1.47% to 1.77% with no significant differences (p > 0.05) observed. All the microcapsules had high water solubility (86.35% for GA to 98.74% for MD and 90.51% for MDGA). Thermogravimetric analyses revealed that encapsulation enhanced the thermal stability of the core material. The X-ray diffraction analysis revealed that the microcapsules and extracts have an amorphous nature, which was validated by the surface morphology analysis that showed amorphous, irregular, and flake-like attributes except for MDGA microcapsules which had slightly spherical and agglomerated surfaces. The Fourier Transform Infra-Red spectra of the microcapsules showed the presence of C-O and O-H aromatic rings as well as amine groups. New spectra were observed at 1177, 1382 and 1411 cm-1 for MDGA, MD and GA, respectively, after encapsulation, which connotes a slight modification in the chemical structural pattern after encapsulation. Storage stability tests (28 days at 4, 25 and 40 °C) showed that the microcapsules were most stable at 4 °C and the stability differs significantly (p ≤ 0.05) with coating material type and temperature with MDGA showing better storage stability than others. Altogether, the attributes of the MDGA microcapsules were comparatively better than either MD or GA alone. The present data, therefore, demonstrate an effective encapsulation process for MoLP extract that can serve as fortificants in processed food products where MoLP may be used.

SELECTION OF CITATIONS
SEARCH DETAIL