Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.998
Filter
Add more filters

Publication year range
1.
Acta Parasitol ; 69(2): 1192-1200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605153

ABSTRACT

AIM OF THE STUDY: The growing resistance of helminth parasites to currently available commercial anthelmintic drugs, combined with apprehensions regarding detrimental chemical residues in livestock products, has sparked an interest in exploring medicinal plants as an alternative strategy for treating helminthiasis. As a result, this study was designed to investigate the anthelmintic activity of crude methanolic extracts (CME) of Saussurea costus root on Ascaridia.galli, a pathogenic nematode of poultry. MATERIALS AND METHODS: In vitro, the anthelmintic effect of Saussurea costus root was evaluated in comparison to commercial anthelmintic, levamisole on the adult nematode parasites, A.galli using worm motility inhibition (WMI) test. The CME of S.costus was also evaluated for in vivo anthelmintic activity in chickens experimentally infected with Ascaridia galli. For the in vivo study, one hundred-day-old chickens were orally infected with embryonated eggs of A. galli worms. The efficacy of the plant extract as an anthelmintic was assessed through two tests: faecal egg count reduction (FECR) test and worm count reduction (WCR) test. The study investigated three distinct doses of plant extract under in vivo setup: 500 mg kg-1 body weight (bw), 1000 mg kg-1 bw, and 2000 mg kg-1 bw. RESULTS: In vitro, all the tested concentrations of S.costus (25 mg/ml, 50 mg/ml, and 100 mg/ml) showed a significant (P < 0.001) anthelmintic effects on live adult A. galli worms in terms of inhibition of worm motility at different hours post-treatment. At the highest concentration of the extract, we observed worm motility inhibition of 100% at 24 h post-exposure. On day 14 post-treatment, all birds were slaughtered, and adult A. galli worms were subsequently retrieved from their small intestines. Birds treated with CME extract of S. costus root exhibited a significant (P < 0.001) reduction in faecal egg count. However, the administration of the extract at the dosage of 500 mg kg-1bw to the birds did not reveal any significant (P > 0.05) differences in the worm count compared to the negative control group. The CME of S. costus at a dose of 2000 mg kg-1bw showed the highest anthelmintic activity by inducing 83.10% FECR and 76.47% WCR. CONCLUSION: In conclusion, the root extract of S. costus has a promising anthelmintic activity on A. galli as demonstrated by the results of the present experiment.


Subject(s)
Anthelmintics , Ascaridia , Ascaridiasis , Chickens , Plant Extracts , Poultry Diseases , Saussurea , Animals , Ascaridia/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Anthelmintics/pharmacology , Chickens/parasitology , Saussurea/chemistry , Ascaridiasis/veterinary , Ascaridiasis/drug therapy , Ascaridiasis/parasitology , Parasite Egg Count , Feces/parasitology , Plant Roots/chemistry , Levamisole/pharmacology , Levamisole/therapeutic use
2.
Cell Mol Life Sci ; 81(1): 197, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664263

ABSTRACT

Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.


Subject(s)
Drug Evaluation, Preclinical , Heart , Tissue Engineering , Humans , Animals , Drug Evaluation, Preclinical/methods , Tissue Engineering/methods , Organoids/metabolism , Organoids/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Heart Defects, Congenital/genetics , Lab-On-A-Chip Devices
3.
Acta Obstet Gynecol Scand ; 103(7): 1329-1338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38637997

ABSTRACT

INTRODUCTION: Sufficient levels of vitamin D have been associated with higher chances for both clinical pregnancy and live birth among women undergoing assisted reproductive techniques, whereas low levels of maternal vitamin D have been associated with preeclampsia and late miscarriage. In Denmark, subgroups at risk for low vitamin D levels, including neonates and toddlers, are recommended to use supplementation. The aim was to study the level of vitamin D3 among neonates born after in vitro fertilization compared with neonates from the general population. MATERIAL AND METHODS: In this cohort study a random sample of 1326 neonates representing the general population and 1200 neonates conceived by in vitro fertilization born in Denmark from 1995 to 2002 were identified from registries covering the whole Danish population. Information on use of assisted reproduction was collected from the Danish In Vitro Fertilization register, ICD-10 code: DZ358F. 25-Hydroxyvitamin D was measured from dried blood spots routinely collected by heel prick 48-72 h after birth and corrected according to the hematocrit fraction for capillary blood of neonates. Linear regression analysis was performed, both crude and adjusted, for predefined putative confounders, identified through directed acyclic graphs. RESULTS: Vitamin D3 analysis could be performed from a total of 1105 neonates from the general population and 1072 neonates conceived by in vitro fertilization that were subsequently included in the study. The median vitamin D3 was 24.0 nmol/L (interquartile range [IQR] 14.1-39.3) and 33.0 nmol/L (IQR 21.3-48.8) among neonates from the general population and neonates conceived by in vitro fertilization, respectively. The adjusted mean difference between neonates from the general population and those conceived by in vitro fertilization was 6.1 nmol/L (95% confidence interval 4.1-8.1). CONCLUSIONS: In this study, children born after in vitro fertilization have a higher vitamin D3 than a random sample of neonates in Denmark.


Subject(s)
Cholecalciferol , Fertilization in Vitro , Humans , Infant, Newborn , Female , Cholecalciferol/blood , Denmark/epidemiology , Pregnancy , Male , Adult , Cohort Studies , Registries , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/blood
4.
Plant Foods Hum Nutr ; 79(2): 489-496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642194

ABSTRACT

This study explores the impact of co-ingesting cereals and legumes on starch and protein during simulated infant in vitro digestion. Various legumes (chickpeas, lentils, peas) were added to cereals (durum wheat, brown rice, white maize), and their effects on starch and protein hydrolysis were analyzed. Substituting 50% of cereal with legumes increased proteins, minerals, and dietary fiber. Infant food with legumes exhibited smoother pasting properties. Legumes in cereal purées led to varying starch hydrolysis trends, with the lowest values in durum wheat with chickpea and all cereal blends with peas. Resistant starch levels exceeding 50% were found in infant food samples. Digested protein hydrolysis increased with legumes in durum wheat, except for peas. Brown rice mixtures decreased significantly compared to the control with chickpeas (61%) and peas (42%), while lentil blends increased by 46%. Legumes generally did not significantly affect starch bioavailability, even with α-amylase inhibitors. Lentil-cereal purées could enhance infant food nutritional value.


Subject(s)
Dietary Proteins , Digestion , Edible Grain , Fabaceae , Infant Food , Starch , Starch/metabolism , Edible Grain/chemistry , Infant Food/analysis , Humans , Fabaceae/chemistry , Infant , Dietary Proteins/analysis , Nutritive Value , Infant Nutritional Physiological Phenomena , Dietary Fiber/analysis , Hydrolysis , Lens Plant/chemistry , Triticum/chemistry , Cicer/chemistry , Oryza/chemistry , Pisum sativum/chemistry
5.
Reprod Biol Endocrinol ; 22(1): 39, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580962

ABSTRACT

BACKGROUND: In livestock breeding, oocyte cryopreservation is crucial for preserving and transferring superior genetic traits. This study was conducted to examine the additional effect of melatonin to maturation and vitrification media on the in vitro developmental capacity, mitochondrial distribution, and intensity of buffalo oocytes. The study involved obtaining ovaries from a slaughterhouse and conducting two phases. In the first phase, high-quality oocytes were incubated in a maturation medium with or without 10-9M melatonin for 22 h (at 38.5°C in 5% CO2). Matured oocytes were fertilized in vitro and cultured in SOF media for seven days. In the second phase, vitrified in vitro matured oocytes were stored in vitrified media (basic media (BM) containing a combination of cryoprotectants (20% Ethyl Glycol and 20% Dimethyl sulfoxide), with or without melatonin, and then stored in liquid nitrogen. Normal vitrified/thawed oocytes were fertilized in vitro and cultured as described. Finally, the matured oocytes from the fresh and vitrified/thawed groups, both with and without melatonin, were stained using DAPI and Mitotracker red to detect their viability (nuclear maturation), mitochondrial intensity, and distribution using a confocal microscope. The study found that adding 10-9M melatonin to the maturation media significantly increased maturation (85.47%), fertilization rate (84.21%)cleavage (89.58%), and transferable embryo (48.83%) rates compared to the group without melatonin (69.85%,79.88%, 75.55%, and 37.25% respectively). Besides that, the addition of melatonin to the vitrification media improved the recovery rate of normal oocytes (83.75%), as well as the cleavage (61.80%) and transferable embryo (27.00%) rates when compared to the vitrified TCM group (67.46%, 51.40%, and 17.00%, respectively). The diffuse mitochondrial distribution was higher in fresh with melatonin (TCM + Mel) (80%) and vitrified with melatonin (VS2 + Mel groups) (76.70%), Furthermore, within the same group, while the mitochondrial intensity was higher in the TCM + Mel group (1698.60) than other group. In conclusion, Melatonin supplementation improves the developmental competence and mitochondrial distribution in buffalo oocytes in both cases(in vitro maturation and vitrification).


Subject(s)
Buffaloes , Melatonin , Animals , Melatonin/pharmacology , Oocytes , Cryopreservation/veterinary , Vitrification , Fertilization in Vitro
6.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612907

ABSTRACT

Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.


Subject(s)
Fatty Acids, Omega-3 , Geographic Atrophy , Wet Macular Degeneration , Humans , Fatty Acids, Unsaturated/therapeutic use , Fatty Acids , Fatty Acids, Omega-3/therapeutic use
7.
Mar Drugs ; 22(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38667779

ABSTRACT

With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals.


Subject(s)
Bone and Bones , Dietary Supplements , Minerals , Seafood , Animals , Bone and Bones/metabolism , Hydrolysis , Salmon/metabolism , Biological Availability , Fish Proteins/metabolism , Fishes/metabolism , Protein Hydrolysates/chemistry , Powders
8.
Carbohydr Polym ; 335: 122081, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616099

ABSTRACT

The study explored the plasma-activated water (PAW)-assisted heat-moisture treatment (HMT) on the structural, physico-chemical properties, and in vitro digestibility of extrusion-recrystallized starch. Native starch of hausa potatoes underwent modification through a dual process involving PAW-assisted HMT (PHMT) followed by extrusion-recrystallization (PERH) using a twin-screw extruder. The PHMT sample showed surface roughness and etching with a significantly greater (p ≤ 0.05) RC (20.12 %) and ΔH (5.86 J/g) compared to DHMT. In contrast, PERH-induced structural damage, resulting in an irregular block structure, and altered the crystalline pattern from A to B + V-type characterized by peaks at 17.04°, 19.74°, 22°, and 23.94°. DSC analysis showed two endothermic peaks in all the extrusion-recrystallized samples, having the initial peak attributed to the melting of structured amylopectin chains and the second one linked to the melting of complexes formed during retrogradation. Dual-modified samples displayed notably increased transition temperatures (To1 74.54 and 74.17 °C, To2 122.65 and 121.49 °C), along with increased RS content (43.76 %-45.30 %). This study envisages a novel approach for RS preparation and broadens the utilization of PAW in starch modification synergistically with environmentally friendly techniques.


Subject(s)
Hyperthermia, Induced , Solanum tuberosum , Hot Temperature , Starch , Water
9.
Methods Mol Biol ; 2788: 197-207, 2024.
Article in English | MEDLINE | ID: mdl-38656515

ABSTRACT

The best Vaccinium corymbosum plant growth under in vitro conditions can be achieved by using the right composition and pH of the medium. For the initial phase of in vitro culture, a combination of cytokinins-mostly zeatin-can usually be used. Organic supplementation of the medium enables the use of a replacement for the expensive natural cytokinin used in micropropagation of highbush blueberry. This chapter describes the experiments with silicon Hydroplus™ Actisil (Si), coconut water (CW), and different pH (5.0; 5.5, and 6.0) as a stress factor. The addition of 200 mg dm-3 silicon solution and 15% coconut water strongly stimulated highbush blueberry plant growth in vitro. Moreover, silicon solution benefits the negative effects of higher pH of the medium used for micropropagation of V. corymbosum. Maximum vegetative development of blueberry explants was obtained at pH 5.


Subject(s)
Blueberry Plants , Culture Media , Culture Media/chemistry , Hydrogen-Ion Concentration , Blueberry Plants/growth & development , Vaccinium/growth & development , Acclimatization , Silicon/pharmacology
10.
Clin Med Insights Case Rep ; 17: 11795476241242265, 2024.
Article in English | MEDLINE | ID: mdl-38559382

ABSTRACT

Infertility affects 15% of couples in reproductive age worldwide. In women in particular, infertility can be caused by various abnormalities, with polycystic ovary syndrome (PCOS) being the most common. Currently, there are many assisted reproductive techniques (ART) available to combat the burden of infertility. However, positive results are not guaranteed. The administration of inositol has been shown to increase positive reproductive outcomes in women undergoing ART. Here we present a series of clinical cases in which women with a history of infertility and previously failed ART, supplemented with a specific 3.6:1 MYO:DCI ratio, antioxidants, vitamins, and minerals for a period of 1 to 3 months before undergoing in vitro fertilization (IVF). In this series of case reports, we provide preliminary evidence that supplementation with a specific 3.6:1 MYO to DCI ratio, as well as antioxidants, vitamins, and minerals may contribute positively to female fertility in women undergoing IVF, with a history of primary or secondary infertility and previously failed ART.

11.
Vet Med Sci ; 10(3): e1432, 2024 05.
Article in English | MEDLINE | ID: mdl-38527006

ABSTRACT

BACKGROUND: Trichomonas gallinae is a parasite that causes canker and severe loss and death, especially in young pigeons. Metronidazole (MTZ) is the recommended drug for treating avian trichomoniasis. Due to drug resistance, non-chemical alternatives, such as medicinal plant extracts, are also considered possible therapies for this disease. OBJECTIVES: This study compares the antitrichomonal effects of MTZ with extracts of Camellia sinensis and Ziziphus vulgaris on T. gallinae in vitro. METHODS: Samples of T. gallinae were taken from infected pigeons. Multi-well plates with different concentrations (5, 10, 25, 50 and 100 µg/mL) of plant extracts were used for the in vitro study. RESULTS: The minimum inhibitory concentration (MIC) of C. sinensis extract was 25 µg/mL over 24 h, compared to 50 µg/mL for MTZ. The MIC value of the Z. vulgaris extracts was 50 µg/mL. CONCLUSIONS: The results suggest that the extracts of Z. vulgaris and C. sinensis, as potential natural agents, could have anti-avian trichomoniasis properties. This study also shows that MTZ, C. sinensis and Z. vulgaris are equally effective in preventing the growth of T. gallinae trophozoites in the culture.


Subject(s)
Camellia sinensis , Trichomonas Infections , Trichomonas , Ziziphus , Animals , Trichomonas Infections/drug therapy , Trichomonas Infections/veterinary , Antitrichomonal Agents/pharmacology , Antitrichomonal Agents/therapeutic use , Metronidazole/pharmacology , Metronidazole/therapeutic use , Columbidae
12.
Chem Biodivers ; 21(5): e202301788, 2024 May.
Article in English | MEDLINE | ID: mdl-38484132

ABSTRACT

Curcuma angustifolia Roxb. is a plant with medicinal potential, traditionally used to treat different diseases. The present study aimed to determine the antidiabetic activity of C. angustifolia rhizome in vitro and in silico. The methanolic extract of C. angustifolia rhizome was analyzed by FTIR and GC-MS to determine the phytochemicals present. The antidiabetic potential of the extract was evaluated by different assays in vitro. The extract inhibited both α-amylase and α-glucosidase enzymes and the glucose diffusion through the dialysis membrane in a concentration-dependent manner with IC50 values of 530.39±0.09, 293.75±0.11, and 551.74±0.3 µg/ml respectively. The methanolic extract also improved yeast cell's ability to take up glucose across plasma membranes and the adsorption of glucose. The findings were supported by molecular docking studies. The results showed that the methanol extract of C. angustifolia rhizome has significant antidiabetic activity and thus can be also studied to isolate the potential compound with antidiabetic activities.


Subject(s)
Curcuma , Hypoglycemic Agents , Methanol , Molecular Docking Simulation , Plant Extracts , Rhizome , alpha-Amylases , alpha-Glucosidases , Curcuma/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Rhizome/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Methanol/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Glucose/metabolism
13.
J Tradit Complement Med ; 14(2): 191-202, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481549

ABSTRACT

Objective: Qu's formula 3 (QUF3) is a patented Chinese herbal medicine used to alleviate anxiety disorders during in vitro fertilization-embryo transfer (IVF-ET). This study aimed to identify the potential active constituents and molecular mechanisms of action of QUF3 in alleviating anxiety disorders during IVF-ET. Methods: The active constituents of QUF3 were identified from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and literatures. Potential targets of anxiety disorder and IVF-ET were identified using GeneCards, Online Mendelian Inheritance in Man, and the UniProt Database. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify the potential mechanisms. Molecular docking and molecular dynamics (MD) simulations were performed to visualize and verify the results. Results: Quercetin, sophoranol, luteolin, kaempferol, and neurotoxin inhibitors were identified as the TOP 5 active constituents of QUF3. Forty common targets were shared among QUF3, anxiety disorders, and IVF-ET. Tumour necrosis factor, interleukin-6, vascular endothelial growth factor A, epidermal growth factor, interleukin-1B, cellular tumour antigen p53, matrix metalloproteinase-9, and oestrogen receptor were identified as the TOP 8 potential targets through PPI analysis. A total of 697 biological processes, 20 cellular components, and 54 molecular functions were identified. Further, 91 KEGG pathways were revealed to be enriched. The TOP 5 active constituents were verified to have good binding activity with the TOP 8 potential targets using molecular docking and MD simulations. Conclusions: The mechanism of QUF3 in alleviating anxiety disorders in patients undergoing IVF-ET may be related to the interleukin-17 and tumour necrosis factor signalling pathways, inhibiting inflammatory responses and antioxidants, which may provide a solid foundation for the clinical application and further study of QUF3.

14.
BMC Plant Biol ; 24(1): 190, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486151

ABSTRACT

BACKGROUND: Rosmarinic acid (RA), like other phenolic compounds, is sources of antioxidants and anti-inflammatory agents in medicinal plants. In vitro culture of plants can improve the medicinal plants' metabolite profile and phenolic compound quantity. To date, various methods have been proposed to increase this medicinal metabolite in plants, among which the use of bioelicitors can be mentioned. In the present study, a native isolate of heterocystous cyanobacteria, Nostoc spongiaeforme var. tenue ISB65, was used to stimulate the production of biomass and content of RA in Mentha piperita L. (peppermint) grown in vitro from apical meristem. Mentha piperita L. explants were inoculated in half strength Murashige and Skoog (1/2 MS) medium containing cyanobacterial lysate (CL). After 50 days of culturing, the growth indices, the content of photosynthetic pigments, and RA in control and treated plants were measured. RESULTS: CL inoculation resulted in a significant enhancement in the vegetative growth indices of peppermint, including root and shoot length, plant biomass and leaf number. The content of photosynthetic pigments also increased in cyanobacteria-treated plants. Inoculation with CL increased the RA content by 2.3-fold, meaning that the plants treated with CL had the highest RA content (7.68 mg. g- 1 dry weight) compared to the control (3.42 mg. g- 1 dry weight). Additionally, HPLC analysis revealed the presence of several auxins in CL. CONCLUSIONS: The presence of auxins and the chemical content of CL such as K+ and Ca2+, as regulators of metabolic pathways and molecular activities of cells, may be responsible for the enhanced growth and phenolic compounds of plants under tissue culture conditions. An improvement in RA content in the tissue culture of medicinal plants treated with CL was reported for the first time in this investigation.


Subject(s)
Cyanobacteria , Plants, Medicinal , Mentha piperita/chemistry , Mentha piperita/metabolism , Mentha piperita/microbiology , Rosmarinic Acid , Meristem , Biomass , Phenols/metabolism , Indoleacetic Acids/metabolism , Plants, Medicinal/chemistry
15.
BMC Vet Res ; 20(1): 102, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481214

ABSTRACT

BACKGROUND: Effective therapy for many infections is becoming difficult due to the evolutionary development of drug resistance, and hence, the development of alternative treatment options mainly from herbs is crucial. The objective of this study was to investigate the antibacterial effects of ethanol extracts of stem bark, leaves and roots of Combretum molle against Streptococcus equi isolated from clinical cases of strangles using in vitro tests. METHODS: Plant extraction was performed using a maceration technique with 80% ethanol. The mean zone of inhibition was determined using the agar well diffusion method. Six serial dilutions with different concentrations (10%, 5%, 2.5%, 1.25%, 0.625% and 0.3125%) of each plant extract were prepared using dimethyl sulfoxide (DMSO). A modified agar microdilution method was used to determine the minimum inhibitory concentration (MICs) of the extracts. RESULTS: The results revealed that all plant extracts showed significant antibacterial activity. The root extract showed the best antibacterial effect compared to the others at all concentrations, with MZI values of 27.5, 23.225, 20.5, 17.9, 15.65 and 12.25 for the respective concentrations mentioned above and an MIC of 250 µg/ml. It was followed by the stem bark extract, which had MZI values of 24.67, 22.35, 18.225, 16.175, 11.125 and 8.2 millimeters and an MIC of 375 µg/ml. The leaf extract also had significant activity, with MZI values of 20.175, 18.25, 15.7, 13.125, 9.4 and 6.75 in millimeters and an MIC of 500 µg/ml. There was a direct relationship between the concentrations of the plant extracts and the level of inhibition. CONCLUSION: The test plant extracts were compared with the conventional antibiotic penicillin G, and the results indicated that the parts of the test plant have significant antibacterial activity, which may support traditional claims and could be candidates for alternative drug discoveries.


Subject(s)
Combretum , Streptococcus equi , Horses , Animals , Equidae , Plant Bark , Agar , Plant Extracts/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests/veterinary , Ethanol
16.
J Agric Food Chem ; 72(10): 5237-5246, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427027

ABSTRACT

In this study, egg yolk selenium peptides (Se-EYP) were prepared using double-enzyme hydrolysis combined with a shearing pretreatment. The properties of the selenopeptides formed were then characterized, including their yield, composition, molecular weight distribution, antioxidant activity, in vitro digestion, and immunomodulatory activity. The peptide yield obtained after enzymatic hydrolysis using a combination of alkaline protease and neutral protease was 74.5%, of which 82.6% had a molecular weight <1000 Da. The selenium content of the lyophilized solid product was 4.01 µg/g. Chromatography-mass spectrometry analysis showed that 88.6% of selenium in Se-EYP was in the organic form, of which SeMet accounted for 60.3%, SeCys2 for 21.8%, and MeSeCys for 17.9%. After being exposed to in vitro simulated digestion, Se-EYP still had 65.1% of oligopeptides present, and the in vitro antioxidant activity was enhanced. Moreover, Se-EYP exhibited superior immune detection indices, including immune organ index, level of immune factors in the serum, histopathological changes in the spleen, and selenium content in the liver. Our results suggest that Se-EYP may be used as selenium-enriched ingredients in functional food products.


Subject(s)
Selenium , Selenium/analysis , Antioxidants , Egg Yolk/chemistry , Peptides/chemistry
17.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474665

ABSTRACT

Vitamin D3 deficiency is a global phenomenon, which can be managed with supplementation and food fortification. However, vitamin D3 bioaccessibility may depend on factors such as matrix composition and interactions throughout the gastrointestinal (GI) tract. This research focused on the effect of different matrices on vitamin D3 content during digestion, as well as the effect of pH on its bioaccessibility. The INFOGEST protocol was employed to simulate digestion. Three different types of commercial supplements, two foods naturally rich in vitamin D3, and three fortified foods were investigated. High-Performance Liquid Chromatography was used to determine the initial vitamin D3 content in the supplements and foods, as well as after each digestion stage. The results indicate that the foods exhibited higher bioaccessibility indices compared to the supplements and a higher percentage retention at the end of the gastric phase. The pH study revealed a positive correlation between an increased gastric pH and the corresponding content of vitamin D3. Interestingly, exposing the matrix to a low pH during the gastric phase resulted in an increased intestinal content of D3. Vitamin D3 is more bioaccessible from foods than supplements, and its bioaccessibility is susceptible to changes in gastric pH. Fasting conditions (i.e., gastric pH = 1) enhance the vitamin's bioaccessibility.


Subject(s)
Cholecalciferol , Dietary Supplements , Cholecalciferol/chemistry , Dietary Supplements/analysis , Food, Fortified/analysis , Gastrointestinal Tract/metabolism , Hydrogen-Ion Concentration , Digestion , Biological Availability
18.
Theriogenology ; 219: 167-179, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38437767

ABSTRACT

Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90ß). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.


Subject(s)
Semen , Sperm-Ovum Interactions , Male , Swine , Animals , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Spermatozoa/metabolism , Oocytes , Zona Pellucida/metabolism , Albumins/metabolism , Tyrosine/metabolism
19.
Theriogenology ; 221: 47-58, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554613

ABSTRACT

Zinc, an essential trace mineral, exerts a pivotal influence in various biological processes. Through zinc concentration analysis, we found that the zinc concentration in the bovine embryo in vitro culture (IVC) medium was significantly lower than that in bovine follicular fluid. Therefore, this study explored the impact of zinc sulfate on IVC bovine embryo development and investigated the underlying mechanism. The results revealed a significant decline in zygote cleavage and blastocyst development rates when zinc deficiency was induced using zinc chelator N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) in culture medium during embryo in vitro culture. The influence of zinc-deficiency was time-dependent. Conversely, supplementing 0.8 µg/mL zinc sulfate to culture medium (CM) increased the cleavage and blastocyst formation rate significantly. Moreover, this supplementation reduced reactive oxygen species (ROS) levels, elevated the glutathione (GSH) levels in blastocysts, upregulated the mRNA expression of antioxidase-related genes, and activated the Nrf2-Keap1-ARE signaling pathways. Furthermore, 0.8 µg/mL zinc sulfate enhanced mitochondrial membrane potential, maintained DNA stability, and enhanced the quality of bovine (in vitro fertilization) IVF blastocysts. In conclusion, the addition of 0.8 µg/mL zinc sulfate to CM could enhance the antioxidant capacity, activates the Nrf2-Keap1-ARE signaling pathways, augment mitochondrial membrane potential, and stabilizes DNA, ultimately improving blastocyst quality and in vitro bovine embryo development.


Subject(s)
Antioxidants , Zinc , Female , Animals , Cattle , Antioxidants/pharmacology , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Zinc/pharmacology , Zinc/metabolism , Zinc Sulfate/pharmacology , NF-E2-Related Factor 2/metabolism , Embryo Culture Techniques/veterinary , Embryonic Development , Fertilization in Vitro/veterinary , Blastocyst/physiology , Glutathione/metabolism , DNA/metabolism
20.
Sci Rep ; 14(1): 7088, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38528143

ABSTRACT

Osteoporosis (OP) is a prevalent global disease characterized by bone mass loss and microstructural destruction, resulting in increased bone fragility and fracture susceptibility. Our study aims to investigate the potential of kaempferol in preventing and treating OP through a combination of network pharmacology and molecular experiments. Kaempferol and OP-related targets were retrieved from the public database. A protein-protein interaction (PPI) network of common targets was constructed using the STRING database and visualized with Cytoscape 3.9.1 software. Enrichment analyses for GO and KEGG of potential therapeutic targets were conducted using the Hiplot platform. Molecular docking was performed using Molecular operating environment (MOE) software, and cell experiments were conducted to validate the mechanism of kaempferol in treating OP. Network pharmacology analysis identified 54 overlapping targets between kaempferol and OP, with 10 core targets identified. The primarily enriched pathways included atherosclerosis-related signaling pathways, the AGE/RAGE signaling pathway, and the TNF signaling pathway. Molecular docking results indicated stable binding of kaempferol and two target proteins, AKT1 and MMP9. In vitro cell experiments demonstrated significant upregulation of AKT1 expression in MC3T3-E1 cells (p < 0.001) with kaempferol treatment, along with downregulation of MMP9 expression (p < 0.05) compared to the control group. This study predicted the core targets and pathways of kaempferol in OP treatment using network pharmacology, and validated these findings through in vitro experiments, suggesting a promising avenue for future clinical treatment of OP.


Subject(s)
Bone Diseases, Metabolic , Drugs, Chinese Herbal , Osteoporosis , Humans , Matrix Metalloproteinase 9 , Kaempferols/pharmacology , Molecular Docking Simulation , Network Pharmacology , Osteoporosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL