Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Mini Rev Med Chem ; 24(1): 39-59, 2024.
Article in English | MEDLINE | ID: mdl-37138419

ABSTRACT

Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , RNA, Viral , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Protease Inhibitors , Peptide Hydrolases/pharmacology , Molecular Docking Simulation
2.
Prev Nutr Food Sci ; 28(2): 141-148, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37416792

ABSTRACT

Medicinal plants are promising sources of natural substances with biological functions and several drugs have been developed from traditional medicine. This study aimed to determine the chemical components of a hydromethanolic extract from Foeniculum vulgare seeds. Total phenolic, flavonoid, and flavonol contents were assessed, and gas chromatography-mass spectrometry (GC-MS) analysis was performed. To investigate the anti-inflammatory activity of F. vulgare seed hydromethanolic extract, its effects on protein denaturation, protease activity, membrane stabilization, and heat-induced hemolysis in red blood cells were evaluated in vitro. F. vulgare seed extract showed significant inhibition of protein denaturation (35.68±0.4%), protease activity (58.09±0.1%), and heat-induced hemolysis in red blood cells (9.67±0.3%) at concentrations of 200, 250, and 200 µg/mL, respectively, compared to the reference drug indomethacin (P<0.001). This remarkable anti-inflammatory activity may be attributable to the abundance of flavonoids in the F. vulgare seed extract. GC-MS confirmed the presence of linalool and fatty acids (palmitic and oleic acids), which have potential anti-inflammatory activities. Therefore, the hydromethanolic extract of F. vulgare seeds may be a valuable anti-inflammatory candidate in the years ahead.

3.
Foods ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37297391

ABSTRACT

Potato (Solanum tuberosum L.) has gradually become a stable food worldwide since it can be a practical nutritional supplement and antioxidant as well as an energy provider for human beings. Financially and nutritionally, the cultivation and utility of potatoes is worthy of attention from the world. Exploring the functionality and maximizing the utilization of its component parts as well as developing new products based on the potato is still an ongoing issue. To maximize the benefits of potato and induce new high-value products while avoiding unfavorable properties of the crop has been a growing trend in food and medical areas. This review intends to summarize the factors that influence changes in the key functional components of potatoes and to discuss the focus of referenced literature which may require further research efforts. Next, it summarizes the application of the latest commercial products and potential value of components existing in potato. In particular, there are several main tasks for future potato research: preparing starchy foods for special groups of people and developing fiber-rich products to supply dietary fiber intake, manufacturing bio-friendly and specific design films/coatings in the packaging industry, extracting bioactive proteins and potato protease inhibitors with high biological activity, and continuing to build and examine the health benefits of new commercial products based on potato protein. Notably, preservation methods play a key role in the phytochemical content left in foods, and potato performs superiorly to many common vegetables when meeting the demands of daily mineral intake and alleviating mineral deficiencies.

4.
Mol Plant Microbe Interact ; 35(9): 825-834, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36104309

ABSTRACT

Potato is a major staple crop, and necrotrophic bacterial pathogens such as Pectobacterium spp. are a major threat to global food security. Most lines of cultivated potato (Solanum tuberosum) are susceptible to Pectobacterium spp., but some lines of wild potato are resistant, including Solanum chacoense M6. Despite the discovery of resistance in wild potatoes, specific resistance genes are yet to be discovered. Crude protein extract from M6 had a global effect on Pectobacterium brasiliense Pb1692 (Pb1692) virulence phenotypes. Specifically, M6 protein extracts resulted in reduced Pectobacterium exo-protease activity and motility, induced cell elongation, and affected bacterial virulence and metabolic gene expression. These effects were not observed from protein extracts of susceptible potato S. tuberosum DM1. A proteomics approach identified protease inhibitors (PIs) as candidates for S. chacoense resistance, and genomic analysis showed higher abundance and diversity of PIs in M6 than in DM1. We cloned five PIs that are unique or had high abundance in M6 compared with DM1 and purified the proteins (g18987, g28531, g39249, g40384, g6571). Four of the PIs significantly reduced bacterial protease activity, with strongest effects from g28531 and g6571. Three PIs (g18987, g28531, g6571) inhibited disease when co-inoculated with Pectobacterium pathogens into potato tubers. Two PIs (g28531, g6571) also significantly reduced Pb1692 motility and are promising as resistance genes. These results show that S. chacoense PIs contribute to bacterial disease resistance by inhibiting exo-proteases, motility, and tuber maceration and by modulating cell morphology and metabolism. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Pectobacterium , Solanum tuberosum , Solanum , Pectobacterium carotovorum , Peptide Hydrolases , Plant Diseases/microbiology , Protease Inhibitors/pharmacology , Solanum tuberosum/microbiology , Virulence/genetics
5.
mBio ; 13(3): e0078422, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35471084

ABSTRACT

The main protease, Mpro, of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here, we report quantitative reporters for Mpro function in living cells in which protease inhibition by genetic or chemical methods results in robust signal readouts by fluorescence (enhanced green fluorescent protein [eGFP]) or bioluminescence (firefly luciferase). These gain-of-signal systems are scalable to high-throughput platforms for quantitative discrimination between Mpro mutants and/or inhibitor potencies as evidenced by validation of several reported inhibitors. Additional utility is shown by single Mpro amino acid variants and structural information combining to demonstrate that both inhibitor conformational dynamics and amino acid differences are able to influence inhibitor potency. We further show that a recent variant of concern (Omicron) has an unchanged response to a clinically approved drug, nirmatrelvir, whereas proteases from divergent coronavirus species show differential susceptibility. Together, we demonstrate that these gain-of-signal systems serve as robust, facile, and scalable assays for live cell quantification of Mpro inhibition, which will help expedite the development of next-generation antivirals and enable the rapid testing of emerging variants. IMPORTANCE The main protease, Mpro, of SARS-CoV-2 is an essential viral protein required for the earliest steps of infection. It is therefore an attractive target for antiviral drug development. Here, we report the development and implementation of two complementary cell-based systems for quantification of Mpro inhibition by genetic or chemical approaches. The first is fluorescence based (eGFP), and the second is luminescence based (firefly luciferase). Importantly, both systems rely upon gain-of-signal readouts such that stronger inhibitors yield higher fluorescent or luminescent signal. The high versatility and utility of these systems are demonstrated by characterizing Mpro mutants and natural variants, including Omicron, as well as a panel of existing inhibitors. These systems rapidly, safely, and sensitively identify Mpro variants with altered susceptibilities to inhibition, triage-nonspecific, or off-target molecules and validate bona fide inhibitors, with the most potent thus far being the first-in-class drug nirmatrelvir.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Amino Acids , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Luciferases, Firefly , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
6.
Nat Prod Res ; 36(24): 6375-6380, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35105207

ABSTRACT

Serine protease Inhibitors (SPIs) abundantly reported in plant storage organs constitute important candidate molecules for antimicrobial and anticancer therapeutics. Our earlier studies had identified antimicrobial protein/or peptides (AMP) from Zingiber zerumbet rhizomes designated ZzAMP inhibiting serine protease (SP) of necrotrophic phytopathogen, Pythium myriotylum. Considering the high ethno-medicinal applications of Z. zerumbet rhizomes, present study evaluated the anti-bacterial, anti-oxidant and cytotoxic properties of ZzAMP. Though ZzAMP displayed low radical scavenging activity (IC50 1000 µg/ml), it exhibited considerable anti-bacterial activity towards the nosocomial pathogen Klebsiella pneumonia (93%), which produced maximal extracellular protease (30.6 ± 1.47 U/ml) amongst the pathogens screened. Evaluation of cytotoxic activity of ZzAMP revealed decrease in viability of cancer cell line, HeLa (IC50 115.09 µg/ml) compared to normal cells, L929 (IC50 299.95 µg/ml). Present experiments showing antimicrobial and cytotoxic activities of ZzAMP with minimal damage to normal cells are indicative of its potential as a promising nutraceutical protein.


Subject(s)
Anti-Infective Agents , Plants, Medicinal , Zingiberaceae , Rhizome/chemistry , Serine Proteinase Inhibitors , Zingiberaceae/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Bacteria , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Dietary Supplements
7.
Acta Pharm ; 72(2): 159-169, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36651513

ABSTRACT

Some compounds reported as active against SARS CoV were selected, and docking studies were performed using the main protease of SARS CoV-2 as the receptor. The docked complex analysis shows that the ligands selectively bind with the target residues and binding affinity of amentoflavone (-10.1 kcal mol-1), isotheaflavin-3'-gallate (-9.8 kcal mol-1), tomentin A and D (-8.0 and -8.8 kcal mol-1), theaflavin-3,3'-digallate (-8.6 kcal mol-1), papyriflavonol A (-8.4 kcal mol-1), iguesterin (-8.0 kcal mol-1) and savinin (-8.3 kcal mol-1) were ranked above the binding affinity of the reference, co-crystal ligand, ML188, a furan-2-carboxamide-based compound. To pinpoint the drug-like compound among the top-ranked compounds, the Lipinski's rule of five and pharmacokinetic properties of all the selected compounds were evaluated. The results detailed that savinin exhibits high gastrointestinal absorption and can penetrate through the blood-brain barrier. Also, modifying these natural scaffolds with excellent binding affinity may lead to discovering of anti-SARS CoV agents with promising safety profiles.


Subject(s)
COVID-19 , Plants, Medicinal , SARS-CoV-2 , Peptide Hydrolases , Molecular Docking Simulation , Protease Inhibitors/pharmacology
8.
J Biomol Struct Dyn ; 40(20): 10437-10453, 2022.
Article in English | MEDLINE | ID: mdl-34182889

ABSTRACT

Due to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at in silico screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2. In this study, we report plant-derived polyphenolic compounds (including flavonoids) as novel protease inhibitors against SARS-CoV-2. From virtual docking and molecular docking study, 31 polyphenolic compounds were identified as active antiviral molecules possessing well-defined binding affinity with acceptable ADMET, toxicity and lead-like or drug-like properties. Six polyphenolic compounds, namely, enterodiol, taxifolin, eriodictyol, leucopelargonidin, morin and myricetin were found to exhibit remarkable binding affinities against the proteases with taxifolin and morin exhibiting the highest binding affinity toward Mpro and PLpro respectively. Molecular dynamics simulation studies of these compounds in complex with the proteases showed that the binding of the compounds is characterized by structural perturbations of the proteases suggesting their antiviral activities. These compounds can therefore be investigated further by in vivo and in vitro techniques to assess their potential efficacy against SARS-CoV-2 and thus serve as the starting point for the development of potent antiviral agents against the deadly COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Coronavirus Papain-Like Proteases , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors
9.
J Mol Model ; 27(11): 341, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34731296

ABSTRACT

From the beginning of pandemic, more than 240 million people have been infected with a death rate higher than 2%. Indeed, the current exit strategy involving the spreading of vaccines must be combined with progress in effective treatment development. This scenario is sadly supported by the vaccine's immune activation time and the inequalities in the global immunization schedule. Bringing the crises under control means providing the world population with accessible and impactful new therapeutics. We screened a natural product library that contains a unique collection of 2370 natural products into the binding site of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). According to the docking score and to the interaction at the active site, three phenylethanoid glycosides (forsythiaside A, isoacteoside, and verbascoside) were selected. In order to provide better insight into the atomistic interaction and test the impact of the three selected compounds at the binding site, we resorted to a half microsecond-long molecular dynamics simulation. As a result, we are showing that forsythiaside A is the most stable molecule and it is likely to possess the highest inhibitory effect against SARS-CoV-2 Mpro. Phenylethanoid glycosides also have been reported to have both protease and kinase activity. This kinase inhibitory activity is very beneficial in fighting viruses inside the body as kinases are required for viral entry, metabolism, and/or reproduction. The dual activity (kinase/protease) of phenylethanoid glycosides makes them very promising anit-COVID-19 agents.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Glycosides/pharmacology , Antiviral Agents/chemistry , Binding Sites , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemistry , Drug Evaluation, Preclinical , Glucosides/chemistry , Glucosides/metabolism , Glucosides/pharmacology , Glycosides/chemistry , Glycosides/metabolism , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Phenols/chemistry , Phenols/metabolism , Phenols/pharmacology
10.
mBio ; 12(4): e0097021, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34340553

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality on a global scale. The etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initiates host cell entry when its spike protein (S) binds to its receptor, angiotensin-converting enzyme 2 (ACE2). In airway epithelia, the spike protein is cleaved by the cell surface protease TMPRSS2, facilitating membrane fusion and entry at the cell surface. This dependence on TMPRSS2 and related proteases suggests that protease inhibitors might limit SARS-CoV-2 infection in the respiratory tract. Here, we tested two serine protease inhibitors, camostat mesylate and nafamostat mesylate, for their ability to inhibit entry of SARS-CoV-2 and that of a second pathogenic coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). Both camostat and nafamostat reduced infection in primary human airway epithelia and in the Calu-3 2B4 cell line, with nafamostat exhibiting greater potency. We then assessed whether nafamostat was protective against SARS-CoV-2 in vivo using two mouse models. In mice sensitized to SARS-CoV-2 infection by transduction with human ACE2, intranasal nafamostat treatment prior to or shortly after SARS-CoV-2 infection significantly reduced weight loss and lung tissue titers. Similarly, prophylactic intranasal treatment with nafamostat reduced weight loss, viral burden, and mortality in K18-hACE2 transgenic mice. These findings establish nafamostat as a candidate for the prevention or treatment of SARS-CoV-2 infection and disease pathogenesis. IMPORTANCE The causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires host cell surface proteases for membrane fusion and entry into airway epithelia. We tested the hypothesis that inhibitors of these proteases, the serine protease inhibitors camostat and nafamostat, block infection by SARS-CoV-2. We found that both camostat and nafamostat reduce infection in human airway epithelia, with nafamostat showing greater potency. We then asked whether nafamostat protects mice against SARS-CoV-2 infection and subsequent COVID-19 lung disease. We performed infections in mice made susceptible to SARS-CoV-2 infection by introducing the human version of ACE2, the SARS-CoV-2 receptor, into their airway epithelia. We observed that pretreating these mice with nafamostat prior to SARS-CoV-2 infection resulted in better outcomes, in the form of less virus-induced weight loss, viral replication, and mortality than that observed in the untreated control mice. These results provide preclinical evidence for the efficacy of nafamostat in treating and/or preventing COVID-19.


Subject(s)
Benzamidines/pharmacology , Esters/pharmacology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Cells, Cultured , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/drug effects , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
11.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34210738

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Protease Inhibitors/therapeutic use , Pyrrolidines/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/pathology , Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Deuterium , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Lung/pathology , Mice , Mice, Transgenic , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Pyrrolidines/chemistry , SARS-CoV-2/enzymology , Sulfonic Acids , Transgenes
12.
Molecules ; 26(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467029

ABSTRACT

The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Host-Pathogen Interactions/drug effects , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , Antiviral Agents/chemistry , Biological Products/chemistry , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/physiology , Coronavirus Infections/drug therapy , Drug Evaluation, Preclinical , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2/chemistry , Viral Proteins/chemistry
13.
Nat Prod Res ; 35(10): 1690-1695, 2021 May.
Article in English | MEDLINE | ID: mdl-31198054

ABSTRACT

This work aimed to obtain and characterize protease inhibitors from A. colubrina leaves and evaluate their potential as inflammatory mediator and cell viability. The protein extract was analyzed and characterized by SDS-PAGE, RP-HPLC-PDA, MALDI-TOF/MS and Zeta potential. Bioassays were conducted in order to evaluate the cell viability in RAW 264.7, in vitro (NO and TNF-α production inhibition) and in vivo anti-inflammatory potential, inhibition rate of trypsin and hemagglutination activity from protein extract. The results revealed the presence of bands at 14, 21 and 30 kDa in SDS-PAGE, the RP-HPLC-PDA analysis showed peaks at 12, 13, 28 and 40 minutes and MALDI-TOF/MS showed peaks with 3.4, 4.7, 5.6, 9.4 and 11.2 kDa. The protein extracts presented enzymatic activity inhibition of trypsin (IC50 59.2 µgmL-1), did not show any cytotoxicity to RAW264.7 cells, hemagglutination 8HU and insignificant reduction in NO and TNF-α production and reduced anti-inflammatory potential in vivo compared to dexamethasone.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fabaceae/chemistry , Protease Inhibitors/pharmacology , Animals , Cell Lineage/drug effects , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Macrophages/drug effects , Macrophages/pathology , Mice , Particle Size , Plant Extracts/pharmacology , Plant Leaves/chemistry , RAW 264.7 Cells , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Static Electricity , Trypsin/metabolism
14.
J Mol Graph Model ; 101: 107717, 2020 12.
Article in English | MEDLINE | ID: mdl-32861974

ABSTRACT

The widespread problem of a 2019-novel coronavirus (SARS-CoV-2) strain outbreak in Wuhan, China has prompted a search for new drugs to protect against and treat this disease. It is necessary to immediately investigate this due to the mutation of the viral genome and there being no current protective vaccines or therapeutic drugs. Molecular modelling and molecular docking based on in silico screening strategies were employed to determine the potential activities of seven HIV protease (HIV-PR) inhibitors, two flu drugs, and eight natural compounds. The computational approach was carried out to discover the structural modes with a high binding affinity for these drugs on the homology structure of the Wuhan coronavirus protease (SARS-CoV-2 PR). From the theoretical calculations, all the drugs and natural compounds demonstrated various favorable binding affinities. An interesting finding was that the natural compounds tested had a higher potential binding activity with the pocket sites of SARS-CoV-2 PR compared to the groups of HIV-PR inhibitors. The binding modes of each complex illustrated between the drugs and compounds interacted with the functional group of amino acids in the binding pocket via hydrophilic, hydrophobic, and hydrogen bond interactions using the molecular dynamics simulation technique. This result supports the idea that existing protease inhibitors and natural compounds could be used to treat the new coronavirus. This report sought to provide fundamental knowledge as preliminary experimental data to propose an existing nutraceutical material against viral infection. Collectively, it is suggested that molecular modelling and molecular docking are suitable tools to search and screen for new drugs and natural compounds that can be used as future treatments for viral diseases.


Subject(s)
Antiviral Agents/pharmacology , Cysteine Endopeptidases/chemistry , Dietary Supplements , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Binding Sites , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Dioxoles/chemistry , Dioxoles/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Hydrogen Bonding , Lignans/chemistry , Lignans/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Conformation , Viral Nonstructural Proteins/metabolism
15.
J Pharm Drug Res ; 3(2): 341-361, 2020.
Article in English | MEDLINE | ID: mdl-32617527

ABSTRACT

A novel coronavirus designated as SARS-CoV-2 in February 2020 by World Health organization (WHO) was identified as main cause of SARS like pneumonia cases in Wuhan city in Hubei Province of China at the end of 2019. This been recently declared as Global Pandemic by WHO. There is a global emergency to identify potential drugs to treat the SARS-CoV-2. Currently, there is no specific treatment against the new virus. There is a urgency to identifying potential antiviral agents to combat the disease is urgently needed. An effective and quick approach is to test existing antiviral drugs against. Whole genome analysis and alignment carried out using BLASTn, SMART BLAST and WebDSV 2.0 had shown more than 238 ORF's coding for proteins mostly origin from Bat SARS coronavirus and root genomic origin from Archaea. Molecular docking results against protein targets Furin, papain like proteases, RdRp and Spike glycoprotein had shown paritaprevir, ritonavir, entecavir and chloroquine derivatives are the best drugs to inhibit multi targets of coronavirus infection including natural compounds corosolic acid, baicalin and glycyrrhizic acid with minimal inhibitory concentrations. Thus we propose use of paritaprevir, entecavir, ritonavir and chloroquine derivatives as best drug combination along with niacinamide, folic acid and zinc supplements to treat novel coronavirus infection. We also propose use of plant protease inhibitors (PI's) and Anti-IL8, IL-6, IL-2 as future drug models against coronavirus.

16.
Nutrients ; 12(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629893

ABSTRACT

Complex interactions between immunonutritional agonist and high fat intake (HFD), the immune system and finally gut microbiota are important determinants of hepatocarcinoma (HCC) severity. The ability of immunonutritional agonists to modulate major aspects such as liver innate immunity and inflammation and alterations in major lipids profile as well as gut microbiota during HCC development is poorly understood. 1H NMR has been employed to assess imbalances in saturated fatty acids, MUFA and PUFA, which were associated to variations in iron homeostasis. These effects were dependent on the botanical nature (Chenopodium quinoa vs. Salvia hispanica L.) of the compounds. The results showed that immunonutritional agonists' promoted resistance to hepatocarcinogenesis under pro-tumorigenic inflammation reflected, at a different extent, in increased proportions of F4/80+ cells in injured livers as well as positive trends of accumulated immune mediators (CD68/CD206 ratio) in intestinal tissue. Administration of all immunonutritional agonists caused similar variations of fecal microbiota, towards a lower obesity-inducing potential than animals only fed a HFD. Modulation of Firmicutes to Bacteroidetes contents restored the induction of microbial metabolites to improve epithelial barrier function, showing an association with liver saturated fatty acids and the MUFA and PUFA fractions. Collectively, these data provide novel findings supporting beneficial immunometabolic effects targeting hepatocarcinogenesis, influencing innate immunity within the gut-liver axis, and providing novel insights into their immunomodulatory activity.


Subject(s)
Carcinoma, Hepatocellular/immunology , Chenopodium quinoa , Liver Neoplasms/immunology , Nutritional Physiological Phenomena/immunology , Plant Extracts/pharmacology , Salvia , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Bacteroidetes , Carcinoma, Hepatocellular/microbiology , Diet, High-Fat/adverse effects , Dietary Fats/immunology , Fatty Acids/immunology , Firmicutes , Gastrointestinal Microbiome/immunology , Immunity, Innate/drug effects , Inflammation , Intestinal Mucosa/immunology , Intestines/immunology , Lectins, C-Type/metabolism , Liver/immunology , Liver Neoplasms/microbiology , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Receptors, Cell Surface/metabolism , Seeds
17.
Int Immunopharmacol ; 85: 106623, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32504996

ABSTRACT

To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmaniasis, Visceral/drug therapy , Phytotherapy/methods , Plant Tubers/chemistry , Serine Proteinase Inhibitors/pharmacology , Solanum tuberosum/chemistry , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/therapeutic use , Cricetinae , Cytokines/metabolism , Disease Models, Animal , Immunomodulation/drug effects , Leishmania donovani/drug effects , Leishmania donovani/growth & development , Leishmania donovani/ultrastructure , Liver/parasitology , Mice, Inbred BALB C , Models, Animal , NF-kappa B p50 Subunit/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/isolation & purification , Serine Proteinase Inhibitors/therapeutic use , Spleen/immunology , Spleen/parasitology , Survival Analysis
18.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 2): 47-57, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32039885

ABSTRACT

The structure of the MP-4 protein was previously determined at a resolution of 2.8 Å. Owing to the unavailability of gene-sequence information at the time, the side-chain assignment was carried out on the basis of a partial sequence available through Edman degradation, sequence homology to orthologs and electron density. The structure of MP-4 has now been determined at a higher resolution (2.22 Å) in another space group and all of the structural inferences that were presented in the previous report of the structure were validated. In addition, the present data allowed an improved assignment of side chains and enabled further analysis of the MP-4 structure, and the accuracy of the assignment was confirmed by the recently available gene sequence. The study reinforces the traditional concept that conservative interpretations of relatively low-resolution structures remain correct even with the availability of high-resolution data.


Subject(s)
Mucuna/metabolism , Plant Extracts/metabolism , Plant Proteins/chemistry , Protein Conformation , Seeds/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Sequence Homology
19.
J Agric Food Chem ; 67(37): 10296-10305, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31464437

ABSTRACT

Grass pea is an orphan legume that is grown in many places in the world. It is a high-protein, drought-tolerant legume that is capable of surviving extreme environmental challenges and can be a sole food source during famine. However, grass pea produces the neurotoxin ß-N-oxalyl-L-α,ß-diaminopropionic acid (ß-ODAP), which can cause a neurological disease. This crop is promising as a food source for both animals and humans if ß-ODAP levels and other antinutritional factors such as protease inhibitors are lowered or removed. To understand more about these proteins, a proteomic analysis of grass pea was conducted using three different extraction methods to determine which was more efficient at isolating antinutritional factors. Seed proteins extracted with Tris-buffered saline (TBS), 30% ethanol, and 50% isopropanol were identified by mass spectrometry, resulting in the documentation of the most abundant proteins for each extraction method. Mass spectrometry spectral data and BLAST2GO analysis led to the identification of 1376 proteins from all extraction methods. The molecular function of the extracted proteins revealed distinctly different protein functional profiles. The majority of the TBS-extracted proteins were annotated with nutrient reservoir activity, while the isopropanol extraction yielded the highest percentage of endopeptidase proteinase inhibitors. Our results demonstrate that the 50% isopropanol extraction method was the most efficient at isolating antinutritional factors including protease inhibitors.


Subject(s)
Chemical Fractionation/methods , Fabaceae/chemistry , Plant Extracts/isolation & purification , Protease Inhibitors/isolation & purification , Seeds/chemistry , Endopeptidases/chemistry , Fabaceae/genetics , Fabaceae/metabolism , Mass Spectrometry , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Proteomics , Seeds/genetics , Seeds/metabolism
20.
Appl Microbiol Biotechnol ; 103(14): 5533-5547, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31144014

ABSTRACT

Potato proteins are well known for their nutritional, emulsifying, foaming, gel forming or antioxidant properties that all make from them valuable protein source for food industry. Antifungal, antimicrobial and also antiviral properties, described for potato proteins in the review, enrich the possibilities of potato protein usage. Potato proteins were divided into patatin, protease inhibitors and fraction of other proteins that also included, besides others, proteins involved in potato defence physiology. All these proteins groups provide proteins and peptides with antifungal and/or antimicrobial actions. Patatins, obtained from cultivars with resistance to Phytophthora infestans, were able to inhibit spore germination of this pathogen. Protease inhibitors represent the structurally heterogeneous group with broad range of antifungal and antimicrobial activities. Potato protease inhibitors I and II reduced the growth of Phytophthora infestans, Rhizoctonia solani and Botrytis cinerea or of the fungi of Fusarium genus. Members of Kunitz family (proteins Potide-G, AFP-J, Potamin-1 or PG-2) were able to inhibit serious pathogens such as Staphylococcus aureus, Listeria monocytogenes, Escherichia coli or Candida albicans. Potato snakins, defensins and pseudothionins are discussed for their ability to inhibit serious potato fungi as well as bacterial pathogens. Potato proteins with the ability to inhibit growth of pathogens were used for developing of pathogen-resistant transgenic plants for crop improvement. Incorporation of potato antifungal and antimicrobial proteins in feed and food products or food packages for elimination of hygienically risk pathogens brings new possibility of potato protein usage.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Fungi/drug effects , Fungicides, Industrial/pharmacology , Plant Proteins/pharmacology , Solanum tuberosum/chemistry , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida albicans/drug effects , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/pharmacology , Fungicides, Industrial/chemistry , Listeria monocytogenes/drug effects , Peptides/chemistry , Peptides/pharmacology , Phytophthora/drug effects , Plant Proteins/chemistry , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL