Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 491
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Agric Food Chem ; 72(20): 11503-11514, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634424

ABSTRACT

The fruits of Rosa roxburghii Tratt. are edible nutritional food with high medicinal value and have been traditionally used as Chinese folk medicine for a long time. In this study, 26 triterpenoids including four new pentacyclic triterpenoids, roxbuterpenes A-D (1, 4, 5, and 24), along with 22 known analogues (2, 3, 6-23, 25, and 26), were isolated from the fruits of R. roxburghii. Their chemical structures were determined on the basis of extensive spectroscopic analyses (including IR, HRESIMS and NMR spectroscopy). The absolute configuration of roxbuterpene A (1) was determined by an X-ray crystallographic analysis. This is the first report of the crystal structure of 5/6/6/6/6-fused system pentacyclic triterpenoid. Notably, roxbuterpenes A and B (1 and 4) possessed the A-ring contracted triterpenoid and nortriterpenoid skeletons with a rare 5/6/6/6/6-fused system, respectively. Compounds 1-7, 11, 13-15, 18-20, 24, and 25 exhibited moderate or potent inhibitory activities against α-glucosidase. Compounds 2, 4, 6, 11, and 14 showed strong activities against α-glucosidase with IC50 values of 8.4 ± 1.6, 7.3 ± 2.2, 13.6 ± 1.4, 0.9 ± 0.4, and 12.5 ± 2.4 µM, respectively (positive control acarbose, 10.1 ± 0.8 µM). Compounds 13, 14, and 16 moderately inhibited the release of NO (nitric oxide) with IC50 values ranging from 25.1 ± 2.0 to 51.4 ± 3.1 µM. Furthermore, the expressions of TNF-α (tumor necrosis factor-α) and IL-6 (interleukin-6) were detected by ELISA (enzyme-linked immunosorbent assay), and compounds 13, 14, and 16 exhibited moderate inhibitory effects on TNF-α and IL-6 release in a dose-dependent manner ranging from 12.5 to 50 µM.


Subject(s)
Anti-Inflammatory Agents , Fruit , Glycoside Hydrolase Inhibitors , Rosa , Triterpenes , alpha-Glucosidases , Animals , Mice , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Fruit/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , RAW 264.7 Cells , Rosa/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology
2.
Metabolites ; 14(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38535300

ABSTRACT

Calendula officinalis L. is a well-known plant widely used in traditional medicine due to the presence of various biologically active compounds. The main raw material for the production of medicinal preparations is the inflorescence, which consists of ligulate and tubular flowers. However, the characteristics of the metabolome of these flowers are not fully understood. This study identified and compared the levels of major metabolites in the ligulate and tubular flowers of two C. officinalis cultivars, 'Golden Sea' (GS) and 'Paradise Garden' (PG). The metabolome was analysed using ultra-performance liquid chromatography with photodiode array detection and a Q Exactive Orbitrap high-resolution mass spectrometer. It was found that the tubular flowers of both PG and GS cultivars had higher levels of lipids, phenolamides and caffeoylquinic acids and lower levels of triterpenoid glycosides than the ligulate flowers. It was also shown that the inflorescences of the GS, which had a 35% higher proportion of tubular flowers, contained 30% more phenolic compounds and 50% more lipids than the PG. Thus, the results obtained extend our understanding of the features in the metabolomes of ligulate and tubular flowers and suggest that the quality of inflorescences of C. officinalis cultivars, as a source of medicinal preparations, is strongly influenced by the proportion of ligulate and tubular flowers.

3.
Fitoterapia ; 175: 105925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537885

ABSTRACT

Achyranthes bidentata Blume (Amaranthaceae) is an annual or perennial herb widely used as ethnomedicine in Traditional Chinese Medicine for treating fever, cold, ulcers, mensural pain, dementia, and osteoporosis. In the current study, UPLC-IM-Q-TOF-MS/MS-based chemometric approach was adopted for the tentative identification of fifty-six compounds in the extract and fractions of A.bidentata seeds. Further, the chemometric-guided isolation led to the isolation of two previously undescribed oleanane-type triterpenoid saponins, named achyranosides A-B (27 and 30), along with three known compounds (31, 44, and 23) from water fraction of A. bidentata seeds. The structures of new compounds were elucidated based on the detailed analysis of NMR, HR-ESI-MS, FT-IR spectral data, and GC-FID techniques. The isolated compounds in vitro acetylcholinesterase inhibitory activity revealed the promising activity of chikusetsusaponin IVa (23) (IC50 = 63.7 µM) with mixed type of AChE inhibition in enzyme kinetic studies. Additionally, in silico binding free energy of isolated compounds disclosed the greater stability of enzyme-ligand complex owing to underlying multiple H-bond interactions. Overall, the study demonstrates the effectiveness of a chemometric-guided approach for the phytochemical exploration and isolation of new oleanane-type triterpenoid saponins from A. bidentata seeds.


Subject(s)
Achyranthes , Cholinesterase Inhibitors , Oleanolic Acid , Phytochemicals , Saponins , Seeds , Saponins/isolation & purification , Saponins/pharmacology , Saponins/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Seeds/chemistry , Achyranthes/chemistry , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Oleanolic Acid/isolation & purification , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Triterpenes/chemistry , China , Molecular Docking Simulation , Acetylcholinesterase/metabolism
4.
Front Pharmacol ; 15: 1361643, 2024.
Article in English | MEDLINE | ID: mdl-38549666

ABSTRACT

Introduction: Some herbal ingredients can reshape the composition of the gut microbiome as well as its metabolites. At the same time, the gut microbiota can also affect drug metabolism. A large number of studies have reported that saponins are biotransformed under the action of intestinal microorganisms to improve drug efficacy and bioavailability. Capilliposide A is a triterpenoid saponin, which is derived from Lysimachia capillipes Hemsl. CPS-A has anti-inflammatory pharmacological activity, but the substance basis in vivo is unknown at present, so studies on the interaction between intestinal microorganisms and CPS-A may clarify the pharmacodynamic substance basis of CPS-A. Methods: This study established a colitis mouse model, collected sterile feces from normal mice and colitis mice, and incubated CPS-A with two different intestinal flora in vitro. Based on LC-MS, the metabolic process of CPS-A mediated by intestinal microbes and the intervention effect of CPS-A on intestinal microbiome derived metabolites were studied. Results: The results of experiments indicate that intestinal microorganisms can mediate the biotransformation of CPS-A and metabolize it into corresponding deglycosylation products, thereby promoting its drug effect. Not only that, CPS-A can also promote metabolites such as Deoxycholic acid, Histamine, 3-Hydroxytridecanoic acid, and Indole-3-acetic acid in the intestinal microbiota of mice with colitis. This may result in anti-colitis effects. CPS-A mainly involved in metabolic pathways such as azathioprine and mercaptopurine, which may also have beneficial or adverse effects. Discussion: This study on the interaction between CPS-A and microbiota provides a new idea for the study of traditional Chinese medicine with poor oral bioavailability. The regulatory effect of CPS-A on the metabolites of intestinal flora in colitis mice was also found. It laid a foundation for exploring the mechanism of action of saponins on colitis mice.

5.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443797

ABSTRACT

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Subject(s)
Panax notoginseng , Saponins , Triterpenes , Panax notoginseng/genetics , Metabolome , Gene Expression Profiling
6.
J Nat Med ; 78(3): 655-663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429480

ABSTRACT

The preliminary α-glucosidase inhibitory activity of the methanol extract of the leaves of Sandoricum koetjape Merr. exhibited promising results. The leaves was extracted with methanol to obtain the methanol extract that was continuedly partitioned with hexane and ethyl acetate. Those fractions were further purified by various chromatographic techniques. The isolation of the potent fractions furnished two new cycloartane-type triterpenoids (1 and 2) along with ten known compounds (3-12). Their chemical structures were unambiguously established by interpretation of NMR (1 D & 2 D) and high-resolution electrospray ionization mass spectrometry (HRESIMS) data. Furthermore, the configurations of two new compounds were determined by using NOESY spectrum as well as comparing their NMR data to the reference. These compounds were evaluated against α-glucosidase. All tested compounds revealed potent activity with IC50 value in the range of 2.17-49.2 µM compared to that of acarbose (IC50 100.6 µM). Compound 10 showed the lowest IC50 value. This compound was reported as a mixed-type inhibitor. Compound 3 possessed the second strong activity with an IC50 value of 14.0 µM and was further investigated on kinetic analysis which revealed as a mixed-type inhibitor with Ki and Ki' values of 59.1 and 155.2 µM, respectively.


Subject(s)
Glycoside Hydrolase Inhibitors , Plant Extracts , Plant Leaves , Triterpenes , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Plant Leaves/chemistry , alpha-Glucosidases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
7.
J Nat Med ; 78(3): 677-692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403724

ABSTRACT

Betulinic acid (BA), a naturally occurring lupane-type triterpenoid, possesses a wide range of potential activities against different types of cancer. However, the molecular mechanisms involved in anti-cervical cancer about BA were rarely investigated. Herein, the role of BA in cervical cancer suppression by ROS-mediated endoplasmic reticulum stress (ERS) and autophagy was deeply discussed. The findings revealed that BA activated Keap1/Nrf2 pathway and triggered mitochondria-dependent apoptosis due to ROS production. Furthermore, BA increased the intracellular Ca2+ levels, inhibited the expression of Beclin1 and promoted the expression of GRP78, LC3-II, and p62 associated with ERS and autophagy. Besides, BA initiated the formation of autophagosomes and inhibited autophagic flux by the co-administration of BA with 3-methyladenine (3-MA) and chloroquine (CQ), respectively. The in vivo experiment manifested that hydroxychloroquine (HCQ) enhanced the apoptosis induced by BA. For the first time, we demonstrated that BA could initiate early autophagy, inhibit autophagy flux, and induce protective autophagy in HeLa cells. Thus, BA could be a potential chemotherapy drug for cervical cancer, and inhibition of autophagy could enhance the anti-tumor effect of BA. However, the interactions of signaling factors between ERS-mediated and autophagy-mediated apoptosis deserve further attention.


Subject(s)
Apoptosis , Autophagy , Betulinic Acid , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Pentacyclic Triterpenes , Reactive Oxygen Species , Triterpenes , Uterine Cervical Neoplasms , Humans , Pentacyclic Triterpenes/pharmacology , Autophagy/drug effects , HeLa Cells , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Female , Triterpenes/pharmacology , Triterpenes/chemistry , Animals , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects
8.
Zhongguo Zhong Yao Za Zhi ; 49(1): 130-140, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403346

ABSTRACT

This study induced biological stress in Sorbus pohuashanensis suspension cell(SPSC) with yeast extract(YE) as a bio-tic elicitor and isolated and identified secondary metabolites of triterpenoids produced under stress conditions. Twenty-six triterpenoids, including fifteen ursane-type triterpenoids(1-15), two 18,19-seco-ursane-type triterpenoids(16-17), four lupine-type triterpenoids(18-21), two cycloartane-type triterpenoids(22-23), and three squalene-type triterpenoids(24-26), were isolated and purified from the methanol extract of SPSC by chromatography on silica gel, MCI, Sephadex LH-20, and MPLC. Their structures were elucidated by spectroscopic analyses. All triterpenoids were isolated from SPSC for the first time and 22-O-acetyltripterygic acid A(1) was identified as a new compound. Selected compounds were evaluated for antifungal, antitumor, and anti-inflammatory activities, and compound 1 showed an inhibitory effect on NO production in LPS-induced RAW264.7 cells.


Subject(s)
Pentacyclic Triterpenes , Sorbus , Triterpenes , Animals , Mice , Sorbus/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , RAW 264.7 Cells , Molecular Structure
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339223

ABSTRACT

Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 µg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 µg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value.


Subject(s)
Aralia , Plants, Medicinal , Saponins , Triterpenes , Aralia/genetics , Aralia/chemistry , Saponins/chemistry , Triterpenes/chemistry , Plants, Medicinal/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plant Leaves/metabolism
10.
Bioorg Chem ; 145: 107230, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387397

ABSTRACT

Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent ß-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for ß-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where ß-glucuronidase plays a crucial role.


Subject(s)
Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Saponins , Triterpenes , Humans , Molecular Structure , Astragalus propinquus/chemistry , Molecular Docking Simulation , Saponins/chemistry , Oleanolic Acid/chemistry , Plant Components, Aerial/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry
11.
Plant J ; 118(3): 731-752, 2024 May.
Article in English | MEDLINE | ID: mdl-38226777

ABSTRACT

Prunella vulgaris is one of the bestselling and widely used medicinal herbs. It is recorded as an ace medicine for cleansing and protecting the liver in Chinese Pharmacopoeia and has been used as the main constitutions of many herbal tea formulas in China for centuries. It is also a traditional folk medicine in Europe and other countries of Asia. Pentacyclic triterpenoids are a major class of bioactive compounds produced in P. vulgaris. However, their biosynthetic mechanism remains to be elucidated. Here, we report a chromosome-level reference genome of P. vulgaris using an approach combining Illumina, ONT, and Hi-C technologies. It is 671.95 Mb in size with a scaffold N50 of 49.10 Mb and a complete BUSCO of 98.45%. About 98.31% of the sequence was anchored into 14 pseudochromosomes. Comparative genome analysis revealed a recent WGD in P. vulgaris. Genome-wide analysis identified 35 932 protein-coding genes (PCGs), of which 59 encode enzymes involved in 2,3-oxidosqualene biosynthesis. In addition, 10 PvOSC, 358 PvCYP, and 177 PvUGT genes were identified, of which five PvOSCs, 25 PvCYPs, and 9 PvUGTs were predicted to be involved in the biosynthesis of pentacyclic triterpenoids. Biochemical activity assay of PvOSC2, PvOSC4, and PvOSC6 recombinant proteins showed that they were mixed amyrin synthase (MAS), lupeol synthase (LUS), and ß-amyrin synthase (BAS), respectively. The results provide a solid foundation for further elucidating the biosynthetic mechanism of pentacyclic triterpenoids in P. vulgaris.


Subject(s)
Chromosomes, Plant , Genome, Plant , Pentacyclic Triterpenes , Prunella , Prunella/genetics , Prunella/metabolism , Pentacyclic Triterpenes/metabolism , Genome, Plant/genetics , Chromosomes, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Triterpenes/metabolism
12.
Fitoterapia ; 174: 105828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296166

ABSTRACT

Aster tataricus L.f. is highly valued for its rich reserves of bioactive compounds. Our research focused on the identification of previously unreported compounds found within the ethanol extract of A. tataricus. Through meticulous spectroscopic analyses and computational methods like NMR calculations and ECD, we successfully elucidated the structures of five novel compounds termed tatarisides A-E (1-5), alongside two known compounds (6, 7). The anti-inflammatory assays conducted yielded noteworthy results, particularly in relation to compounds 1 and 5. These compounds exhibited significant potential in inhibiting the release of NO in LPS-induced RAW 264.7 cells, as evidenced by their respective IC50 values of 17.81 ± 1.25 µM and 13.32 ± 0.84 µM. The discovery of these new compounds adds to the existing knowledge of A. tataricus's chemical composition and potential applications.


Subject(s)
Aster Plant , Molecular Structure , Aster Plant/chemistry , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Ethanol
13.
Chin J Nat Med ; 22(1): 15-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38278556

ABSTRACT

Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.


Subject(s)
Oleanolic Acid , Triterpenes , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology
14.
Fitoterapia ; 173: 105832, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280682

ABSTRACT

OBJECTIVE: The root of Ilex asprella (RIA) is a popular plant resource for treating inflammation-related diseases. The purpose of this study was to identify the secondary metabolites, to compare anti-inflammatory effects and to determine the quality marker components among root, stem and rhizome sections of IA. METHODS: Chemical fingerprints of stem, root and rhizome of IA was determined by high performance liquid chromatography (HPLC). A reliable method using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was established for comprehensively determining the chemical constituents of the plants. Anti-inflammatory activities of IA and its ingredients were screened by in vivo mouse ear swelling and in vitro LPS-induced release of NO from RAW264.7 cells experiments. RESULTS: Root, stem and rhizome of IA have shown high similarity in chemical fingerprints. Totally 149 compounds were characterized in IA, including triterpenoids, triterpenoid saponins, phenolic acids and lignans. 44 of them were identified based on co-occurring Mass2Motifs, including 19 unreported ones, whilst 17 were tentatively confirmed by comparison with reference compounds. No significant anti-inflammatory activity difference among root, stem and rhizome parts of IA was found. Ilexsaponin B2, protocatechualdehyde, isochlorogenic acid B and quinic acid, were screened out as quality marker compounds in IA. CONCLUSION: A sensitive and rapid strategy was established to evaluate the differences on secondary metabolites of different parts of IA for the first time, and this study may contribute to the quality evaluation of medicinal herbs and provide theoretically data support for further analysis of different parts of IA.


Subject(s)
Ilex , Rhizome , Animals , Mice , Rhizome/chemistry , Ilex/chemistry , Chromatography, High Pressure Liquid/methods , Molecular Structure , Anti-Inflammatory Agents/pharmacology
15.
Phytochemistry ; 217: 113900, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898415

ABSTRACT

A phytochemical research on the twigs of Dichapetalum longipetalum (Turcz.) Engl. Resulted in five undescribed dichapetalin-type triterpenoids 1-5. Their chemical structures were determined by spectroscopic analysis of HR-ESIMS and NMR spectra and the absolute configuration of compound 1 was completely elucidated by single crystal X-ray crystallography. Through preliminary anti-inflammatory activity assessment, compound 1 exhibited inhibitory effect on LPS-induced NO production in RAW264.7 murine macrophages with an IC50 value of 2.09 µM.


Subject(s)
Triterpenes , Animals , Mice , Triterpenes/pharmacology , Triterpenes/chemistry , Macrophages , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Molecular Structure
16.
Phytochemistry ; 217: 113923, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37963510

ABSTRACT

Terpenoids are the largest class of all known natural products, possessing structural diversity and numerous biological activities. Ten previously undescribed terpenoid glycosides, glechlongsides A-J (1-10), were isolated from the ethanol extract of the whole plant of Glechoma longituba, including diterpenoid glycoside and pentacyclic triterpenoid saponin. The structures of these compounds were characterized by extensive analysis of 1D and 2D NMR as well as HRESIMS spectra. In addition, glechlongsides F-I (6-9) exhibited weak cytotoxicity against human cancer cell lines BGC-823, Be1, HCT-8, A2780, and A549 with IC50 values ranging from 3.77 to 30.95 µM, respectively.


Subject(s)
Lamiaceae , Ovarian Neoplasms , Humans , Female , Terpenes/pharmacology , Glycosides/pharmacology , Glycosides/chemistry , Cell Line, Tumor , Plant Extracts , Lamiaceae/chemistry , Molecular Structure
17.
Curr Res Toxicol ; 5: 100137, 2023.
Article in English | MEDLINE | ID: mdl-38046279

ABSTRACT

Cancer has become the second leading cause of death in the world. Integrative cancer therapy management is continuously evolving to enhance treatment outcomes. Chaga mushroom (Inonotus obliquus) is a parasitic fungus acclaimed to contain pharmaceutical and nutraceutical value in the fight against cancer. In particular, triterpenoid constituents derived from Chaga mushrooms have been recognized for their anti-cancer activity after distinguished cytotoxicity was repeatedly observed in cancer cells treated in vitro with lipophilic fractions of extract compared to aqueous ones. Studies that investigate the anti-cancer activity of Chaga mushroom triterpenoids are reviewed in this article to determine which cancer cell lines demonstrate the greatest susceptibility to them while highlighting the structure-activity relationships that are involved. Triterpenoid supplementation as an adjunct to cancer treatment may be a viable option as inotodiol and 3-ß-22 α-dihydroxylanosta-8, 25-diene-24-one have been shown to exhibit anti-cancer activity similar to that of conventional drugs. Advances in addressing bioavailability challenges are also included in this review as studies include in vivo components.

18.
Front Pharmacol ; 14: 1275041, 2023.
Article in English | MEDLINE | ID: mdl-37908974

ABSTRACT

Triterpenoid saponins from Stauntonia chinensis have been proven to be a potential candidate for inflammatory pain relief. Our pharmacological studies confirmed that the analgesic role of triterpenoid saponins from S. chinensis occurred via a particular increase in the inhibitory synaptic response in the cortex at resting state and the modulation of the capsaicin receptor. However, its analgesic active components and whether its analgesic mechanism are limited to this are not clear. In order to further determine its active components and analgesic mechanism, we used the patch clamp technique to screen the chemical components that can increase inhibitory synaptic response and antagonize transient receptor potential vanilloid 1, and then used in vivo animal experiments to evaluate the analgesic effect of the selected chemical components. Finally, we used the patch clamp technique and molecular biology technology to study the analgesic mechanism of the selected chemical components. The results showed that triterpenoid saponins from S. chinensis could enhance the inhibitory synaptic effect and antagonize the transient receptor potential vanilloid 1 through different chemical components, and produce central and peripheral analgesic effects. The above results fully reflect that "traditional Chinese medicine has multi-component, multi-target, and multi-channel synergistic regulation".

19.
Stud Health Technol Inform ; 308: 396-403, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007765

ABSTRACT

Primary splenic angiosarcoma is a very rare disease that causes the development of malignant tumors in the vascular endothelium of the splenic sinuses. Moreover, the disease maintains a very low survival rate for patients to live over 5 years, which is relatively low when compared to another splenic cancer, splenic lymphomas. The treatment options for splenic angiosarcoma narrow down to surgical removal or radiation combined with chemotherapy, but both cost a lot, so discovering potential alternative treatments may eventually increase the possible survival rate. Ginseng and Zhi Gan Cao are both common herbs in Traditional Chinese Medicine (TCM); however, the price of Ginseng is much higher than that of Zhi Gan Cao. A possible reason could be the frequent studies and researches over Ginseng's active ingredient, ginsenoside rh2 or rg3 as they are both potent cancer treatments. The reason to study Zhi Gan Cao and predict its possible potential in cancer treatment is due to the similarity between its active ingredient and the active ingredient in Ginseng, namely, ginsenoside rh2 and licorice saponins. Both TCM contain the active ingredient, triterpenoid saponin, as their main composition, and the further text will predict the possible research and results that may be taken in vitro to reveal the question of whether licorice saponin has the potential to become a major treatment for splenic angiosarcoma or not.


Subject(s)
Glycyrrhiza uralensis , Hemangiosarcoma , Saponins , Splenic Neoplasms , Humans , Medicine, Chinese Traditional , Splenic Neoplasms/drug therapy , Hemangiosarcoma/drug therapy , Vascular Endothelial Growth Factors
20.
Planta ; 258(6): 115, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943378

ABSTRACT

MAIN CONCLUSION: Two trans-isopentenyl diphosphate synthase and one squalene synthase genes were identified and proved to be involved in the triterpenoid biosynthesis in Platycodon grandiflorus. Platycodon grandiflorus is a commonly used traditional Chinese medicine. The main bioactive compounds of P. grandiflorus are triterpenoid saponins. The biosynthetic pathway of triterpenoid saponins in P. grandiflorus has been preliminarily explored. However, limited functional information on related genes has been reported. A total of three trans-isopentenyl diphosphate synthases (trans-IDSs) genes (PgFPPS, PgGGPPS1 and PgGGPPS2) and one squalene synthase (SQS) gene (PgSQS) in P. grandiflorus were screened and identified from transcriptome dataset. Subcellular localization of the proteins was defined based on the analysis of GFP-tagged. The activity of genes was verified in Escherichia coli, demonstrating that recombinant PgFPPS catalysed the production of farnesyl diphosphate. PgGGPPS1 produced geranylgeranyl diphosphate, whereas PgGGPPS2 did not exhibit catalytic activity. By structural identification of encoding genes, a transmembrane region was found at the C-terminus of the PgSQS gene, which produced an insoluble protein when expressed in E. coli but showed no apparent effect on the enzyme function. Furthermore, some triterpenoid saponin synthesis-related genes were discovered by combining the component content and the gene expression assays at the five growth stages of P. grandiflorus seedlings. The accumulation of active components in P. grandiflorus was closely associated with the expression level of genes related to the synthesis pathway.


Subject(s)
Platycodon , Saponins , Farnesyl-Diphosphate Farnesyltransferase/genetics , Platycodon/genetics , Escherichia coli/genetics , Saponins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL