Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nutrients ; 10(7)2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30029523

ABSTRACT

(1) Background: Arteriosclerosis is associated with high levels of low-density lipoprotein (LDL) cholesterol. O-methylated catechins in "Benifuuki" green tea are expected to reduce cholesterol levels, although there is limited research regarding this topic; (2) Methods: This trial evaluated 159 healthy volunteers who were randomized to receive ice cream containing a high-dose of "Benifuuki" extract including 676 mg of catechins (group H), a low-dose of "Benifuuki" extract including 322 mg of catechins (group L), or no "Benifuuki" extract (group C). Each group consumed ice cream (with or without extract) daily for 12 weeks, and their lipid-related parameters were compared; (3) Results: A significant reduction in the level of lectin-like oxidized LDL receptor-1 ligand containing ApoB (LAB) was detected in group H, compared to groups L and C. No significant differences between the three groups were detected in their levels of total cholesterol, triglycerides, and LDL cholesterol; (4) Conclusions: "Benifuuki" extract containing O-methylated catechins may help prevent arteriosclerosis.


Subject(s)
Apolipoprotein B-100/antagonists & inhibitors , Camellia sinensis/chemistry , Dietary Supplements , Hyperlipidemias/prevention & control , Hypolipidemic Agents/administration & dosage , Plant Extracts/administration & dosage , Scavenger Receptors, Class E/metabolism , Aged , Apolipoprotein B-100/blood , Biomarkers/blood , Catechols/administration & dosage , Catechols/therapeutic use , Double-Blind Method , Female , Food Handling , Food Preferences , Humans , Hyperlipidemias/blood , Hypolipidemic Agents/therapeutic use , Ice Cream , Intention to Treat Analysis , Japan , Ligands , Male , Middle Aged , Oxidation-Reduction , Plant Extracts/therapeutic use , Plant Leaves/chemistry
2.
Biosci Biotechnol Biochem ; 81(8): 1569-1575, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28463548

ABSTRACT

Oxidation of low-density lipoprotein (LDL) by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been suggested to be involved in the onset of atherosclerosis. Oolong tea contains unique polyphenols including oolonghomobisflavan A (OFA). In this study, the effects of OFA on LDL oxidation by ROS and RNS were investigated in vitro. OFA suppressed formation of cholesterol ester hydroperoxides in LDL oxidized by peroxyl radical and peroxynitrite, and formation of thiobarbituric acid reactive substances in LDL oxidized by Cu2+. In addition, OFA inhibited fragmentation, carbonylation, and nitration of apolipoprotein B-100 (apo B-100) in the oxidized LDL, in which heparin-binding activity of apo B-100 was protected by OFA. Our results suggest that OFA exhibits antioxidant activity against both lipid peroxidation and oxidative modification of apo B-100 in LDL oxidized by ROS and RNS. Polyphenols in oolong tea may prevent atherosclerosis by reducing oxidative stress.


Subject(s)
Camellia sinensis/chemistry , Flavonoids/chemistry , Lipoproteins, LDL/antagonists & inhibitors , Polyphenols/chemistry , Apolipoprotein B-100/antagonists & inhibitors , Cations, Divalent , Cholesterol Esters/antagonists & inhibitors , Copper/chemistry , Flavonoids/isolation & purification , Heparin/chemistry , Humans , Kinetics , Lipid Peroxidation , Oxidation-Reduction , Peroxides/antagonists & inhibitors , Peroxynitrous Acid/antagonists & inhibitors , Plant Extracts/chemistry , Polyphenols/isolation & purification , Protein Binding , Reactive Nitrogen Species/antagonists & inhibitors , Reactive Oxygen Species/antagonists & inhibitors , Thiobarbiturates/antagonists & inhibitors
3.
Drugs ; 72(11): 1445-55, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-22799743

ABSTRACT

High levels of low-density lipoprotein cholesterol (LDL-C) and lipoprotein(a) [Lp(a)] are associated with early morbidity and mortality caused by cardiovascular disease (CVD). There are hints that a reduction of LDL-C levels beyond currently advocated targets, and the use of drugs that also have Lp(a)-lowering potential, could provide further clinical benefit. Today, LDL apheresis is the only available treatment option to achieve further lowering of apolipoprotein-B (apo-B)-containing lipoproteins, especially Lp(a). Mipomersen is currently being studied in patients with mild to severe hypercholesterolaemia as add-on therapy to other lipid-lowering therapy, as monotherapy in patients who are intolerant of HMG-CoA reductase inhibitors (statins) and who are at high risk for CVD. Patients affected by homozygous or heterozygous familial hypercholesterolaemia (FH), which are inherited autosomal co-dominant disorders characterized by a marked elevation of serum LDL-C concentration, remain a clinical challenge, especially when their CVD risk is aggravated by additionally elevated Lp(a) levels. Mipomersen is a 20-mer oligonucleotide [2'-O-(2-methoxy) ethyl-modified oligonucleotide], a second-generation antisense oligonucleotide (AOS), complementary to the coding region for human-specific apo-B-100 messenger RNA (mRNA). Mipomersen inhibits apo-B-100 synthesis and is consequently a new treatment strategy to lower apo-B-containing lipoproteins like LDL-C and Lp(a) in patients at high risk for CVD not on target or intolerant to statins. This article focuses on mipomersen and gives an overview of the current status of mipomersen as a promising treatment option. Recent studies have shown a decrease in LDL-C levels of 22-42.2% and in Lp(a) of 19.6-31.1% from baseline, depending on study design. Dose-dependent reductions of very low-density lipoprotein cholesterol (VLDL-C) and triglyceride levels have also been observed. Although the short-term efficacy and safety of mipomersen have been proven, side effects like injection-site reactions (up to 90-100%), increased liver enzymes, cephalgias, nasopharyngitis, myalgia, nausea and fatigue must be mentioned and critically discussed. Furthermore, we need more data on the long-term side effects, especially regarding the long-term potential for hepatic steatosis. Data on cardiovascular outcomes with mipomersen are also not yet available.


Subject(s)
Anticholesteremic Agents/therapeutic use , Hyperlipoproteinemia Type II/drug therapy , Oligonucleotides/therapeutic use , Animals , Anticholesteremic Agents/adverse effects , Apolipoprotein B-100/antagonists & inhibitors , Apolipoprotein B-100/blood , Apolipoprotein B-100/metabolism , Cholesterol, LDL/blood , Cholesterol, LDL/metabolism , Cholesterol, VLDL/blood , Cholesterol, VLDL/metabolism , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Double-Blind Method , Drug Evaluation, Preclinical , Humans , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/metabolism , Lipoprotein(a)/blood , Lipoprotein(a)/metabolism , Oligonucleotides/adverse effects , Randomized Controlled Trials as Topic , Triglycerides/blood , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL