Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 764
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621138

ABSTRACT

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Subject(s)
Arecaceae , Industrial Oils , Ecosystem , Forests , Biodiversity , Agriculture , Trees , Palm Oil , Conservation of Natural Resources
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1249-1254, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621971

ABSTRACT

The chemical constituents of Draconis Sanguis were preliminarily studied by macroporous resin, silica gel, dextran gel, and high-performance liquid chromatography. One retro-dihydrochalcone, four flavonoids, and one stilbene were isolated. Their chemical structures were identified as 4-hydroxy-2,6-dimethoxy-3-methyldihydrochalcone(1), 4'-hydroxy-5,7-dimethoxy-8-methylflavan(2), 7-hydroxy-4',5-dimethoxyflavan(3),(2S)-7-hydroxy-5-methoxy-6-methylflavan(4),(2S)-7-hydroxy-5-methoxyflavan(5), and pterostilbene(6) by modern spectroscopy, physicochemical properties, and literature comparison. Compound 1 was a new compound. Compounds 2 and 6 were first found in the Arecaceae family. Compound 5 had the potential to prevent and treat diabetic kidney disease.


Subject(s)
Arecaceae , Diabetes Mellitus , Diabetic Nephropathies , Drugs, Chinese Herbal , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods
3.
PeerJ ; 12: e17282, 2024.
Article in English | MEDLINE | ID: mdl-38666083

ABSTRACT

This study investigated the potential of using steam-exploded oil palm empty fruit bunches (EFB) as a renewable feedstock for producing fumaric acid (FA), a food additive widely used for flavor and preservation, through a separate hydrolysis and fermentation process using the fungal isolate K20. The efficiency of FA production by free and immobilized cells was compared. The maximum FA concentration (3.25 g/L), with 0.034 g/L/h productivity, was observed after incubation with the free cells for 96 h. Furthermore, the production was scaled up in a 3-L air-lift fermenter using oil palm EFB-derived glucose as the substrate. The FA concentration, yield, and productivity from 100 g/L initial oil palm EFB-derived glucose were 44 g/L, 0.39 g/g, and 0.41 g/L/h, respectively. The potential for scaling up the fermentation process indicates favorable results, which could have significant implications for industrial applications.


Subject(s)
Cells, Immobilized , Fermentation , Fumarates , Fumarates/metabolism , Cells, Immobilized/metabolism , Palm Oil , Fruit/microbiology , Fruit/chemistry , Arecaceae/microbiology , Arecaceae/chemistry , Plant Oils/metabolism , Hydrolysis , Glucose/metabolism
4.
Plant Cell Rep ; 43(4): 107, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558250

ABSTRACT

KEY MESSAGE: EgMADS3, a pivotal transcription factor, positively regulates MCFA accumulation via binding to the EgLPAAT promoter, advancing lipid content in mesocarp of oil palm. Lipids function as the structural components of cell membranes, which serve as permeable barriers to the external environment of cells. The medium-chain fatty acid in the stored lipids of plants is an important renewable energy. Most research on MCFA production in plant lipid synthesis is based on biochemical methods, and the importance of transcriptional regulation in MCFA synthesis and its incorporation into TAGs needs further research. Oil palm is the most productive oil crop in the world and has the highest productivity among the main oil crops. In this study, the MADS transcription factor (EgMADS3) in the mesocarp of oil palm was characterized. Through the VIGS-virus induced gene silencing, it was determined that the potential target gene of EgMADS3 was related to the biosynthesis of medium-chain fatty acid (MCFA). Transient transformation in protoplasts and qRT-PCR analysis showed that EgMADS3 positively regulated the expression of EgLPAAT. The results of the yeast one-hybrid assays and EMSA indicated the interaction between EgMADS3 and EgLPAAT promoter. Through genetic transformation and fatty acid analysis, it is concluded that EgMADS3 directly regulates the mid-chain fatty acid synthesis pathway of the potential target gene EgLPAAT, thus promotes the accumulation of MCFA and improves the total lipid content. This study is innovative in the functional analysis of the MADS family transcription factor in the metabolism of medium-chain fatty acids (MCFA) of oil palm, provides a certain research basis for improving the metabolic pathway of chain fatty acids in oil palm, and improves the synthesis of MCFA in plants. Our results will provide a reference direction for further research on improving the oil quality through biotechnology of oil palm.


Subject(s)
Arecaceae , Arecaceae/genetics , Arecaceae/metabolism , Fatty Acids/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Metabolic Networks and Pathways , Palm Oil/metabolism
5.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338758

ABSTRACT

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Subject(s)
Arecaceae , Hydrogen Peroxide , Catalase/metabolism , Phylogeny , Hydrogen Peroxide/metabolism , Transcriptome , Arecaceae/genetics , Arecaceae/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Palm Oil , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Fitoterapia ; 174: 105857, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354821

ABSTRACT

Mauritia flexuosa, known as buriti in Brazil, is a widespread palm tree in Amazonia. It has many ethnobotanical uses, including food, oil, and medicine. The oil obtained from buriti's fruit pulp has high levels of monounsaturated fatty acids, carotenoids, and tocopherols, and is used in the food, cosmetic, and pharmaceutical industries for its antioxidant properties. Many biological activities have been reported for buriti oil, such as antioxidant, antimicrobial, chemopreventive, and immunomodulatory. Due to its high content of bioactive compounds, buriti oil is considered a functional ingredient with possible benefits in preventing oxidative stress and chronic diseases, particularly in the gastrointestinal tract. Peptic ulcer disease is a multifactorial disorder, involving lesions in the stomach and duodenum mucosa, which has a complex healing process. In this context, some nutrients and bioactive compounds help the maintenance of gastrointestinal mucosal integrity and function, such as carotenoids, tocopherols, and unsaturated fatty acids, which makes buriti oil an interesting candidate to be used in the prevention and management of gastrointestinal diseases. This study aimed to evaluate the gastroprotective and antiulcer effects of buriti oil and its possible mechanisms of action. Buriti oil reduced the ulcerative area and lipid peroxidation induced by ethanol. The gastroprotective activity of buriti oil partially depends on nitric oxide and sulfhydryl compounds. In acetic acid-induced gastric ulcers, buriti oil accelerated healing and stimulated the formation of new gastric glands. These results demonstrated the potential of buriti oil as a functional ingredient to promote health benefits in the gastrointestinal tract.


Subject(s)
Antioxidants , Arecaceae , Plant Oils , Antioxidants/pharmacology , Health Promotion , Molecular Structure , Carotenoids/pharmacology , Tocopherols/pharmacology
7.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338979

ABSTRACT

Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.


Subject(s)
Arecaceae , Fatty Acids, Nonesterified , Humans , Fatty Acids, Nonesterified/metabolism , Fatty Acids/metabolism , Palm Oil , Chromatography, Liquid , Myristates/metabolism , Arecaceae/genetics , Arecaceae/metabolism , Tandem Mass Spectrometry , Fatty Acids, Unsaturated/metabolism , Palmitic Acid/metabolism , Gene Expression Profiling , Stearic Acids/metabolism , Plant Oils/metabolism
8.
Sci Rep ; 14(1): 1836, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38246913

ABSTRACT

The production of oil palm (Elaeis guineensis) in Southeast Asia is vital to the economies of Indonesia and Malaysia. Both fertilisers and pesticides used in palm production can contain elevated concentrations of Trace Elements (TEs) which may accumulate in soils and leaf tissues of plants. We hypothesised that leaves from oil palms may be deficient in essential elements, while containing elevated concentrations of non-essential TEs commonly found in agrichemicals. Samples of plant materials (leaves and fruitlets) were collected from active and former plantations in Sumatra, Indonesia, and analysed for essential and non-essential elements. Indonesian palm oil samples were sourced in New Zealand and their elemental concentrations determined. Leaf materials from both active and abandoned production sites were deficient in N, K, S and Mo, while leaf materials from abandoned sites were deficient in P. These deficiencies may have been a contributing factor to the abandonment of production at these sites. Concentrations of non-essential elements were below or comparable to average plant concentrations and no evidence of contamination was found in plant tissues. Palm oil contained low concentrations of TEs, which did not pose any toxicity risks. However, Na and Al were present in concentrations of 1198 and 159 mg kg-1 respectively, which were higher than have been previously reported. Tropical oil palm production could benefit from the determination of bioaccumulation factors for fertiliser contaminants in E. guineensis, to limit the transfer of contaminants to plants and products if increased fertiliser applications were used to correct nutrient deficiencies.


Subject(s)
Arecaceae , Trace Elements , Fertilizers , Palm Oil , Agrochemicals , Bioaccumulation
9.
J Oleo Sci ; 73(1): 11-23, 2024.
Article in English | MEDLINE | ID: mdl-38171726

ABSTRACT

Fruits such as bacaba (Oenocarpus bacaba Mart), pracaxi (Pentaclethra macroloba Kuntze) and uxi (Endopleura uchi (Huber) Cuatrec), from the Amazon rainforest, are potentially interesting for studies of natural products. The current article aims at mapping and characterizing studies on the bacaba, pracaxi and uxi species. This review reports the main bioactive compounds identified in these species and discusses their therapeutic potential. Searches were performed in MEDLINE (Via Pubmed) and Web of Science. Thirty-one studies that described or evaluated the development of formulations aimed at the therapeutic use of the species were included. The findings suggest that species have the potential for the development of pharmaceutical formulations due to their therapeutic properties. However, further studies are required to assess safety and efficacy of these products. Therefore, it is suggested that new research studies propose strategies so that technological development is based on awareness and preservation of the biome.


Subject(s)
Arecaceae , Fabaceae , Fruit , Chromatography, High Pressure Liquid , Oils
10.
Sci Total Environ ; 914: 169486, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38145678

ABSTRACT

Oil crops are among the main drivers of global land use changes. Palm oil is possibly the most criticized, as a driver of primary tropical forests loss. This has generated two different reactions in its use in various sectors (e.g., food, feed, biodiesel, surfactant applications, etc.): from one side there is a growing claim for deforestation-free palm oil, whereas on the other side the attention raised towards other vegetable oils as possible substitutes, such as soybean, rapeseed and sunflower oil. We assess potential land use changes and consequent greenhouse gas (GHG) emissions for switching from palm oil to other oils and compare this solution to deforestation-free palm oils. We consider three scenarios of 25 %, 50 % and 100 % palm oil replacement in the eight major oil crop producing countries. Total GHG emissions account for anthropogenic emissions generated along the life cycle of the field production process and potential forest carbon stock losses from land use change for oil crops expansion. Replacing palm oil with other oils would have a worthless effect in terms of global emissions reduction since GHG emissions remain approximatively stable across the three scenarios, whereas it would produce a deforestation increase of 28.2 to 51.9 Mha worldwide (or 7 to 21.5 Mha if excluding the unlikely deforestation in USA, Russia, Ukraine and the offset deforestation in China, India). Conversely, if the global palm oil production becomes deforestation-free, its GHG emissions would be reduced by 92 %, switching from the current 371 to 29 Mt CO2eq per year. Although highlighting the historical unsustainability of oil palm plantations, results show that replacing them with other oil crops almost never represents a more sustainable solution, thus potentially questioning sustainability claims of palm oil free products with respect to deforestation-free palm oil.


Subject(s)
Arecaceae , Greenhouse Gases , Palm Oil , Plant Oils , Conservation of Natural Resources , Crops, Agricultural , Greenhouse Effect
11.
BMC Complement Med Ther ; 23(1): 440, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053195

ABSTRACT

BACKGROUND: Oxidative stress and diabetes are medical conditions that have a growing prevalence worldwide, significantly impacting our bodies. Thus, it is essential to develop new natural antioxidant and antidiabetic agents. Dypsis pembana (H.E.Moore) Beentje & J.Dransf (DP) is an ornamental palm of the family Arecaceae. This study aimed to broaden the understanding of this plant's biological properties by evaluating its in vitro antioxidant and antidiabetic activities. METHODS: The in vitro antioxidant activities of the crude extract, fractions, and selected isolates were evaluated by DPPH method. While the in vitro antidiabetic activities of these samples were evaluated by assessing the degree of inhibition of α-glucosidase. Additionally, molecular docking analysis was performed to investigate the interactions of tested compounds with two potential targets, the cytochrome c peroxidase and alpha glucosidase. RESULTS: The crude extract displayed the highest antioxidant activity (IC50 of 11.56 µg/ml), whereas among the fractions, the EtOAc fraction was the most potent (IC50 of 14.20 µg/ml). Among tested compounds, isoquercetrin (10) demonstrated the highest potency, with an IC50 value of 3.30 µg/ml, followed by rutin (8) (IC50 of 3.61 µg/ml). Regarding antidiabetic activity, the EtOAc (IC50 of 60.4 µg/ml) and CH2Cl2 fractions (IC50 of 214.9 µg/ml) showed activity, while the other fractions did not demonstrate significant antidiabetic effects. Among tested compounds, kaempferol-3-O-neohesperidoside (9) showed the highest antidiabetic activity, with an IC50 value of 18.38 µg/ml, followed by kaempferol (4) (IC50 of 37.19 µg/ml). These experimental findings were further supported by molecular docking analysis, which revealed that isoquercetrin and kaempferol-3-O-neohesperidoside exhibited strong enzyme-binding affinities to the studied enzyme targets. This analysis provided insights into the structure-activity relationships among the investigated flavonol-O-glycosides. CONCLUSION: The biological and computational findings revealed that isoquercetrin and kaempferol-3-O-neohesperidoside have potential as lead compounds for inhibiting cytochrome c peroxidase and alpha glucosidase enzymes, respectively.


Subject(s)
Arecaceae , Cytochrome-c Peroxidase , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Antioxidants/chemistry , Kaempferols , Molecular Docking Simulation , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/chemistry , Flavonoids/chemistry , alpha-Glucosidases/chemistry
12.
Braz J Biol ; 83: e276545, 2023.
Article in English | MEDLINE | ID: mdl-37970907

ABSTRACT

The bacaba (Oenocarpus bacaba Mart.) peel corresponds to 15% of the whole fruit and is rich in antioxidants with potential application in product development. In nanotechnology, emulsified formulations such as nanoemulsions stand out for providing modified release and improving the bioavailability of conveyed substances. The aim of this work was to develop nanoemulsified systems from baru oil containing hydroalcoholic extract from the bacaba peel, evaluate their stability and antioxidant potential. After the HLB (Hydrophilic-lipophilic balance) determination of the baru oil, thirty-two formulations were developed, varying the proportions of surfactants, aqueous phase, and baru oil. Of those 32, 16 formed emulsified systems, and the ones with a higher amount of oil (20%) were incorporated with the BPE. The systems were submitted to stability studies to verify their viability. After that, several tests were performed, such as rheological characteristics, hydrodynamic diameter of the droplets, polydispersion index, zeta potential, and antioxidant potential by DPPH and ABTS+ radical scavenging methods. After the studies, two samples remained stable and presented a non-Newtonian pseudoplastic profile with thixotropy, hydrodynamic diameter of less than 200 nm, monodispersity, and negative zeta potential. The BPE showed antioxidant potential, with superior activity when incorporated into the nanoemulsified system. A strong negative correlation was found between the two antioxidant methods, where both demonstrated the same profile of potential antioxidant activity for the extract and formulations. The studied formulation showed that the use of BPE is a viable alternative for the development of new products based on sustainable technologies.


Subject(s)
Antioxidants , Arecaceae , Antioxidants/chemistry , Fruit/chemistry , Arecaceae/chemistry , Plant Extracts/chemistry
13.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569487

ABSTRACT

This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 µg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 µg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 µg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.


Subject(s)
Antineoplastic Agents , Arecaceae , Melanoma , Nanogels , Nanoparticle Drug Delivery System , Palm Oil , Resveratrol , Resveratrol/administration & dosage , Melanoma/therapy , Humans , Cell Line, Tumor , Nanogels/administration & dosage , Nanogels/chemistry , Arecaceae/chemistry , Palm Oil/chemistry , Seeds/chemistry , Particle Size , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry
14.
J Environ Manage ; 344: 118505, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37399622

ABSTRACT

Although causal links between tropical deforestation and palm oil are well established, linking this land use change to where the palm oil is actually consumed remains a distinct challenge and research gap. Supply chains are notoriously difficult to track back to their origin (i.e., the 'first-mile'). This poses a conundrum for corporations and governments alike as they commit to deforestation-free sourcing and turn to instruments like certification to increase supply chain transparency and sustainability. The Roundtable on Sustainable Palm Oil (RSPO) offers the most influential certification system in the sector, but whether it actually reduces deforestation is still unclear. This study used remote sensing and spatial analysis to assess the deforestation (2009-2019) caused by oil palm plantation expansion in Guatemala, a major palm oil source for international consumer markets. Our results reveal that plantations are responsible for 28% of deforestation in the region and that more than 60% of these plantations encroach on Key Biodiversity Areas. RSPO-certified plantations, comprising 63% of the total cultivated area assessed, did not produce a statistically significant reduction in deforestation. Using trade statistics, the study linked this deforestation to the palm oil supply chains of three transnational conglomerates - Pepsico, Mondelez International, and Grupo Bimbo - all of whom rely on RSPO-certified supplies. Addressing this deforestation and supply chain sustainability challenge hinges on three measures: 1) reform of RSPO policies and practices; 2) robust corporate tracking of supply chains; and 3) strengthening forest governance in Guatemala. This study offers a replicable methodology for a wide-range of investigations that seek to understand the transnational linkages between environmental change (e.g. deforestation) and consumption.


Subject(s)
Agriculture , Arecaceae , Palm Oil , Agriculture/methods , Guatemala , Conservation of Natural Resources , Certification
15.
Braz J Biol ; 83: e271577, 2023.
Article in English | MEDLINE | ID: mdl-37466512

ABSTRACT

Fungal diseases, especially those that affect the root systems of plants, caused by Rhizoctonia and Macrophomina are limiting factors for achieving high crop yields. Alternatives to controlling fungi with chemical products drive the search for new options for bioactive compounds from plants. Attalea geraensis, a palm tree from the Brazilian Cerrado, is rich in flavonoids with antifungal actions. The objective of this work is to identify the chemical classes present in the ethanolic extract of green leaves of A. geraensis and determine the antifungal potential of the extract against isolates of Macrophomina phaseolina (Tassi) Goid. and Rhizoctonia solani JG Kühn. Phytochemical prospection, flavonoid dereplication, and antifungal activity were carried out of the ethanolic extract of the green leaves of A. geraensis harvested in the Cerrado area of Brazil. Steroids, triterpenes, saponins, and anthraquinones are described here for the first time for the leaves of A. geraensis. The flavonoids quercetin, isorhamnetin, 3,7-dimethylquercetin, quercetin 3-galactoside, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one, rhamnazin 3-galactoside, keioside, and rhamnazin 3-rutinoside were identified. Of these, only quercetin and isorhamnetin had already been identified in the leaves of A. geraensis. The results show a fungistatic potential for the species. The diversity of flavonoids present in the leaves of A. geraensis may be the result of a synergistic action between fungus and plant or there could be an antagonistic effect between flavonoids and the other identified chemical classes.


Subject(s)
Antifungal Agents , Arecaceae , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Brazil , Arecaceae/chemistry , Quercetin/analysis , Plant Extracts/chemistry , Flavonoids/analysis , Ethanol/analysis , Ethanol/chemistry , Plant Leaves/chemistry , Galactosides/analysis
16.
J Ethnobiol Ethnomed ; 19(1): 22, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37268987

ABSTRACT

BACKGROUND: Domingo de Ramos, or Palm Sunday, is a traditional Christian religious event where devotees use ramos, which are bouquets currently elaborated from palm leaves and other natural elements. In various countries, it is assumed this use of biodiversity leads to the depletion of the species involved. However, other important aspects must be considered, including the role of the people who produce and sell these ramos, the associated symbolism that has been overlooked, as well as commercial aspects that have barely been documented. This ethnobotanical study evaluates the regional-scale cultural, biological and socioeconomic aspects associated with Domingo de Ramos in central Mexico from an emic perspective. METHODS: Ethnographic and commercial information was obtained through interviews with ramos sellers in 28 municipalities in the state of Hidalgo, Mexico. We specifically sought sociodemographic data regarding the interviewees, as well as information pertaining to the ramos themselves and the palms. These aspects were explored with all of the sellers. The free list method was used to describe the uses and key elements associated with the ramos. RESULTS: Although the ramos are used for religious purposes, they have eight different uses in the daily life of the sellers, the main one being "protection." They serve to protect families, crops and animals, as well as against several diseases. Likewise, they are considered valuable for diminishing strong storms. This belief in the protection conferred by the ramos preserves pre-Hispanic concepts and is combined with their use in blessing corresponding to Western beliefs. Ramos are made from 35 introduced and native plant species and comprise a base (made of palm, wheat or sotol), a "reliquia" (palm, rosemary, chamomile and laurel) and natural or artificial flowers. The ramos sellers are mostly adult women of indigenous origin and heads of family. CONCLUSIONS: This study of Domingo de Ramos, carried out at a regional scale, highlights a syncretism that is reflected in both the symbolic importance of ramos palm and in the species used, as well as socioeconomic aspects that had not previously been identified in the study area and reflect the occurrence of complex relationships in non-timber forest products that remain little addressed.


Subject(s)
Arecaceae , Ethnobotany , Animals , Mexico , Ethnobotany/methods , Forests , Plant Leaves , Flowers
17.
Int J Biol Macromol ; 242(Pt 4): 125099, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37263328

ABSTRACT

Natural fibers are available as an essential substitute for synthetic fiber in many applications. However, the sensitivity of Chinese Windmill Palm or Trachycarpus Fortune Fiber (TFF) to water causes low interfacial bonding between the matrix and the fiber and at the end reduces the mechanical properties of the composite product. Alkaline treatment improves mechanical properties and does not affect water absorption. Hence, additional treatment in the coating is required. This study uses alkaline treatment and coating modification using blended chitosan and Acrylated Epoxidized Soybean Oil (AESO). Blend coating between AESO and chitosan is performed to increase water absorption and mechanical properties. TFF water resistance improved significantly after the coating, with water absorption of the alkaline/blend coating-TFF of 3.98 % ± 0.52 and swell ability of 3.156 % ± 0.17. This indicated that blend coating had formed a cross-link of fiber and matrix after alkalization. Thus, the single fiber tensile strength increased due to the alkaline treatment, and water absorption decreased due to the coating. The combination of alkaline treatment and blend coating on TFF brings excellent properties, as shown by the increase in tensile strength in both single fiber test and composite.


Subject(s)
Arecaceae , Biopolymers , Chitosan , Coated Materials, Biocompatible , Soybean Oil , Arecaceae/chemistry , Chitosan/chemistry , Alkalies/chemistry , Tensile Strength , Soybean Oil/chemistry , Hydrophobic and Hydrophilic Interactions , Biopolymers/chemistry , Coated Materials, Biocompatible/chemistry
18.
Chem Biodivers ; 20(7): e202300340, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37253201

ABSTRACT

Plants are the prime source of phytoconstituents that can act as potent agents for the prevention and treatment of various diseases. Heterospathe elata is a plant belonging to the Arecaceae family having numerous medicinal properties. The present study was undertaken to prepare crude extracts of Heterospathe elata leaves with solvents of different polarity dimethyl carbonate (DMC), isopropyl alcohol (IPA), hydro alcohol (HYA) and water (WTR) by using successive Soxhlet extraction method. Further, the antioxidant, antidiabetic, and anti-inflammatory activities were assessed by the spectrophotometric method and possible bioactive phytoconstituents from the hydro alcohol extract of Heterospathe elata leaves using GC/MS. In our study, it was found that the GC/MS analysis revealed the presence of nineteen bioactive phytoconstituents. The highest antioxidant activity was found in the water extract. In antidiabetic and anti-inflammatory activity highest potential was shown by hydro alcohol extract and the lowest was in the dimethyl carbonate extract. These findings support the Heterospathe elata leaves showed the high biological potential attributed to a high amount of bioactive phytoconstituents and could be utilized as value-added functional food and medicine.


Subject(s)
Antioxidants , Arecaceae , Antioxidants/pharmacology , Plant Extracts/pharmacology , Solvents , Hypoglycemic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Leaves , Water
19.
Nature ; 618(7964): 239-240, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225792
20.
Int J Biol Macromol ; 242(Pt 2): 124900, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37201884

ABSTRACT

The bioactive compounds extraction from fruit pomace is an ecological alternative for these abundant and low-added-value by-products. This study aimed to evaluate the antimicrobial potential of pomace extracts from Brazilian native fruits (araçá, uvaia, guabiroba and butiá) and the effect on physicochemical, mechanical properties and the migration of antioxidants and phenolic compounds from starch-based films. The film with butiá extract had the lowest mechanical resistance (1.42 MPa) but the highest elongation (63 %). In comparison, uvaia extract had less impact on film mechanical properties (3.70 MPa and 58 %) compared to the other extracts. The extracts and films showed antimicrobial activity against Listeria monocytogenes, L. inoccua, B. cereus and S. aureu. Approximately 2 cm inhibition halo was noticed for the extracts, while films ranged from 0.33 to 1.46 cm inhibition halo. Films with guabiroba extract had the lowest antimicrobial activity (0.33 to 0.5 cm). The phenolic compounds were released from the film matrix in the first hour at 4 °C with maintenance in the stability. The fatty-food simulator showed a controlled release of antioxidant compounds, which can assist in controlling food oxidation. Brazilian native fruit has shown to be a viable alternative to isolate bioactive compounds and produce film packaging with antimicrobial and antioxidant activities.


Subject(s)
Anti-Infective Agents , Arecaceae , Fruit/chemistry , Antioxidants/chemistry , Starch/analysis , Brazil , Plant Extracts/chemistry , Phenols/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis
SELECTION OF CITATIONS
SEARCH DETAIL