Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
Add more filters

Publication year range
1.
Phytomedicine ; 129: 155559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579642

ABSTRACT

BACKGROUND: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE: We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.


Subject(s)
Benzylisoquinolines , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Osteogenesis , Ovariectomy , RANK Ligand , Reactive Oxygen Species , Animals , Benzylisoquinolines/pharmacology , Female , RANK Ligand/metabolism , Mice , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Osteogenesis/drug effects , Osteoclasts/drug effects , NFATC Transcription Factors/metabolism , Disease Models, Animal , Bone Resorption/drug therapy , Mice, Inbred C57BL , RAW 264.7 Cells , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Humans , Tetrahydroisoquinolines
2.
Inflammopharmacology ; 32(3): 1743-1757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568399

ABSTRACT

Inflammation can be triggered by any factor. The primary pathological manifestations can be summarized as the deterioration, exudation, and proliferation of local tissues, which can cause systemic damage in severe cases. Inflammatory lesions are primarily localized but may interact with body systems to cause provocative storms, parenchymal organ lesions, vascular and central nervous system necrosis, and other pathologic responses. Tetrandrine (TET) is a bisbenzylquinoline alkaloid extracted from the traditional Chinese herbal medicine Stephania tetrandra, which has been shown to have significant efficacy in inflammatory conditions such as rheumatoid arthritis, hepatitis, nephritis, etc., through NF-κB, MAPK, ERK, and STAT3 signaling pathways. TET can regulate the body's imbalanced metabolic pathways, reverse the inflammatory process, reduce other pathological damage caused by inflammation, and prevent the vicious cycle. More importantly, TET does not disrupt body's normal immune function while clearing the body's inflammatory state. Therefore, it is necessary to pay attention to its dosage and duration during treatment to avoid unexpected side effects caused by a long half-life. In summary, TET has a promising future in treating inflammatory diseases. The author reviews current therapeutic studies of TET in inflammatory conditions to provide some ideas for subsequent anti-inflammatory studies of TET.


Subject(s)
Benzylisoquinolines , Inflammation , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Humans , Animals , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Signal Transduction/drug effects
3.
J Ethnopharmacol ; 321: 117560, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38081396

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dauricine (DA) is a natural plant-derived alkaloid extracted from Menispermum dauricum. Menispermum dauricum has been used in traditional Chinese medicine as a classic remedy for rheumatoid arthropathy and is believed to be effective in alleviating swelling and pain in the limbs. AIM OF THE STUDY: Osteoarthritis (OA) is a classic degenerative disease involving chondrocyte death, and there is still a lack of effective therapeutic agents that can reverse the progression of the disease. Here we explored the therapeutic effects of DA against OA and further explored the mechanism. MATERIALS AND METHODS: The effect of DA on cell viability was assessed by CCK-8. IL-1ß-treated mouse chondrocytes were used as an in vitro model of OA, and apoptosis was detected by flow cytometry. QRT-PCR, western blotting, cell staining, and immunofluorescence were used to detect relevant inflammatory factors and cartilage-specific expression. RNA sequencing was used to identify pertinent signaling pathways. The therapeutic effect of DA was verified by micro-CT, histological analysis and immunohistochemical analysis in a mouse OA model. RESULTS: DA demonstrated a high safety profile on chondrocytes, significantly reversing the inflammatory response induced by IL-1ß, and promoting factors associated with cartilage regeneration. Moreover, DA exhibited a significant protective effect on the knee joints of mice undergoing ACLT-DMM, effectively preventing cartilage degeneration and subchondral bone tissue destruction. These positive therapeutic effects were achieved through the modulation of the NF-κB pathway and the Ca2+ signaling pathway by DA. CONCLUSION: Being derived from a traditional herb, DA exhibits remarkable therapeutic potential and safety in OA treatment, presenting a promising option for patients dealing with osteoarthritis.


Subject(s)
Benzylisoquinolines , Menispermum , Osteoarthritis , Humans , Mice , Animals , NF-kappa B/metabolism , Chondrocytes , Menispermum/metabolism , Cells, Cultured , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Benzylisoquinolines/pharmacology , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Interleukin-1beta/metabolism
4.
Phytother Res ; 38(1): 131-146, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37821355

ABSTRACT

Neuroblastoma and glioblastoma are primary malignant tumors of the nervous system, with frequent relapse and limited clinical therapeutic drugs. The failure of their treatment is due to the tumor cells exhibiting cancer stem-like cells (CSLCs) properties. Octamer binding transcription factor 4 (Oct4) is involved in mediating CSLCs, our previous work found that Oct4-driven reprogramming of astrocytes into induced neural stem cells was potentiated with continuous sonic hedgehog (Shh) stimulation. In this study, we aimed to study the importance of Oct4 and Shh combination in the stemness properties induction of neuroblastoma and glioblastoma cells, and evaluate the anti-stemness effect of dauricine (DAU), a natural product of bis-benzylisoquinoline alkaloid. The effect of Oct4 and Shh co-activation on cancer stemness was evaluated by tumor spheres formation model and flow cytometry analysis. Then the effects of DAU on SH-SY5Y and T98-G cells were assessed by the MTT, colony formation, and tumor spheres formation model. DAU acts on Oct4 were verified using the Western blotting, MTT, and so on. Mechanistic studies were explored by siRNA transfection assay, Western blotting, and flow cytometry analysis. We identified that Shh effectively improved Oct4-mediated generation of stemness in SH-SY5Y and T98-G cells, and Oct4 and Shh co-activation promoted cell growth, the resistance of apoptosis. In addition, DAU, a natural product, was found to be able to attenuate Oct4/Shh co-activated stemness and induce cell cycle arrest and apoptosis via blocking AKT/ß-catenin signaling in neuroblastoma and glioblastoma, which contributed to the neuroblastoma and glioblastoma cells growth inhibition by DAU. In summary, our results indicated that the treatment of DAU may be served as a potential therapeutic method in neuroblastoma and glioblastoma.


Subject(s)
Benzylisoquinolines , Biological Products , Glioblastoma , Neuroblastoma , Tetrahydroisoquinolines , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Hedgehog Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Benzylisoquinolines/pharmacology , Neoplastic Stem Cells , Cell Proliferation , Apoptosis , Biological Products/pharmacology
5.
Int Immunopharmacol ; 125(Pt B): 111175, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976601

ABSTRACT

OBJECTIVE: Cepharanthine (CEP) is a drug candidate for tumor, viral infection, and some inflammatory diseases, but its effect on rheumatoid arthritis (RA) and the underlying mechanism are incompletely understood. METHODS: CEP was administered intraperitoneally to a collagen-induced arthritis (CIA) model. Joints went radiological and histological examination and serum cytokines were examined with cytometry-based analysis. M1 macrophages were induced from THP-1 cells or mouse bone marrow-derived macrophages with LPS and IFN-γ. Bulk RNA-seq was performed on macrophage undergoing M1-polarizatioin. Western blotting was applied to determine pathways involved in monocyte chemotaxis and polarization. Glycolysis metabolites were measured by chemiluminescence while glycolytic enzymes were examined by quantitative PCR. RESULTS: We found CEP significantly ameliorated synovial inflammation and joint destruction of CIA mice. It downregulated TNF-α levels in serum and in joints. The number of M1 macrophages were reduced in CEP-treated mice. In vitro, CEP inhibited monocyte chemotaxis to MCP-1 by downregulating CCR2 and reducing ERK1/2 signaling. Additionally, CEP suppressed M1 polarization of macrophages induced by LPS and IFN-γ. Genes involved in IFN-γ signaling, IL-6-JAK/STAT3 signaling, glycolysis, and oxidative phosphorylation process were downregulated by CEP. Several enzymes critically involved in glycolytic metabolism were suppressed by CEP, which resulted in reduced citrate in M1-polarizing macrophages. The inhibitory effect of CEP on macrophage polarization might be attributed to the blockage of TLRs-MyD88/IRAK4-IRF5 signaling pathway together with suppression of overactivated glycolytic metabolism in M1-polarizing macrophages. CONCLUSION: CEP attenuated joint inflammation by suppressing monocyte chemotaxis and proinflammatory differentiation. It has the potential to be developed into a complementary or alternative therapy for RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Benzylisoquinolines , Animals , Mice , Lipopolysaccharides , Arthritis, Rheumatoid/drug therapy , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Arthritis, Experimental/drug therapy , Inflammation
6.
BMC Complement Med Ther ; 23(1): 386, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891552

ABSTRACT

BACKGROUND: Liensinine and neferine are the main bisbenzylisoquinoline alkaloids obtained from the seeds of Nelumbo nucifera, which commonly used as edible food and traditional medicine in Asia. It was reported that liensinine and neferine could inhibit the activities of acetylcholinesterase and cross the blood-brain barriers, suggesting their therapeutic potential for the management of Alzheimer's disease. METHODS: Here, we employed SH-SY5Y human neuroblastoma cells stably transfected with the human Swedish amyloid precursor protein (APP) mutation APP695 (APP695swe SH-SY5Y) as an in vitro model and transgenic Caenorhabditis elegans as an in vivo model to investigate the neuroprotective effects and underlying mechanism of liensinine and neferine. RESULTS: We found that liensinine and neferine could significantly improve the viability and reduce ROS levels in APP695swe SH-SY5Y cells, inhibit ß-amyloid and tau-induced toxicity, and enhance stress resistance in nematodes. Moreover, liensinine and neferine had obviously neuroprotective effects by assaying chemotaxis, 5-hydroxytryptamine sensitivity and the integrity of injured neurons in nematodes. Preliminary mechanism studies revealed that liensinine and neferine could upregulate the expression of autophagy related genes (lgg-1, unc-51, pha-4, atg-9 and ced-9) and reduce the accumulation of ß-amyloid induced autophagosomes, which suggested autophagy pathway played a key role in neuroprotective effects of these two alkaloids. CONCLUSIONS: Altogether, our findings provided a certain working foundation for the use of liensinine and neferine to treat Alzheimer's disease based on neuroprotective effects.


Subject(s)
Alkaloids , Alzheimer Disease , Benzylisoquinolines , Neuroblastoma , Neuroprotective Agents , Animals , Humans , Caenorhabditis elegans , Neuroprotective Agents/pharmacology , Acetylcholinesterase , Alzheimer Disease/drug therapy , Benzylisoquinolines/pharmacology , Alkaloids/pharmacology , Animals, Genetically Modified , Autophagy
7.
Mol Pharm ; 20(11): 5463-5475, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37823637

ABSTRACT

Nonsmall cell lung cancer (NSCLC) remains one of the leading causes of cancer-related death worldwide, posing a serious threat to global health. Tetrandrine (Tet) is a small molecule in traditional Chinese medicine with proven primary efficacy against multiple cancers. Although previous studies have demonstrated the potential anticancer effects of Tet on NSCLC, its poor water solubility has limited its further clinical application. Herein, a novel nanoparticle-based drug delivery system, platelet membrane (PLTM)-coated Tet-loaded polycaprolactone-b-poly(ethylene glycol)-b-polycaprolactone nanoparticles (PTeNPs), is proposed to increase the potency of Tet against NSCLC. First, tetrandrine nanoparticles (TeNPs) are created using an emulsion solvent evaporation method, and biomimetic nanoparticles (PTeNPs) are prepared by coating the nanoparticles with PLTMs. When coated with PLTMs, PTeNPs are considerably less phagocytized by macrophages than Tet and TeNPs. In addition, compared with Tet and TeNPs, PTeNPs can significantly inhibit the growth and invasion of NSCLC both in vitro and in vivo. With reliable biosafety, this drug delivery system provides a new method of sustained release and efficient anticancer effects against NSCLC, facilitating the incorporation of Tet in modern nanotechnology.


Subject(s)
Benzylisoquinolines , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanoparticles , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Carriers , Biomimetics , Lung Neoplasms/drug therapy , Benzylisoquinolines/pharmacology
8.
Biochim Biophys Acta Gen Subj ; 1867(12): 130486, 2023 12.
Article in English | MEDLINE | ID: mdl-37813201

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS: Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS: Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION: Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE: Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.


Subject(s)
Antineoplastic Agents , Benzylisoquinolines , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Apoptosis , Gemcitabine , Antineoplastic Agents/pharmacology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , ErbB Receptors
9.
Bioorg Chem ; 138: 106623, 2023 09.
Article in English | MEDLINE | ID: mdl-37295240

ABSTRACT

Fangchinoline (Fan) are extracted from the traditional Chinese medicine Stephania tetrandra S., which is a bis-benzyl isoquinoline alkaloids with anti-tumor activity. Therefore, 25 novel Fan derivatives have been synthesized and evaluated for their anti-cancer activity. In CCK-8 assay, these fangchinoline derivatives displayed higher proliferation inhibitory activity on six tumor cell lines than the parental compound. Compared to the parent Fan, compound 2h presented the anticancer activity against most cancer cells, especially A549 cells, with an IC50 value of 0.26 µM, which was 36.38-fold, and 10.61-fold more active than Fan and HCPT, respectively. Encouragingly, compound 2h showed low biotoxicity to the human normal epithelial cell BEAS-2b with an IC50 value of 27.05 µM. The results indicated compound 2h remarkably inhibited the cell migration by decreasing MMP-2 and MMP-9 expression and inhibited the proliferation of A549 cells by arresting the G2/M cell cycle. Meanwhile, compound 2h could also induce A549 cell apoptosis by promoting endogenous pathways of mitochondrial regulation. In nude mice presented that the growth of tumor tissues was markedly inhibited by the consumption of compound 2h in a dose-dependent manner, and it was found that compound 2h could inhibit the mTOR/PI3K/AKT pathway in vivo. In docking analysis, high affinity interaction between 2h and PI3K was responsible for drastic kinase inhibition by the compound. To conclude, this derivative compound may be useful as a potent anti-cancer agent for treatment of NSCLC.


Subject(s)
Antineoplastic Agents , Benzylisoquinolines , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Lung Neoplasms/metabolism , Cell Proliferation , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Cell Line, Tumor , Apoptosis , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
10.
Open Biol ; 13(5): 220355, 2023 05.
Article in English | MEDLINE | ID: mdl-37132222

ABSTRACT

Papaver somniferum L. (Family: Papaveraceae) is a species well known for its diverse alkaloids (100 different benzylisoquinoline alkaloids (BIAs)). L-tyrosine serves as a precursor of several specific metabolites like BIAs. It has been used as an antitussive and potent analgesic to alleviate mild to extreme pain since ancient times. The extraction of pharmaceutically important alkaloids like morphine and codeine from poppy plant reflects the need for the most suitable and standard methods. Several analytical and extraction techniques have been reported in open literature for morphine, codeine and other important alkaloids which play a vital function in drug development and drug discovery. Many studies suggest that opioids are also responsible for adverse effects or secondary complications like dependence and withdrawal. In recent years, opium consumption and addiction are the most important risk factors. Many evidence-based reviews suggest that opium consumption is directly linked or acts as a risk factor for different cancers. In this review, we highlight significant efforts related to research which have been done over the past 5 decades and the complete information on Papaver somniferum including its phytochemistry, pharmacological actions, biosynthetic pathways and analytical techniques of opium alkaloid extraction and the link between opium consumption and cancer-related updates.


Subject(s)
Alkaloids , Benzylisoquinolines , Neoplasms , Papaver , Opium/adverse effects , Opium/metabolism , Alkaloids/pharmacology , Alkaloids/metabolism , Benzylisoquinolines/pharmacology , Benzylisoquinolines/metabolism , Papaver/metabolism , Codeine/metabolism , Neoplasms/drug therapy , Neoplasms/etiology , Morphine Derivatives/metabolism
11.
Phytomedicine ; 114: 154798, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37031639

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), peculiarly nonalcoholic steatohepatitis (NASH), has become the main cause of liver transplantation and liver-related death. However, the US Food and Drug Administration has not approved a specific medication for treating NASH. Neferine (NEF), a natural bisbenzylisoquinoline alkaloid separated from the traditional Chinese medicine Nelumbinis plumula, has a variety of pharmacological properties, especially on metabolic diseases. Nevertheless, the anti-NASH effect and mechanisms of NEF remain unclear. PURPOSE: This study aimed to investigate the amelioration of NEF on NASH and the potential mechanisms. STUDY DESIGN: HepG2 cells, hepatic stellate cells (HSCs) and high-fat diet (HFD)+carbon tetrachloride (CCl4) induced C57BL/6 mice were used to observe the effect of NEF against NASH and investigate the engaged mechanism. METHODS: HSCs and HepG2 cells stimulated by oleic acid (OA) were treated with NEF. C57BL/6 mice were fed with HFD+CCl4 to induce NASH mouse model and treated with or without NEF (5 mg/kg or 10 mg/kg, once daily, i.p) for 4 weeks. RESULTS: NEF significantly attenuated the accumulation of lipid droplets, intracellular triglyceride (TG) levels and hepatocytes apoptosis in OA-exposed HepG2 cells. NEF not only enhanced the AMPK and ACC phosphorylation in OA-stimulated HepG2 cells, but also reduced inflammatory response and fibrosis in lipopolysaccharide (LPS)-stimulated HepG2 and in LX-2, respectively. In HFD+CCl4-induced NASH mice, pathological staining confirmed NEF treatment mitigated hepatic lipid deposition, inflammatory cell infiltration as well as hepatic fibrosis. Furthermore, the liver weight, serum and hepatic TG and total cholesterol (TC) and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were decreased compared with the model group. HFD+CCl4 also induced the upregulation of specific proteins and genes associated to inflammation (ILs, TNF-α, NLRP3, ASC, CCL2 and CXCL10) and hepatic fibrosis (collagens, α-SMA, TGF-ß and TIPM1), which were also suppressed by NEF treatment. CONCLUSION: Our results demonstrated that NEF played a protective role in hepatic steatosis via the regulation of AMPK pathways, which may serve as an attractive candidate for a potential novel strategy on prevention and treatment of NASH.


Subject(s)
Benzylisoquinolines , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Liver , Benzylisoquinolines/pharmacology , Liver Cirrhosis/drug therapy , Diet, High-Fat
12.
J Nat Prod ; 86(4): 1061-1073, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37043739

ABSTRACT

Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.


Subject(s)
Alkaloids , Antineoplastic Agents , Benzylisoquinolines , COVID-19 , Stephania tetrandra , Stephania , Humans , Stephania tetrandra/chemistry , SARS-CoV-2 , Benzylisoquinolines/pharmacology , Benzylisoquinolines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antiviral Agents/pharmacology , Stephania/chemistry
13.
J Chem Inf Model ; 63(7): 2104-2121, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36647612

ABSTRACT

The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CLPro is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CLPro. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CLpro during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CLPro. To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC50 value of 29.93 µM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.


Subject(s)
Antiviral Agents , Benzylisoquinolines , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Chlorocebus aethiops , COVID-19 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2/drug effects , Vero Cells , Plants, Medicinal/chemistry , Phytochemicals/pharmacology
14.
J Ethnopharmacol ; 303: 116025, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36496042

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Berberis amurensis Rupr. is used to treat cancer as a traditional herbal medicine. Berbamine (BBM) is a natural bisbenzylisoquinoline alkaloid extracted from Berberis amurensis which possesses multiple pharmacological activity including anticancer. AIM OF THE STUDY: To investigate the influence of BBM on the progression of colorectal cancer (CRC) and further explore the underlying mechanism of BBM based on the RTKs/Akt signaling pathway. MATERIALS AND METHODS: In vitro, cell viability and colony formation were conducted to detect BBM inhibitory of CRC cell lines. Transwell was detected the ability of migration and invasion by BBM. Apoptosis detection assay, cell cycle assay and the measurement of ROS were detected to confirm the inductive effect of cell apoptosis. RT-qPCR and Western blot to clarify the specific mechanism of anticancer. Finally, we conducted HE staining, Ki67, Tunnel and immunochemistry were confirmed the anti-colorectal cancer activity of BBM from vivo study. RESULTS: We found that BBM could inhibit CRC cell lines growth. Moreover, BBM presented an inhibitory effect the ability of migration and invasion in CRC cells. Furthermore, the occurrence of apoptosis was involved in the anti-colorectal cancer role of BBM. BBM also triggered ROS accumulation in CRC cells that might be a key factor for the inductive effect of BBM in cell apoptosis. Cell cycle assay revealed that BBM induced the arrest of G1-S phase and increased the p21 levels but decreased CyclinE1, CyclinE2, CDK6, CyclinD1. RT-qPCR manifested that the down-regulation effect of BBM on AKT1, EGFR, PDGFRα and FGFR4 genes. The results also showed that BBM could decreased the expression levels of phosphor-AKT, PDGFRα, PDGFRß, EGFR, FGFR3 and FGFR4 which belong to RTKs family. Consistently, BBM remarkably suppressed tumor xenograft growth in nude mice. CONCLUSION: Taken together, all the results as presented above suggest that BBM as a novel multitargeted receptor tyrosine kinase inhibitor plays a crucial role in the inhibitory effect of CRC and may be a promising therapeutic agent for the CRC in clinic.


Subject(s)
Benzylisoquinolines , Colorectal Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Mice, Nude , Reactive Oxygen Species , Receptor, Platelet-Derived Growth Factor alpha , Colorectal Neoplasms/pathology , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Apoptosis , ErbB Receptors/metabolism , Cell Proliferation , Cell Line, Tumor , Cell Movement
15.
Fitoterapia ; 164: 105356, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403942

ABSTRACT

A phytochemical investigation of the whole plants of T. delavayi led to the isolation of five new dimeric benzylisoquinoline alkaloids, thalidelavines A-E (1-5), together with six known congeners (6-11). The structures and absolute configurations of new compounds were established based on analyses of spectroscopic data, ECD calculations, and single crystal X-ray crystallography. Thalidelavines A-E (1-5) were structurally complex bisbenzylisoquinoline alkaloids with various configurations. These isolated alkaloids were evaluated for their cytotoxic and immunosuppressive effects. Among them, both 9 and 10 displayed significant cytotoxicities against T98G cell lines with an IC50 value of 2.1 µM, compared with the positive CPT-11 (IC50 = 3.0 µM). In addition, 5-7 showed remarkable immunosuppressive effects. These findings not only enrich the structural diversity of bisbenzylisoquinoline alkaloids, but also provide potential candidates for the further development of the antitumor and immunosuppressive agents.


Subject(s)
Alkaloids , Benzylisoquinolines , Thalictrum , Benzylisoquinolines/pharmacology , Benzylisoquinolines/chemistry , Thalictrum/chemistry , Molecular Structure , Alkaloids/pharmacology , Alkaloids/chemistry , Phytochemicals/pharmacology
16.
Acta Pharmacol Sin ; 44(4): 865-876, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36284209

ABSTRACT

Hernandezine (Her) is a bisbenzylisoquinoline alkaloid extracted from the traditional Chinese herbal medicine Thalictrum glandulosissimum. Evidence shows that Her is a natural agonist of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and induces apoptosis and autophagy in tumor cells. In this study, we investigated the role of autophagy in Her-induced cell death in human pancreatic cancer cell lines. We showed that Her dose-dependently suppressed cell proliferation, promoted autophagy and induced autophagic death in pancreatic ductal adenocarcinoma (PDAC) cell lines Capan-1 and SW1990. The IC50 values of Her in inhibition of Capan-1 and SW1990 cells were 47.7 µM and 40.1 µM, respectively. Immunoblotting showed that Her (1-40 µM) promoted the conversion of LC3-I to LC3-II, and Her exerted concentration-dependent and time-dependent effects on autophagy activation in PDAC cells. In transmission electron microscopy and fluorescence image analysis, we found that autophagic vacuoles were significantly increased in Her-treated cells. Knockdown of ATG5, a key gene in the autophagy pathway, alleviated the activation of autophagy by Her. These results demonstrated that Her induced autophagy in PDAC cells. Intensely activated autophagy could promote cell death. The autophagy inhibitors, BafA1 and HCQ significantly inhibited Her-induced cell death, implying that Her induced autophagic cell death in PDAC cells. Moreover, we showed that Her activated autophagy by increasing the phosphorylation of AMPK and decreasing the phosphorylation of mTOR/p70S6K. Knockdown of AMPKα relieves the autophagic cell death induced by Her. Furthermore, Her concentration-dependently enhanced reactive oxygen species (ROS) generation in PDAC cells. Antioxidants could reduce the phosphorylation of AMPK and suppress autophagic cell death induced by Her. Our study provides evidence for the development of Her as a therapeutic agent for the treatment of pancreatic cancer.


Subject(s)
Autophagic Cell Death , Benzylisoquinolines , Pancreatic Neoplasms , Female , Humans , AMP-Activated Protein Kinases/metabolism , Apoptosis , Autophagic Cell Death/drug effects , Autophagy , Benzylisoquinolines/pharmacology , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Signal Transduction , Pancreatic Neoplasms
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(6): 955-956, 2022 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-35790449

ABSTRACT

As a member of the dibenzyl isoquinoline alkaloid family, cepharathine is an alkaloid from the traditional Chinese medicine cepharathine, which is mainly used for treatment of leukopenia and other diseases. Recent studies of the inhibitory effect of cepharathine against SARS-CoV-2 have attracted widespread attention and aroused heated discussion. As the original discoverer of the anti-SARS-CoV-2 activity of cepharanthine, here we briefly summarize the discovery of cepharanthine and review important progress in relevant studies concerning the discovery and validation of anti-SARS-CoV-2 activity of cepharathine, its antiviral mechanisms and clinical trials of its applications in COVID-19 therapy.


Subject(s)
Benzylisoquinolines , COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Humans , SARS-CoV-2
18.
Phytother Res ; 36(12): 4542-4557, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35867025

ABSTRACT

Among all cancers, hepatocellular carcinoma (HCC) remains a lethal disease with limited treatment options. In this study, we have analyzed the possible inhibitory effects of Fangchinoline (FCN) on c-Met, a protein known to regulate the rapid phosphorylation of downstream signals, as well as mediate aberrant growth, metastasis, survival, and motility in cancer. FCN inhibited the activation of c-Met and its downstream signals PI3K, AKT, mTOR, MEK, and ERK under in vitro settings. Moreover, c-Met gene silencing lead to suppression of PI3K/AKT/mTOR and MEK/ERK signaling pathways, and induced apoptotic cell death upon exposure to FCN. In addition, FCN markedly inhibited the expression of the various oncogenic proteins such as Bcl-2/xl, survivin, IAP-1/2, cyclin D1, and COX-2. In vivo studies in HepG2 cells xenograft mouse model showed that FCN could significantly attenuate the tumor volume and weight, without affecting significant loss in the body weight. Similar to in vitro studies, expression level of c-Met and PI3K/AKT/mTOR, MEK/ERK signals was also suppressed by FCN in the tissues obtained from mice. Therefore, the novel findings of this study suggest that FCN can potentially function as a potent anticancer agent against HCC.


Subject(s)
Benzylisoquinolines , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/drug therapy , Disease Models, Animal , Hepatocyte Growth Factor , Liver Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Signal Transduction , Hep G2 Cells , Benzylisoquinolines/pharmacology
19.
Phytomedicine ; 104: 154325, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35820303

ABSTRACT

BACKGROUND: Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, is the only approved medicine in China for silicosis. However, TET-induced hepatotoxicity has raised safety concerns. The underlying toxic targets and mechanism induced by TET remain unclear; there are no targeted detoxification strategies developed for TET-induced hepatotoxicity. Ursolic acid (UA), a pentacyclic triterpene with liver protective effects, may have detoxification effects on TET-induced hepatotoxicity. PURPOSE: This study aims to explore toxic targets and mechanism of TET and present UA as a potential targeted therapy for alleviating TET-induced hepatotoxicity. METHODS: A TET-induced liver-injury model was established to evaluate TET toxicity and the potential UA detoxification effect. Alkenyl-modified TET and UA probes were designed to identify potential liver targets. Pharmacological and molecular biology methods were used to explore the underlying toxicity/detoxification mechanism. RESULTS: TET induced liver injury by covalently binding to the substrate-binding pocket (H-site) of glutathione S-transferases (GSTs) and inhibiting GST activity. The covalent binding led to toxic metabolite accumulation and caused redox imbalance and liver injury. UA protected the liver from TET-induced damage by competitively binding to the GST H-site. CONCLUSION: The mechanism of TET-induced hepatotoxicity is related to irreversible binding with the GST H-site and GST-activity inhibition. UA, a natural antidote, competed with TET on H-site binding and reversed the redox imbalance. This study revealed the hepatotoxic mechanism of TET and provided a targeted detoxifying agent, UA, to alleviate hepatotoxicity caused by GST inhibition.


Subject(s)
Antineoplastic Agents , Benzylisoquinolines , Chemical and Drug Induced Liver Injury , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Binding Sites , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Glutathione/metabolism , Glutathione Transferase/metabolism , Humans , Transferases/metabolism , Triterpenes , Ursolic Acid
20.
Front Endocrinol (Lausanne) ; 13: 885507, 2022.
Article in English | MEDLINE | ID: mdl-35663327

ABSTRACT

Postmenopausal osteoporosis (PMOP) is a kind of primary osteoporosis that is characterized by decreased bone density and strength. Berbamine is a nonbasic quaternary benzylisoquinoline plant alkaloid that has been widely used in the clinic to treat leukopenia in China. We found that berbamine inhibited RANKL-induced osteoclastogenesis of bone marrow-derived macrophages (BMMs) in vitro, which mainly occurred in the middle phase and late phase. The gene and protein expression levels of osteoclast-related molecules, including CTSK, MMP-9, NFATc1, CD44 and DC-STAMP, were also downregulated by berbamine. In vivo, we treated PMOP mice with berbamine for 8 weeks and found that the extent of osteoporosis was alleviated significantly according to micro-CT scanning, hematoxylin-eosin staining, DC-STAMP immunohistochemical staining and TRAP immunohistochemical staining in the distal femurs of the mice. Our findings demonstrate that berbamine has an inhibitory effect on the osteoclastogenesis of BMMs and can prevent bone loss after ovariectomy in vivo. This study provides evidence that berbamine is a potential drug for the prevention and treatment of PMOP.


Subject(s)
Alkaloids , Benzylisoquinolines , Bone Resorption , Osteoporosis, Postmenopausal , Osteoporosis , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use , Bone Resorption/drug therapy , Bone Resorption/metabolism , Female , Humans , Mice , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis, Postmenopausal/drug therapy , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL