Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nat Chem Biol ; 17(3): 326-334, 2021 03.
Article in English | MEDLINE | ID: mdl-33199915

ABSTRACT

Secreted polypeptides are a fundamental axis of intercellular and endocrine communication. However, a global understanding of the composition and dynamics of cellular secretomes in intact mammalian organisms has been lacking. Here, we introduce a proximity biotinylation strategy that enables labeling, detection and enrichment of secreted polypeptides in a cell type-selective manner in mice. We generate a proteomic atlas of hepatocyte, myocyte, pericyte and myeloid cell secretomes by direct purification of biotinylated secreted proteins from blood plasma. Our secretome dataset validates known cell type-protein pairs, reveals secreted polypeptides that distinguish between cell types and identifies new cellular sources for classical plasma proteins. Lastly, we uncover a dynamic and previously undescribed nutrient-dependent reprogramming of the hepatocyte secretome characterized by the increased unconventional secretion of the cytosolic enzyme betaine-homocysteine S-methyltransferase (BHMT). This secretome profiling strategy enables dynamic and cell type-specific dissection of the plasma proteome and the secreted polypeptides that mediate intercellular signaling.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/genetics , Biotin/chemistry , Blood Proteins/genetics , Hepatocytes/metabolism , Proteome/genetics , Staining and Labeling/methods , Animals , Betaine-Homocysteine S-Methyltransferase/metabolism , Biotin/administration & dosage , Biotinylation , Blood Proteins/metabolism , Gene Expression , HEK293 Cells , Hepatocytes/cytology , Humans , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL , Muscle Cells/cytology , Muscle Cells/metabolism , Myeloid Cells/cytology , Myeloid Cells/metabolism , Organ Specificity , Pericytes/cytology , Pericytes/metabolism , Proteome/metabolism , Proteomics/methods
2.
Nutr Diet ; 77(3): 368-372, 2020 07.
Article in English | MEDLINE | ID: mdl-31044529

ABSTRACT

AIM: Physiological homocysteine (Hcy) concentrations depend on several factors, both dietary (including folate and choline intake) and biological (such as polymorphism of the genes involved in Hcy metabolism). This study aimed to thus test the associations between genes functionally linked with Hcy metabolism (MTHFR, BHMT and PEMT), folate and choline intakes, and total Hcy (tHcy) concentrations of healthy pregnant women. METHODS: One hundred and three healthy Polish women aged 18-44 years, in the third trimester of pregnancy, were enrolled. RESULTS: Mean blood tHcy and glutathione (GSH) concentrations were 8.08 ± 3.25 µM and 4.84 ± 1.21 µM, respectively. Concentrations of tHcy were found to be lower in the women who were taking folic acid supplements than in those who did not take these supplements (7.42 ± 1.78 µM vs 9.28 ± 4.42 µM, P < 0.05). There were no associations found between the examined parameters and BHMT (rs7356530), MTHFR (rs1801133) and PEMT (rs12325817) alone. However, blood tHcy concentrations differed in the PEMT genotype subgroups when choline and folate intakes were considered: respectively, 25% and 20% lower levels were observed in the C allele carriers who met their needs of choline or folate than in those who did not take enough these nutrients (P < 0.05 for both associations). CONCLUSIONS: This study suggests that choline and folate intakes might interact with MTHFR, BHMT and PEMT polymorphisms to determine tHcy and GSH blood concentrations in healthy pregnant women.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/genetics , Choline/administration & dosage , Folic Acid/administration & dosage , Homocysteine/blood , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Phosphatidylethanolamine N-Methyltransferase/genetics , Adolescent , Adult , Female , Genotype , Glutathione/blood , Humans , Poland , Polymorphism, Genetic , Pregnancy , Pregnancy Trimester, Third , Young Adult
3.
J Nutr Biochem ; 72: 108210, 2019 10.
Article in English | MEDLINE | ID: mdl-31473512

ABSTRACT

Despite participation in overlapping metabolic pathways, the relationship between choline and vitamin B-12 has not been well characterized especially during pregnancy. We sought to determine the effects of maternal choline supplementation on vitamin B-12 status biomarkers in human and mouse pregnancy, hypothesizing that increased choline intake would improve vitamin B-12 status. Associations between common genetic variants in choline-metabolizing genes and vitamin B-12 status biomarkers were also explored in humans. Healthy third-trimester pregnant women (n=26) consumed either 480 or 930 mg choline/day as part of a 12-week controlled feeding study. Wild-type NSA and Dlx3 heterozygous (Dlx3+/-) mice, which display placental insufficiency, consumed a 1×, 2× or 4× choline diet and were sacrificed at gestational days 15.5 and 18.5. Serum vitamin B-12, methylmalonic acid (MMA) and homocysteine were measured in all samples; holotranscobalamin (in humans) and hepatic vitamin B-12 (in mice) were also measured. The 2× choline supplementation for 12 weeks in pregnant women yielded higher serum concentrations of holotranscobalamin, the bioactive form of vitamin B-12 (~24%, P=.01). Women with genetic variants in choline dehydrogenase (CHDH) and betaine-homocysteine S-methyltransferase (BHMT) had higher serum MMA concentrations (~31%, P=.03) and lower serum holotranscobalamin concentrations (~34%, P=.03), respectively. The 4× choline dose decreased serum homocysteine concentrations in both NSA and Dlx3+/- mice (~36% and~43% respectively, P≤.015). In conclusion, differences in choline supply due to supplementation or genetic variation modulate vitamin B-12 status during pregnancy, supporting a functional relationship between these nutrients.


Subject(s)
Choline/pharmacology , Maternal Nutritional Physiological Phenomena , Vitamin B 12/blood , Adult , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Choline Dehydrogenase/genetics , Dietary Supplements , Female , Gene Expression Regulation , Homeodomain Proteins/genetics , Homocysteine/blood , Humans , Methylmalonic Acid/blood , Mice, Mutant Strains , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Trimester, Third , Transcription Factors/genetics , Young Adult
4.
J Nutr ; 149(8): 1369-1376, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31111947

ABSTRACT

BACKGROUND: Hyperhomocysteinemia is associated with increased cardiovascular disease risk. Whole eggs contain several nutrients known to affect homocysteine regulation, including sulfur amino acids, choline, and B vitamins. OBJECTIVE: The aim of this study was to determine the effect of whole eggs and egg components (i.e., egg protein and choline) with respect to 1) homocysteine balance and 2) the hepatic expression and activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine ß-synthase (CBS) in a folate-restricted (FR) rat model of hyperhomocysteinemia. METHODS: Male Sprague Dawley rats (n = 48; 6 wk of age) were randomly assigned to a casein-based diet (C; n = 12), a casein-based diet supplemented with choline (C + Cho; 1.3%, wt:wt; n = 12), an egg protein-based diet (EP; n = 12), or a whole egg-based diet (WE; n = 12). At week 2, half of the rats in each of the 4 dietary groups were provided an FR (0 g folic acid/kg) diet and half continued on the folate-sufficient (FS; 0.2 g folic acid/kg) diet for an additional 6 wk. All diets contained 20% (wt:wt) total protein. Serum homocysteine was measured by HPLC and BHMT and CBS expression and activity were evaluated using real-time quantitative polymerase chain reaction, Western blot, and enzyme activity. A 2-factor ANOVA was used for statistical comparisons. RESULTS: Rats fed FR-C exhibited a 53% increase in circulating homocysteine concentrations compared with rats fed FS-C (P < 0.001). In contrast, serum homocysteine did not differ between rats fed FS-C and FR-EP (P = 0.078). Hepatic BHMT activity was increased by 45% and 40% by the EP (P < 0.001) and WE (P = 0.002) diets compared with the C diets, respectively. CONCLUSIONS: Dietary intervention with egg protein prevented elevated circulating homocysteine concentrations in a rat model of hyperhomocysteinemia, due in part to upregulation of hepatic BHMT. These data may support the inclusion of egg protein for dietary recommendations targeting hyperhomocysteinemia prevention.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/metabolism , Egg Proteins, Dietary/administration & dosage , Folic Acid Deficiency/metabolism , Hyperhomocysteinemia/prevention & control , Liver/enzymology , Up-Regulation , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Body Weight , Cysteine/blood , Egg Proteins, Dietary/metabolism , Male , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley
5.
FASEB J ; 33(5): 6339-6353, 2019 05.
Article in English | MEDLINE | ID: mdl-30768359

ABSTRACT

Classical cystathionine ß-synthase-deficient homocystinuria (HCU) is a life-threatening inborn error of sulfur metabolism. Treatment for pyridoxine-nonresponsive HCU involves lowering homocysteine (Hcy) with a methionine (Met)-restricted diet and betaine supplementation. Betaine treatment efficacy diminishes significantly over time due to impairment of betaine-Hcy S-methyltransferase (BHMT) function. Little is known regarding the regulation of BHMT in HCU. Using a betaine-responsive preclinical mouse model of HCU, we observed that this condition induces a 75% repression of BHMT mRNA, protein and enzyme activity, and significant depletion of hepatic betaine levels. BHMT repression was proportional to plasma Hcy levels but was not observed in mouse models of homocystinuria due to either methylenetetrahydrofolate reductase or Met synthase deficiency. Both Met supplementation and chemically induced glutathione depletion exacerbated hepatic BHMT repression in HCU mice but not wild-type (WT) controls. Conversely, cysteine treatment normalized hepatic BHMT expression in HCU mice but had no effect in WT control animals. Taurine treatment induced BHMT expression in HCU mice by 5-fold and restored maximal lowering of Hcy levels during long-term betaine treatment with a concomitant normalization of inflammatory cytokine expression and a significantly improved coagulative phenotype. Collectively, our findings indicate that adjuvantial taurine treatment has the potential to significantly improve clinical outcomes in HCU.-Maclean, K. N., Jiang, H, Phinney, W. N., Keating, A. K., Hurt, K. J., Stabler, S. P. Taurine alleviates repression of betaine-homocysteine S-methyltransferase and significantly improves the efficacy of long-term betaine treatment in a mouse model of cystathionine ß-synthase-deficient homocystinuria.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/metabolism , Betaine/pharmacology , Homocystinuria , Liver/enzymology , Taurine/pharmacology , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Disease Models, Animal , Homocystinuria/drug therapy , Homocystinuria/genetics , Homocystinuria/metabolism , Homocystinuria/pathology , Humans , Liver/pathology , Mice , Mice, Knockout
6.
J Dairy Sci ; 101(12): 11384-11395, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30316602

ABSTRACT

Insufficient supply of Met and choline (Chol) around parturition could compromise hepatic metabolism and milk protein synthesis in dairy cows. Mechanistic responses associated with supply of Met or Chol in primary liver cells enriched with hepatocytes (PHEP) from cows have not been thoroughly ascertained. Objectives were to isolate and culture PHEP to examine abundance of genes and proteins related to transmethylation, transsulfuration, and cytidine 5'-diphosphocholine (CDP-choline) pathways in response to Met or Chol. The PHEP were isolated from liver biopsies of Holstein cows (160 d in lactation). More than 90% of isolated cells stained positively for the hepatocyte marker cytokeratin 18. Cytochrome P450 (CYP1A1) mRNA abundance was only detectable in the PHEP and liver tissue compared with mammary tissue. Furthermore, in response to exogenous Met (80 µM vs. control) PHEP secreted greater amounts of albumin and urea. Subsequently, PHEP were cultured with Met (40 µM) or Chol (80 mg/dL) for 24 h. Compared with control or Chol, mRNA and protein abundance of methionine adenosyltransferase 1A (MAT1A) and phosphatidylethanolamine methyltransferase (PEMT) were greater in PHEP treated with Met. The mRNA abundance of S-adenosylhomocysteine hydrolase (SAHH), betaine-homocysteine methyltransferase (BHMT), and sarcosine dehydrogenase (SARDH) was greater in Met-treated PHEP compared with control or Chol. Compared with control, greater expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), betaine aldehyde dehydrogenase (BADH), and choline dehydrogenase (CHDH) was observed in cells supplemented with Met and Chol. However, Chol led to the greatest mRNA abundance of CHDH. Abundance of choline kinase α (CHKA), choline kinase ß (CHKB), phosphate cytidylyltransferase 1 α (PCYT1A), and choline/ethanolamine phosphotransferase 1 (CEPT1) in the CDP-choline pathway was greater in PHEP treated with Chol compared with control or Met. In the transsulfuration pathway, mRNA and protein abundance of cystathionine ß-synthase (CBS) was greater in PHEP treated with Met compared with control or Chol. Similarly, abundance of cysteine sulfinic acid decarboxylase (CSAD), glutamate-cysteine ligase, catalytic subunit (GCLC), and glutathione reductase (GSR) was greater in response to Met compared with control or Chol. Overall, these findings suggest that transmethylation and transsulfuration in dairy cow primary liver cells are more responsive to Met supply, whereas the CDP-choline pathway is more responsive to Chol supply. The relevance of these data in vivo merit further study.


Subject(s)
Choline/metabolism , Cytidine Diphosphate Choline/metabolism , Hepatocytes/metabolism , Liver/metabolism , Methionine/metabolism , Animals , Betaine-Homocysteine S-Methyltransferase/metabolism , Cattle , Cells, Cultured , Diet/veterinary , Dietary Supplements/analysis , Female , Lactation , Milk Proteins/metabolism , Parturition , Pregnancy
7.
J Nutr ; 147(1): 11-19, 2017 01.
Article in English | MEDLINE | ID: mdl-27881594

ABSTRACT

BACKGROUND: Compared with choline, Met enhances milk yield and feed intake, and elicits a better immuno-metabolic status in periparturient cows. It is unknown whether hepatic activity and transcription of betaine-homocysteine methyltransferase (BHMT), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and cystathionine ß-synthase (CBS) are responsive to Met and choline supply. OBJECTIVE: This study sought to characterize hepatic BHMT, MTR, and CBS transcription and activity in response to Met and choline supplementation. METHODS: Forty multiparous cows were used in a 2 × 2 factorial design from -21 d through 30 d around parturition to assess effects of dietary rumen-protected Met (0% or 0.08% dry matter basis) or rumen-protected choline (0 or 60 g · cow-1 · d-1). Liver tissue obtained on days -10, 7, 20, and 30 was used for analyses. RESULTS: Met-supplemented cows had greater methionine adenosyltransferase 1A (MAT1A) (0.38 compared with 0.27; SEM = 0.05; P = 0.02) and phosphatidylethanolamine methyltransferase (PEMT) (0.74 compared with 0.58; SEM = 0.08; P = 0.05) expression. Greater S-adenosylhomocysteine hydrolase (SAHH) (0.93 compared with 0.74; SEM = 0.05; P = 0.01) and CBS (1.16 compared with 1.02; SEM = 0.07; P = 0.04), as well as lower MTR activity (23.4 compared with 29.7 nmol product · h-1 · mg protein-1; SEM = 2.9; P = 0.04), also were detected in Met- but not choline-supplemented cows. Although BHMT and MTR expression and BHMT enzyme activity did not change (P > 0.05), MTR enzyme activity was lower in choline-supplemented cows (23.5 compared with 29.6 nmol product · h-1 · mg protein-1; SEM = 2.9; P = 0.05). CONCLUSIONS: These findings indicate that greater synthesis of phosphatidylcholine and antioxidants contribute to the better performance and immuno-metabolic status in Met-supplemented cows. Failure to generate a comparable amount of endogenous Met from choline could be one reason that choline-fed cows fail to achieve comparable performance and health benefits during the periparturient period.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Betaine-Homocysteine S-Methyltransferase/metabolism , Cattle/physiology , Choline/administration & dosage , Cystathionine beta-Synthase/metabolism , Methionine/administration & dosage , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Cystathionine beta-Synthase/genetics , Diet/veterinary , Female , Gene Expression Regulation, Enzymologic , Liver/enzymology , Liver/metabolism , Peripartum Period
8.
J Dairy Sci ; 99(10): 8451-8460, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27474977

ABSTRACT

Metabolizable methionine (Met) concentrations can be increased by feeding rumen-protected dl-Met or the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid (HMBi). Hepatic responses to increasing concentrations of metabolizable Met as a result of supplementation of different Met sources have not been comparatively examined. The objective of this experiment was to examine the regulation of key genes for Met metabolism, gluconeogenesis, and fatty acid oxidation in response to increasing concentrations of dl-Met or 2-hydroxy-4-(methylthio) butanoic acid (HMB) in bovine primary hepatocytes. Hepatocytes isolated from 4 Holstein calves less than 7d old were maintained as monolayer cultures for 24h before addition of treatments. Cells were then exposed to treatments of dl-Met or HMB (0, 10, 20, 40, or 60 µM) in Met-free medium for 24h and collected for RNA isolation and quantification of gene expression by quantitative PCR. Expression of betaine-homocysteine methyltransferase (BHMT), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and 5,10 methylenetetrahydrofolate reductase (MTHFR) genes, which catalyze regeneration of Met from betaine and homocysteine, decreased linearly with increasing dl-Met concentration. We observed similar effects with increasing HMB concentration, except expression of MTHFR, which was not altered. Expression of Met adenosyltransferase 1A (MAT1A), which catalyzes the first step of Met metabolism to generate S-adenosylmethionine (SAM), a primary methyl donor, was decreased with increasing dl-Met or HMB concentration. Expression of S-adenosylhomocysteine hydrolase (SAHH) was decreased linearly with increasing HMB concentration, but not altered by dl-Met. Increasing concentrations of dl-Met and HMB decreased cytosolic phosphoenolpyruvate carboxykinase (PCK1) expression, but did not alter the expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) or pyruvate carboxylase (PC). Expression of glucose-6-phosphatase(G6PC) decreased linearly with increasing HMB concentration, but not altered by dl-Met. Neither dl-Met nor HMB altered the expression of carnitine palmitoyltransferase 1A(CPT1a). These findings demonstrate reduced necessity for Met regeneration with increased Met concentrations in the medium, regardless of the Met source. The lack of upregulation of gluconeogenesis indicates that increased dl-Met or HMB is not prioritized for glucose synthesis in primary bovine hepatocytes.


Subject(s)
Liver/drug effects , Methionine/analogs & derivatives , Methionine/pharmacology , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Adenosylhomocysteinase/genetics , Animals , Animals, Newborn , Betaine/metabolism , Betaine-Homocysteine S-Methyltransferase/genetics , Carnitine O-Palmitoyltransferase/genetics , Cattle , Down-Regulation , Gluconeogenesis/genetics , Glucose-6-Phosphatase/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Homocysteine/metabolism , Liver/metabolism , Methionine Adenosyltransferase/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , S-Adenosylmethionine/metabolism , Up-Regulation
9.
Biochem Biophys Res Commun ; 477(3): 440-7, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27320863

ABSTRACT

We investigated the anti-lipogenic effect of betaine in rats fed methionine and choline-deficient diet (MCD). Intake of MCD for 3 wk resulted in a significant accumulation of hepatic lipids, which was prevented by betaine supplementation in drinking water (1%). Phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), sterol regulatory element-binding protein-1c (SREBP-1c), and liver kinase B1 (LKB1) was inhibited by MCD intake, and these changes were all inhibited by betaine feeding. Meanwhile, betaine supplementation reversed the reduction of methionine and S-adenosylmethionine (SAM), and the elevation of homocysteine levels in the liver, which could be attributable to the induction of betaine-homocysteine methyltransferase (BHMT) and methionine adenosyltransferase (MAT). Different cell lines were used to clarify the role of homocysteine on activation of the AMPK pathway. Homocysteine treatment decreased pAMPK, pACC, pSREBP-1c and pLKB1 in HepG2 cells. Metformin-induced activation of AMPK was also inhibited by homocysteine. Treatment with hydroxylamine, a cystathionine ß-synthase inhibitor, resulted in a reduction of pAMPK, pACC and pSREBP-1c, accompanied by an elevation of intracellular homocysteine. Betaine treatment prevented the homocysteine-induced reduction of pAMPK, pACC, pSREBP-1c and pLKB1 in H4IIE cells, but not in HepG2 cells. Also the elevation of cellular homocysteine and inhibition of protein expression of BHMT were prevented by betaine only in H4IIE cells which express BHMT. The results suggest that the beneficial effect of betaine against hepatic lipid accumulation may be attributed, at least in part, to the depletion of homocysteine via up-regulation of BHMT in hepatocytes.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/metabolism , Betaine/metabolism , Dietary Fats/metabolism , Homocysteine/metabolism , Liver/metabolism , Up-Regulation , Animals , Humans , Male , Rats , Rats, Sprague-Dawley
10.
J Ethnopharmacol ; 173: 241-50, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26232629

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellariae radix (Scutellaria baicalensis Georgi) and Coptidis rhizoma (Coptis chinensis Franch), known as traditional Chinese medicine (TCM), have been widely used with the effects of suppressing fever, dispelling dampness, purging fire and removing toxicosis. Owing to their unimaginable complexity, it is difficult to understand their pharmacokinetic properties in detail. The aim of this study was to develop an optimal proteomics approach to analyze the protein profiling related with ADME/Tox in rat liver treated with S. radix and C. rhizoma as well as their compatibility. MATERIALS AND METHODS: Male rats were respectively administered the extracts of S. radix, C. rhizoma and their mixture for 7 days, and their liver tissue samples were prepared for the comparative proteomic analysis. The significantly differentially expressed proteins between the experimental groups and the control group were found and identified by 2-DE and MALDI-TOF-MS analyses. To validate the proteomic analysis results, glutathion peroxidase, catalase and betaine homocysteine methyl transferase were selected and confirmed by western blotting. RESULTS: Seventy eight significantly differentially expressed proteins between the experimental groups and the control group were found and identified. By querying the relational databases, the identified differentially expressed proteins were summarized and classified into three groups, phase I drug metabolic enzymes, phase II drug metabolic enzymes and the rest proteins which mainly involve in energy metabolism, signal transduction and cytoskeleton. These proteins involved in ADME/Tox may be the targets for metabolic studies or markers for toxicity. CONCLUSIONS: Our findings indicated S. radix and C. rhizoma as well as their compatibility can assuredly influence the expression of the proteins in rat liver. After administration, the majority of these expressions presented a downward trend, which may be closely related to the pharmacological properties of the medicine. The method in this study may open up a new road for the complementary tests for ADME/Tox properties of S. radix and C. rhizoma as well as their compatibility.


Subject(s)
Coptis , Liver/drug effects , Plant Extracts/pharmacology , Scutellaria baicalensis , Animals , Betaine-Homocysteine S-Methyltransferase/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Liver/metabolism , Male , Medicine, Chinese Traditional , Plant Roots , Proteome/drug effects , Proteomics , Rats, Sprague-Dawley
11.
Wei Sheng Yan Jiu ; 44(2): 279-83, 2015 Mar.
Article in Chinese | MEDLINE | ID: mdl-25997234

ABSTRACT

OBJECTIVE: To investigate the dose-dependent effects of beet powder supplementation on hyperhomocysteinemia induced by choline deprivation in rats. Methods 48 rats of the Wistar were fed 25% soybean protein diet (25S), choline deprivation in 25S diets (25SCD) with different betaine levels (0. 05% and 0. 1%) and beet powder levels (4. 12% and 8. 24%) corresponds to betaine levels for 10 days, and they were killed by decapitation to obtain blood and livers was subject to analysis the concentration of homocysteine, cysteine and other amino acids, as well as BHMT and CBS activities. RESULTS: The homocysteine concentration was increased from (11. 8 ± 0. 4) µmol/L to (33. 2 ± 0. 6) µmol/L by choline deprived - 25S diets (P < 0. 05). The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25S diet was significantly suppressed by 0. 10% betaine or 8. 24% beet in a dose dependent manner. Supplementation with betaine or beet significant increased hepatic BHMT activity. CONCLUSION: The results indicated that betaine or beet could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.


Subject(s)
Beta vulgaris , Betaine/pharmacology , Choline Deficiency/complications , Hyperhomocysteinemia/drug therapy , Amino Acids , Animals , Betaine/administration & dosage , Betaine-Homocysteine S-Methyltransferase , Choline , Cysteine , Diet , Dietary Supplements , Homocysteine/blood , Hyperhomocysteinemia/chemically induced , Liver , Methionine , Rats , Rats, Wistar
12.
Am J Med Genet A ; 167(6): 1231-42, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25846410

ABSTRACT

Right-sided and left-sided obstructive heart defects (OHDs) are subtypes of congenital heart defects, in which the heart valves, arteries, or veins are abnormally narrow or blocked. Previous studies have suggested that the development of OHDs involved a complex interplay between genetic variants and maternal factors. Using the data from 569 OHD case families and 1,644 control families enrolled in the National Birth Defects Prevention Study (NBDPS) between 1997 and 2008, we conducted an analysis to investigate the genetic effects of 877 single nucleotide polymorphisms (SNPs) in 60 candidate genes for association with the risk of OHDs, and their interactions with maternal use of folic acid supplements, and pre-pregnancy obesity. Applying log-linear models based on the hybrid design, we identified a SNP in methylenetetrahydrofolate reductase (MTHFR) gene (C677T polymorphism) with a main genetic effect on the occurrence of OHDs. In addition, multiple SNPs in betaine-homocysteine methyltransferase (BHMT and BHMT2) were also identified to be associated with the occurrence of OHDs through significant main infant genetic effects and interaction effects with maternal use of folic acid supplements. We also identified multiple SNPs in glutamate-cysteine ligase, catalytic subunit (GCLC) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) that were associated with elevated risk of OHDs among obese women. Our findings suggested that the risk of OHDs was closely related to a combined effect of variations in genes in the folate, homocysteine, or glutathione/transsulfuration pathways, maternal use of folic acid supplements and pre-pregnancy obesity.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/genetics , Cardiomyopathy, Hypertrophic/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Glutamate-Cysteine Ligase/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Obesity/genetics , Adult , Betaine-Homocysteine S-Methyltransferase/metabolism , Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/pathology , DNA (Cytosine-5-)-Methyltransferases/metabolism , Dietary Supplements/adverse effects , Female , Folic Acid/adverse effects , Gene Expression , Gene-Environment Interaction , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Homocysteine/metabolism , Humans , Infant , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Models, Genetic , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Polymorphism, Single Nucleotide , Pregnancy , Risk Factors , DNA Methyltransferase 3B
13.
Br J Nutr ; 113(12): 1835-43, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25920593

ABSTRACT

To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (P< 0·05) hepatic TAG accumulation induced by high-fat diet, which was also supported by hepatic histology results. Additionally, hepatic betaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (P< 0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P< 0·05) concentration [corrected] of hepatic carnitine palmitoyltransferase 1 (CPT1) compared with high-fat diet-fed rats. High-fat diet inhibited (P< 0·05) the gene expression of hepatic PPARα and CPT1. However, betaine administration in high-fat diet-fed rats elevated (P< 0·05) the gene expression of PPARα and CPT1. Moreover, concentration, gene and protein expressions of hepatic fibroblast growth factor 21 (FGF21) were increased (P< 0·05) in response to betaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (P< 0·05) as well. The results suggest that betaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.


Subject(s)
Betaine/administration & dosage , Diet, High-Fat , Fatty Acids/metabolism , Lipid Metabolism/drug effects , Liver/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Betaine-Homocysteine S-Methyltransferase/metabolism , Body Weight/drug effects , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Diet , Gene Expression/drug effects , Lecithins/analysis , Lipotropic Agents , Liver/drug effects , Male , Oxidation-Reduction , PPAR alpha/genetics , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Triglycerides/metabolism
14.
PLoS One ; 10(3): e0121224, 2015.
Article in English | MEDLINE | ID: mdl-25822522

ABSTRACT

The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase) of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of aestivation in the liver of P. annectens.


Subject(s)
Arousal/physiology , Energy Metabolism/physiology , Estivation/physiology , Fishes/genetics , Gene Expression Regulation, Enzymologic/physiology , Liver/metabolism , Metabolic Networks and Pathways/physiology , Africa , Animals , Argininosuccinate Synthase/metabolism , Base Sequence , Betaine-Homocysteine S-Methyltransferase/metabolism , Carbon-Nitrogen Ligases/metabolism , DNA, Complementary/genetics , Fishes/physiology , Gene Library , Molecular Sequence Data , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Superoxide Dismutase/metabolism
15.
J Nutr ; 145(2): 260-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25644346

ABSTRACT

BACKGROUND: Hyperhomocysteinemia plays an important role in the development of hepatic steatosis, and studies indicate that homocysteine-lowering treatment inhibits the development of fatty liver. OBJECTIVE: We evaluated the effects of L-serine on alcoholic fatty liver and homocysteine metabolism. METHODS: In a binge ethanol study, male C57BL/6 mice were divided into 4 groups: control, ethanol + vehicle, and ethanol + 20 or 200 mg/kg L-serine. Mice were gavaged with ethanol (5 g/kg body weight) 3 times every 12 h with or without L-serine which was given twice 30 min before the last 2 ethanol doses. Control mice were fed isocaloric dextran-maltose. In a chronic ethanol study, male Wistar rats were divided into 3 groups: control, ethanol, and ethanol + L-serine. Rats were fed a standard Lieber-DeCarli ethanol diet (36% ethanol-derived calories) for 4 wk with or without dietary L-serine supplementation (1%; wt:vol) for the last 2 wk. In control rats, the ethanol-derived calories were replaced with dextran-maltose. The effects of L-serine were also tested in AML12 cells manipulated to have high homocysteine concentrations by silencing the genes involved in homocysteine metabolism. RESULTS: Binge ethanol treatment increased serum homocysteine and hepatic triglyceride (TG) concentrations by >5-fold vs. controls, which were attenuated in the 200-mg/kg L-serine treatment group by 60.0% and 47.5%, respectively, compared with the ethanol group. In the chronic ethanol study, L-serine also decreased hepatic neutral lipid accumulation by 63.3% compared with the ethanol group. L-serine increased glutathione and S-adenosylmethionine by 94.0% and 30.6%, respectively, compared with the ethanol group. Silencing betaine homocysteine methyltransferase, cystathionine ß-synthase, or methionine increased intracellular homocysteine and TG concentrations by >2-fold, which was reversed by L-serine when L-serine-independent betaine homocysteine methyltransferase was knocked down. CONCLUSION: These results demonstrate that L-serine ameliorates alcoholic fatty liver by accelerating L-serine-dependent homocysteine metabolism.


Subject(s)
Dietary Supplements , Fatty Liver, Alcoholic/drug therapy , Homocysteine/metabolism , Serine/administration & dosage , Animals , Betaine-Homocysteine S-Methyltransferase/metabolism , Cystathionine beta-Synthase/metabolism , Energy Intake , Ethanol/administration & dosage , Homocysteine/blood , Hyperhomocysteinemia/drug therapy , Liver/drug effects , Liver/metabolism , Male , Methionine/metabolism , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , S-Adenosylmethionine/metabolism , Triglycerides/blood
16.
FASEB J ; 29(2): 418-32, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25384423

ABSTRACT

Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress.


Subject(s)
Cochlea/physiopathology , Folic Acid Deficiency/physiopathology , Hearing Loss/physiopathology , Homocysteine/metabolism , Hyperhomocysteinemia/physiopathology , Oxidative Stress , Animals , Apoptosis , Betaine-Homocysteine S-Methyltransferase/genetics , Catalase/metabolism , Chromatography, High Pressure Liquid , Female , Folic Acid/blood , Folic Acid Deficiency/complications , Glutathione Peroxidase/metabolism , Glutathione Synthase/metabolism , Hair Cells, Auditory/cytology , Hearing Loss/etiology , Homocysteine/deficiency , Hyperhomocysteinemia/complications , In Situ Nick-End Labeling , Methionine/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidation-Reduction , Phospholipid Hydroperoxide Glutathione Peroxidase
17.
J Trace Elem Med Biol ; 30: 77-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25467853

ABSTRACT

Methionine synthase (MS) and betaine-homocysteine methyltransferase (BHMT) are both zinc (Zn)-dependent methyltransferases and involved in the methylation of homocysteine. The objective of this study was to investigate the effects of dietary Zn supply on homocysteine levels and expression of the two enzymes in growing rats. Male weanling Sprague-Dawley rats were assigned randomly to four dietary groups (n=8/group) for 3 weeks: Zn deficient (ZD; <1mg Zn/kg); Zn control (ZC; 30mg Zn/kg); Zn supplemented (ZS; 300mg Zn/kg); pair fed (PF; 30mg Zn/kg) to the ZD group. Serum and femur Zn concentrations were 83% and 58% lower in ZD, and 49% and 62% higher in ZS compared to ZC (P<0.001), respectively. The ZD rats had lower feed intake (37%), body weight gains (45%), liver (43%) and kidney (31%) weights than those of ZC (P<0.001), but these parameters in ZD were not significantly different from the PF controls. Serum homocysteine concentrations were 65% higher in ZD compared to PF (P<0.05), and there was no significant difference in serum folate levels between ZD and PF groups. The mRNA expression of liver and kidney MS was 57% and 38% lower in ZD than PF (P<0.001), respectively. Hepatic and renal BHMT mRNA levels were not altered in ZD compared to controls. The aforementioned measurements were not significantly different between ZS and ZC groups, except Zn levels. These results demonstrated that homocysteine homeostasis appeared to be disturbed by Zn deficiency but not Zn supplementation, and elevated serum homocysteine might be due to reduced expression of MS during Zn deficiency.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Betaine-Homocysteine S-Methyltransferase/metabolism , Dietary Supplements , Homocysteine/blood , Zinc/deficiency , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Body Weight , Diet , Feeding Behavior , Folic Acid , Gene Expression Regulation, Enzymologic , Kidney/enzymology , Liver/enzymology , Male , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Zinc/blood
18.
Atherosclerosis ; 236(1): 91-100, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25016363

ABSTRACT

Despite the benefit of statins in reducing cardiovascular risk, a sizable proportion of patients still remain at risk. Since HDL reduces CVD risk through a process that involves formation of pre-beta particles that facilitates the removal of cholesterol from the lipid-laden macrophages in the arteries, inducing pre-beta particles, may reduce the risk of CVD. A novel BET bromodomain antagonist, RVX-208, was reported to raise apoA-I and increase preß-HDL particles in non-human primates and humans. In the present study, we investigated the effect of RVX-208 on aortic lesion formation in hyperlipidemic apoE(-/-) mice. Oral treatments of apoE(-/-) mice with 150 mg/kg b.i.d RVX-208 for 12 weeks significantly reduced aortic lesion formation, accompanied by 2-fold increases in the levels of circulating HDL-C, and ∼50% decreases in LDL-C, although no significant changes in plasma apoA-I were observed. Circulating adhesion molecules as well as cytokines also showed significant reduction. Haptoglobin, a proinflammatory protein, known to bind with HDL/apoA-I, decreased >2.5-fold in the RVX-208 treated group. With a therapeutic dosing regimen in which mice were fed Western diet for 10 weeks to develop lesions followed by switching to a low fat diet and concurrent treatment with RVX-208 for 14 weeks, RVX-208 similarly reduced lesion formation by 39% in the whole aorta without significant changes in the plasma lipid parameters. RVX-208 significantly reduced the proinflammatory cytokines IP-10, MIP1(®) and MDC. These results show that the antiatherogenic activity of BET inhibitor, RVX-208, occurs via a combination of lipid changes and anti-inflammatory activities.


Subject(s)
Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Betaine-Homocysteine S-Methyltransferase/antagonists & inhibitors , Hyperlipidemias/drug therapy , Quinazolines/therapeutic use , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Aortic Diseases/blood , Aortic Diseases/etiology , Aortic Diseases/pathology , Apolipoprotein A-I/blood , Apolipoproteins E/deficiency , Atherosclerosis/blood , Atherosclerosis/etiology , Atherosclerosis/pathology , Cell Line , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cytokines/blood , Diet, Fat-Restricted , Diet, Western/adverse effects , Drug Evaluation, Preclinical , Endothelial Cells , Gene Expression Profiling , Humans , Hyperlipidemias/blood , Hyperlipidemias/complications , Hyperlipidemias/diet therapy , Hyperlipidemias/genetics , Inflammation/blood , Inflammation/prevention & control , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Quinazolines/pharmacology , Quinazolinones , RNA, Messenger/analysis , U937 Cells
19.
J Neurol Sci ; 337(1-2): 61-6, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24326202

ABSTRACT

AIMS: We investigated the hypothesis that there are interactions between SNPs in folate metabolism pathway genes and environmental risk factors to the etiology of neural tube defects (NTDs). METHOD: In 602 Chinese families, 609 aborted fetus tissues or blood samples were collected from NTD individuals, and 1106 parental blood samples were detected as controls. We analyzed 28 SNPs in 12 folate pathway genes. Folate supplementation, gestational diabetes mellitus (GDM) and medicine administration before and during pregnancy were investigated. Case-parental control study and transmission/disequilibrium tests were performed according to environmental cofactor stratification. RESULTS: Association between 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C>T and NTDs was significant in all stratifications (all P<.05), and synergistic effects of no folate supplementation and GDM were shown on NTD occurrence. 5-Methyltetrahydrofolate-homocysteine methyltransferase (MTHM) 501A>G in case of GDM, and betaine-homocysteine methyltransferase (BHMT) 716G>A in case of no folate supplementation significantly associated with NTDs (both P<.05), whereas the two genotypes alone did not significantly associate with NTDs (both P>.05). CONCLUSIONS: MTHFR 677C>T genotype, especially in case of no folate supplementation and GDM, promotes NTD occurrence. MTHM 501A>G only in case of GDM, and BHMT 716G>A only in case of no folate supplementation contribute to the etiology of NTDs.


Subject(s)
Family Health , Folic Acid/genetics , Genetic Predisposition to Disease , Neural Tube Defects/genetics , Polymorphism, Single Nucleotide/genetics , Signal Transduction/genetics , Betaine-Homocysteine S-Methyltransferase/genetics , China , Female , Ferredoxin-NADP Reductase/genetics , Gene Frequency , Genetic Association Studies , Genotype , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics
20.
PLoS One ; 8(12): e85632, 2013.
Article in English | MEDLINE | ID: mdl-24376891

ABSTRACT

Elevated homocysteine is an important risk factor that increases cerebrovascular and neurodegenerative disease morbidity. In mammals, B vitamin supplementation can reduce homocysteine levels. Whether, and how, hibernating mammals, that essentially stop ingesting B vitamins, maintain homocysteine metabolism and avoid cerebrovascular impacts and neurodegeneration remain unclear. Here, we compare homocysteine levels in the brains of torpid bats, active bats and rats to identify the molecules involved in homocysteine homeostasis. We found that homocysteine does not elevate in torpid brains, despite declining vitamin B levels. At low levels of vitamin B6 and B12, we found no change in total expression level of the two main enzymes involved in homocysteine metabolism (methionine synthase and cystathionine ß-synthase), but a 1.85-fold increase in the expression of the coenzyme-independent betaine-homocysteine S-methyltransferase (BHMT). BHMT expression was observed in the amygdala of basal ganglia and the cerebral cortex where BHMT levels were clearly elevated during torpor. This is the first report of BHMT protein expression in the brain and suggests that BHMT modulates homocysteine in the brains of hibernating bats. BHMT may have a neuroprotective role in the brains of hibernating mammals and further research on this system could expand our biomedical understanding of certain cerebrovascular and neurodegenerative disease processes.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/metabolism , Brain/enzymology , Chiroptera/metabolism , Gene Expression Regulation, Enzymologic/physiology , Hibernation/physiology , Homeostasis/physiology , Homocysteine/metabolism , Animals , Blotting, Western , Brain/metabolism , Chiroptera/physiology , Immunohistochemistry , Models, Biological , Rats , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL