Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.355
Filter
Add more filters

Publication year range
1.
Rev Neurol (Paris) ; 180(4): 326-347, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503588

ABSTRACT

The effect of meditation on brain activity has been the topic of many studies in healthy subjects and in patients suffering from chronic diseases. These effects are either explored during meditation practice (state effects) or as a longer-term result of meditation training during the resting-state (trait). The topic of this article is to first review these findings by focusing on electroencephalography (EEG) changes in healthy subjects with or without experience in meditation. Modifications in EEG baseline rhythms, functional connectivity and advanced nonlinear parameters are discussed in regard to feasibility in clinical applications. Secondly, we provide a state-of-the-art of studies that proposed meditative practices as a complementary therapy in patients with epilepsy, in whom anxiety and depressive symptoms are prevalent. In these studies, the effects of standardized meditation programs including elements of traditional meditation practices such as mindfulness, loving-kindness and compassion are explored both at the level of psychological functioning and on the occurrence of seizures. Lastly, preliminary results are given regarding our ongoing study, the aim of which is to quantify the effects of a mindfulness self-compassion (MSC) practice on interictal and ictal epileptic activity. Feasibility, difficulties, and prospects of this study are discussed.


Subject(s)
Electroencephalography , Epilepsy , Meditation , Humans , Meditation/psychology , Epilepsy/therapy , Epilepsy/psychology , Epilepsy/physiopathology , Brain/physiopathology , Brain/physiology , Healthy Volunteers , Mindfulness/methods , Empathy/physiology
2.
Eur Neuropsychopharmacol ; 82: 72-81, 2024 May.
Article in English | MEDLINE | ID: mdl-38503084

ABSTRACT

Mindfulness-based cognitive therapy (MBCT) stands out as a promising augmentation psychological therapy for patients with obsessive-compulsive disorder (OCD). To identify potential predictive and response biomarkers, this study examines the relationship between clinical domains and resting-state network connectivity in OCD patients undergoing a 3-month MBCT programme. Twelve OCD patients underwent two resting-state functional magnetic resonance imaging sessions at baseline and after the MBCT programme. We assessed four clinical domains: positive affect, negative affect, anxiety sensitivity, and rumination. Independent component analysis characterised resting-state networks (RSNs), and multiple regression analyses evaluated brain-clinical associations. At baseline, distinct network connectivity patterns were found for each clinical domain: parietal-subcortical, lateral prefrontal, medial prefrontal, and frontal-occipital. Predictive and response biomarkers revealed significant brain-clinical associations within two main RSNs: the ventral default mode network (vDMN) and the frontostriatal network (FSN). Key brain nodes -the precuneus and the frontopolar cortex- were identified within these networks. MBCT may modulate vDMN and FSN connectivity in OCD patients, possibly reducing symptoms across clinical domains. Each clinical domain had a unique baseline brain connectivity pattern, suggesting potential symptom-based biomarkers. Using these RSNs as predictors could enable personalised treatments and the identification of patients who would benefit most from MBCT.


Subject(s)
Magnetic Resonance Imaging , Mindfulness , Obsessive-Compulsive Disorder , Humans , Obsessive-Compulsive Disorder/therapy , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/physiopathology , Male , Female , Adult , Mindfulness/methods , Rest/physiology , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Young Adult , Middle Aged , Cognitive Behavioral Therapy/methods , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology , Treatment Outcome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
3.
J Pain ; 25(7): 104478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38244899

ABSTRACT

Positive emotions are a promising target for intervention in chronic pain, but mixed findings across trials to date suggest that existing interventions may not be optimized to efficiently engage the target. The aim of the current pilot mechanistic randomized controlled trial was to test the effects of a positive emotion-enhancing intervention called Savoring Meditation on pain-related neural and behavioral targets in patients with rheumatoid arthritis. Participants included 44 patients with a physician-confirmed diagnosis of rheumatoid arthritis (n = 29 included in functional magnetic resonance imaging (fMRI) analyses), who were randomized to either Savoring Meditation or a Slow Breathing control. Both meditation interventions were brief (four 20-minute sessions). Self-report measures were collected pre-and post-intervention. An fMRI task was conducted at post-intervention, during which participants practiced the meditation technique on which they had been trained while exposed to non-painful and painful thermal stimuli. Savoring significantly reduced experimental pain intensity ratings relative to rest (P < .001). Savoring also increased cerebral blood flow in the ventromedial prefrontal cortex and increased connectivity between the ventromedial prefrontal cortex and caudate during noxious thermal stimulation relative to Slow Breathing (z = 2.3 voxelwise, false discovery rate cluster corrected P = .05). Participants in the Savoring condition also reported significantly increased positive emotions (ps < .05) and reduced anhedonic symptoms (P < .01) from pre- to post-intervention. These findings suggest that Savoring recruits reward-enhancing corticostriatal circuits in the face of pain, and future work should extend these findings to evaluate if these mechanisms of Savoring are associated with improved clinical pain outcomes in diverse patient populations. PERSPECTIVE: Savoring Meditation is a novel positive emotion-enhancing intervention designed for patients with chronic pain. The present findings provide preliminary evidence that Savoring Meditation is acutely analgesic, and engages neural and subjective emotional targets that are relevant to pain self-management. Future work should evaluate the clinical translation of these findings.


Subject(s)
Arthritis, Rheumatoid , Emotions , Magnetic Resonance Imaging , Meditation , Humans , Female , Male , Middle Aged , Arthritis, Rheumatoid/physiopathology , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/psychology , Emotions/physiology , Adult , Aged , Chronic Pain/therapy , Chronic Pain/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Pilot Projects
4.
Sci Rep ; 12(1): 2449, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165360

ABSTRACT

Resting state fMRI has been employed to identify alterations in functional connectivity within or between brain regions following acute and chronic exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive component in cannabis. Most studies focused a priori on a limited number of local brain areas or circuits, without considering the impact of cannabis on whole-brain network organization. The present study attempted to identify changes in the whole-brain human functional connectome as assessed with ultra-high field (7T) resting state scans of cannabis users (N = 26) during placebo and following vaporization of cannabis. Two distinct data-driven methodologies, i.e. network-based statistics (NBS) and connICA, were used to identify changes in functional connectomes associated with acute cannabis intoxication and history of cannabis use. Both methodologies revealed a broad state of hyperconnectivity within the entire range of major brain networks in chronic cannabis users compared to occasional cannabis users, which might be reflective of an adaptive network reorganization following prolonged cannabis exposure. The connICA methodology also extracted a distinct spatial connectivity pattern of hypoconnectivity involving the dorsal attention, limbic, subcortical and cerebellum networks and of hyperconnectivity between the default mode and ventral attention network, that was associated with the feeling of subjective high during THC intoxication. Whole-brain network approaches identified spatial patterns in functional brain connectomes that distinguished acute from chronic cannabis use, and offer an important utility for probing the interplay between short and long-term alterations in functional brain dynamics when progressing from occasional to chronic use of cannabis.


Subject(s)
Brain/diagnostic imaging , Brain/physiopathology , Cannabis/chemistry , Connectome/methods , Dronabinol/administration & dosage , Marijuana Smoking/physiopathology , Marijuana Smoking/psychology , Plant Extracts/administration & dosage , Psychotropic Drugs/administration & dosage , Adult , Attention/drug effects , Cognition/drug effects , Cross-Over Studies , Double-Blind Method , Emotions/drug effects , Female , Humans , Magnetic Resonance Imaging/methods , Male , Young Adult
5.
Nutrients ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057576

ABSTRACT

The disruption of redox homeostasis and neuroinflammation are key mechanisms in the pathogenesis of brain hypoxia-ischemia (HI); medicinal plants have been studied as a therapeutic strategy, generally associated with the prevention of oxidative stress and inflammatory response. This study evaluates the neuroprotective role of the Plinia trunciflora fruit extract (PTE) in neonatal rats submitted to experimental HI. The HI insult provoked a marked increase in the lipoperoxidation levels and glutathione peroxidase (GPx) activity, accompanied by a decrease in the brain concentration of glutathione (GSH). Interestingly, PTE was able to prevent most of the HI-induced pro-oxidant effects. It was also observed that HI increased the levels of interleukin-1ß in the hippocampus, and that PTE-treatment prevented this effect. Furthermore, PTE was able to prevent neuronal loss and astrocyte reactivity induced by HI, as demonstrated by NeuN and GFAP staining, respectively. PTE also attenuated the anxiety-like behavior and prevented the spatial memory impairment caused by HI. Finally, PTE prevented neural tissue loss in the brain hemisphere, the hippocampus, cerebral cortex, and the striatum ipsilateral to the HI. Taken together our results provide good evidence that the PTE extract has the potential to be investigated as an adjunctive therapy in the treatment of brain insult caused by neonatal hypoxia-ischemia.


Subject(s)
Hypoxia-Ischemia, Brain/drug therapy , Myrtaceae/chemistry , Neuroinflammatory Diseases/prevention & control , Neuroprotective Agents , Plant Extracts/administration & dosage , Animals , Animals, Newborn , Behavior, Animal/drug effects , Brain/drug effects , Brain/pathology , Brain/physiopathology , Fruit/chemistry , Glutathione Peroxidase/metabolism , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/physiopathology , Lipid Peroxidation/drug effects , Male , Neurons/pathology , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar
6.
Neurosci Lett ; 772: 136451, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35041909

ABSTRACT

BACKGROUND: The effect of gaming cue exposure on brain activity in patients with internet gaming disorder (IGD) has been investigated a lot, but the effect on brain connectivity has not. This study aimed to investigate the effects of imageries of gaming and alternative leisure activities on functional connectivity during the during-task and post-task states in patients with IGD. METHODS: Twenty-nine patients and 20 healthy controls were scanned in the 6-min states before, during, and after the imagery tasks for gaming and alternative leisure behaviors using fMRI. Seed-based functional connectivity during and after the tasks were analyzed. The seeds were the nucleus accumbens (NAcc), ventral tegmental area (VTA), caudate, putamen, anterior cingulate cortex (ACC), and posterior cingulate cortex. RESULTS: The group-by-state interaction effects for the during-tasks were found in caudate-, putamen-, and ACC-based connectivity, whereas those for the post-tasks were shown only in NAcc-based connectivity. In particular, patients showed that caudate-right parahippocampal gyrus connectivity and putamen-right orbitofrontal cortex connectivity increased during gaming and decreased during alternative, whereas NAcc-right precuneus connectivity decreased at baseline, increased in post-gaming, and were not different in post-alternative. CONCLUSION: Differences in during-task connectivity of the habit/motor and salience networks and post-task resting-state connectivity of the reward and limbic networks between the two imagery tasks may differ between the groups. In the treatment of IGD, when these network connections are reactive to alternative leisure activity, just as to gaming activity, they seem to be freed from gaming addiction.


Subject(s)
Brain/physiopathology , Connectome , Imagery, Psychotherapy/methods , Internet Addiction Disorder/therapy , Adult , Brain/diagnostic imaging , Humans , Internet Addiction Disorder/diagnostic imaging , Internet Addiction Disorder/physiopathology , Internet Addiction Disorder/psychology , Leisure Activities , Male , Reward
7.
Sci Rep ; 12(1): 287, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997139

ABSTRACT

Gamma oscillations probed using auditory steady-state response (ASSR) are promising clinical biomarkers that may give rise to novel therapeutic interventions for schizophrenia. Optimizing clinical settings for these biomarker-driven interventions will require a quick and easy assessment system for gamma oscillations in psychiatry. ASSR has been used in clinical otolaryngology for evoked response audiometry (ERA) in order to judge hearing loss by focusing on the phase-locked response detectability via an automated analysis system. Herein, a standard ERA system with 40- and 46-Hz ASSRs was applied to evaluate the brain pathophysiology of patients with schizophrenia. Both ASSRs in the ERA system showed excellent detectability regarding the phase-locked response in healthy subjects and sharply captured the deficits of the phase-locked response caused by aberrant gamma oscillations in individuals with schizophrenia. These findings demonstrate the capability of the ERA system to specify patients who have aberrant gamma oscillations. The ERA system may have a potential to serve as a real-world clinical medium for upcoming biomarker-driven therapeutics in psychiatry.


Subject(s)
Audiometry, Evoked Response , Brain/physiopathology , Evoked Potentials, Auditory , Gamma Rhythm , Schizophrenia/diagnosis , Acoustic Stimulation , Adult , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Schizophrenia/physiopathology , Time Factors , Young Adult
8.
Comput Math Methods Med ; 2022: 2658095, 2022.
Article in English | MEDLINE | ID: mdl-35082912

ABSTRACT

BACKGROUND: Fever is one of the frequently occurring diseases in human beings, and the body is said to have befallen in fever if the arterial or internal body temperature rises to 38°C. The patient who suffers from fever is either given paracetamol or tepid sponging or both. OBJECTIVE: This paper is aimed at studying the effects of the tepid sponge in normalizing the high temperature of the human body during fever. Among the various available methods for tepid sponging, the impact of holding a cool wet cloth on the forehead for reducing the fever is analyzed and pictured graphically. METHOD: For analyzing the effects of tepid sponge on the temperature distribution of the domain consisting of scalp, skull, and cerebrospinal fluid (CSF), a cool wet cloth is brought in contact with the skin allowing the heat to transfer from the brain to the wet cloth through these layers. The heat transfer in living biological tissues is different from ordinary heat transfer in other nonliving materials. Therefore, a model based on the bioheat equation has been constructed. The model has been solved by numerical methods for both steady- and unsteady-state cases. The domain, which consists of the scalp, skull, and CSF layers of the human head, has been discretized into four equal parts along the axes of the three-dimensional coordinate system. The forward difference and forward time centered space approximations were employed for numerical temperature distribution results at the nodal points. RESULTS: The effects of tepid sponge in reducing the body temperature with fever at 38°C, 39.5°C, and 41°C have been numerically calculated, and the results were pictured graphically. For transient cases, the corresponding calculations have been carried out at times t = 2 minutes, 4 minutes, and 6 minutes. CONCLUSION: Among all the available remedies to fever, tepid sponging has shown a significant effect in controlling fever.


Subject(s)
Brain/physiopathology , Fever/therapy , Models, Neurological , Body Temperature/physiology , Computational Biology , Computer Simulation , Fever/cerebrospinal fluid , Fever/physiopathology , Humans , Hydrotherapy/methods , Scalp/physiopathology , Skull/physiopathology , Textiles
9.
Comput Math Methods Med ; 2022: 8202975, 2022.
Article in English | MEDLINE | ID: mdl-35082916

ABSTRACT

OBJECTIVE: To investigate the influence of melatonin on behavioral and neurological function of rats with focal cerebral ischemia-reperfusion injury via the JNK/FoxO3a/Bim pathway. METHODS: One hundred and twenty healthy male SD rats were randomized into the model group (Model: the middle cerebral artery occlusion (MCAO) model was constructed and received an equal volume of normal saline containing 5% DMSO), sham operation group (Sham: received no treatment except normal feeding), and low, medium, and high dose of melatonin group (L-MT, M-MT, and H-MT intraperitoneally injected 10, 20, and 40 mg/kg melatonin 30 min after IR, respectively), with 24 rats in each group. Following 24 h of reperfusion, the rats in each of the above groups were tested for neurological deficit symptoms and behavioral changes to screen the rats included in the study. HE and TUNEL stainings were performed to observe pathological changes. Levels of oxidative stress-related indexes, inflammatory factor-related indexes, nuclear factor-κB p65 (NF-κB p65), and interferon-γ (IFN-γ) in the rat brain were measured by ELISA. The JNK/FoxO3a/Bim pathway-related proteins as well as Bcl-2, Caspase-3, and Bax were examined using Western blot. RESULTS: Detection of behavioral indicators showed that the MACO model was successfully constructed in rats. L-MT, M-MT, and L-MT groups presented reduced malondialdehyde (MDA), reactive oxygen species (ROS), tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, IL-1ß, IFN-γ, NF-κB p65, and apoptosis compared with the Model group (P < 0.05), and the improvement degree was better in the M-MT group versus the L-HT group. Bcl-2 protein expression in the brain tissue of L-MT, M-MT, and H-MT groups increased significantly, while Bax, Caspase-3, p-JNK, p-FoxO3a, and Bim protein expression declined markedly, versus the Model group (P < 0.05). The changes of indexes were greater in the M-MT group compared with that in the L-MT group. No significant difference was observed in all the above indexes between the M-MT group and the H-MT group (P > 0.05). CONCLUSIONS: In the MACO rat model, melatonin can effectively reduce Bax and Caspase-3 levels by modulating the JNK/FoxO3a/Bim pathway, inhibit neuronal apoptosis, and alleviate neurological deficits by reducing the release of proinflammatory mediators, with anti-inflammatory and antioxidant effects. In addition, 20 mg/kg is the optimal melatonin concentration.


Subject(s)
Brain Ischemia/drug therapy , Melatonin/pharmacology , Reperfusion Injury/drug therapy , Animals , Bcl-2-Like Protein 11/metabolism , Behavior, Animal/drug effects , Brain/drug effects , Brain/pathology , Brain/physiopathology , Brain Ischemia/physiopathology , Brain Ischemia/psychology , Computational Biology , Disease Models, Animal , Forkhead Box Protein O3 , Inflammation Mediators/metabolism , MAP Kinase Signaling System/drug effects , Male , Melatonin/administration & dosage , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Reperfusion Injury/physiopathology , Reperfusion Injury/psychology
10.
Int J Oncol ; 60(1)2022 01.
Article in English | MEDLINE | ID: mdl-34970698

ABSTRACT

Tumor­treating fields (TTFields) are emerging cancer therapies based on alternating low­intensity electric fields that interfere with dividing cells and induce cancer cell apoptosis. However, to date, there is limited knowledge of their effects on normal cells, as well as the effects of different duty cycles on outcomes. The present study evaluated the effects of TTFields with different duty cycles on glioma spheroid cells and normal brain organoids. A customized TTFields system was developed to perform in vitro experiments with varying duty cycles. Three duty cycles were applied to three types of glioma spheroid cells and brain organoids. The efficacy and safety of the TTFields were evaluated by analyzing the cell cycle of glioma cells, and markers of neural stem cells (NSCs) and astrocytes in brain organoids. The application of the TTFields at the 75 and 100% duty cycle markedly inhibited the proliferation of the U87 and U373 compared with the control. FACS analysis revealed that the higher the duty cycle of the applied fields, the greater the increase in apoptosis detected. Exposure to a higher duty cycle resulted in a greater decrease in NSC markers and a greater increase in glial fibrillary acidic protein expression in normal brain organoids. These results suggest that TTFields at the 75 and 100% duty cycle induced cancer cell death, and that the neurotoxicity of the TTFields at 75% was less prominent than that at 100%. Although clinical studies with endpoints related to safety and efficacy need to be performed before this strategy may be adopted clinically, the findings of the present study provide meaningful evidence for the further advancement of TTFields in the treatment of various types of cancer.


Subject(s)
Apoptosis , Brain/physiopathology , Glioblastoma/therapy , Magnetic Field Therapy/standards , Organoids , Glioblastoma/physiopathology , Humans , Magnetic Field Therapy/methods , Magnetic Field Therapy/statistics & numerical data
11.
Nutr Neurosci ; 25(1): 192-206, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34165393

ABSTRACT

Objective: While stress reportedly impairs memory, saffron enhances it. This study investigated the therapeutic effects of saffron extract on different memory types, anxiety-like behavior, and expressions of BDNF and TNF-α genes in sub-chronically stressed rats.Methods: Rats were randomly assigned to control, restraint stress (6 h/day/7 days), two 7-days saffron treatments with 30 and 60 mg/kg, and two stress-saffron groups (30 and 60 mg/kg/7 post-stress days). Serum cortisol level and hippocampal BDNF and TNF-α gene expressions were measured. Open field, passive avoidance, novel object recognition, and object location tests were performed to assess anxiety-like behavior and avoidance as well as cognitive and spatial memories, respectively.Results: The low saffron dose in the sub-chronic stressed group led to a significant increase in passive avoidance latency from day 3 onward whereas this effect was observed after 7 days under the high-dose treatment that simultaneously led to a significant decline in serum cortisol level. While the low saffron dose led to a sharp drop in hippocampal TNF-α gene expression, the high dose significantly increased the hippocampal BDNF gene expression in the sub-chronic stress group. Finally, both saffron doses reduced anxiety in the stressed groups.Conclusion: Compared to the low saffron dose, the high dose had a latent but long-lasting impact. Cognitive and spatial memories remained unaffected by either stress or saffron treatment. In addition, only the high saffron dose reversed anxiety in the sub-chronically stressed group. These findings suggest that various doses of saffron act differently on different brain functions under sub-chronic stress conditions.Abbreviations: Brain derived neurotrophic factor (BDNF), tumor necrosis factor-α (TNF-α), hypothalamic-pituitary-adrenal axis (HPA), novel object recognition task (NORT), novel object location task (NOLT), open field test (OFT), passive avoidance (PA).


Subject(s)
Anxiety/drug therapy , Brain-Derived Neurotrophic Factor/genetics , Crocus/chemistry , Plant Extracts/administration & dosage , Stress, Psychological/physiopathology , Tumor Necrosis Factor-alpha/genetics , Animals , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Brain/drug effects , Brain/physiopathology , Dose-Response Relationship, Drug , Gene Expression/drug effects , Hippocampus/metabolism , Male , Memory/drug effects , Phytotherapy , Rats , Restraint, Physical , Stress, Psychological/psychology
12.
Sci Rep ; 11(1): 23323, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857797

ABSTRACT

Dysfunctional thalamocortical interactions have been suggested as putative mechanisms of ineffective pain modulation and also suggested as possible pathophysiology of fibromyalgia (FM). However, it remains unclear which specific thalamocortical networks are altered and whether it is related to abnormal pain perception in people with FM. Here, we conducted combined vertex-wise subcortical shape, cortical thickness, structural covariance, and resting-state functional connectivity analyses to address these questions. FM group exhibited a regional shape deflation of the left posterior thalamus encompassing the ventral posterior lateral and pulvinar nuclei. The structural covariance analysis showed that the extent of regional deflation of the left posterior thalamus was negatively covaried with the left inferior parietal cortical thickness in the FM group, whereas those two regions were positively covaried in the healthy controls. In functional connectivity analysis with the left posterior thalamus as a seed, FM group had less connectivity with the periaqueductal gray compared with healthy controls, but enhanced connectivity between the posterior thalamus and bilateral inferior parietal regions, associated with a lower electrical pain threshold at the hand dorsum (pain-free point). Overall, our findings showed the structural thalamic alteration interacts with the cortical regions in a functionally maladaptive direction, leading the FM brain more responsive to external stimuli and potentially contributing to pain amplification.


Subject(s)
Cerebral Cortex/pathology , Fibromyalgia/physiopathology , Nerve Net/pathology , Pain/pathology , Thalamus/pathology , Adult , Brain/physiopathology , Case-Control Studies , Female , Humans , Middle Aged , Neural Pathways , Neuroimaging , Pain Perception
13.
Biomed Pharmacother ; 144: 112250, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607104

ABSTRACT

The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-ß boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aß), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aß) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents/therapeutic use , Brain/drug effects , Inflammation Mediators/metabolism , Nerve Degeneration , Neuroprotective Agents/pharmacology , Triterpenes/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Brain/metabolism , Brain/pathology , Brain/physiopathology , Humans , Plaque, Amyloid , Signal Transduction
14.
Sci Rep ; 11(1): 17940, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504129

ABSTRACT

Functional connectivity networks (FCN) are the physiological basis of brain synchronization to integrating neural activity. They are not rigid but can reorganize under pathological conditions or during mental or behavioral states. However, because mental acts can be very fast, like the blink of an eye, we now used the visual system as a model to explore rapid FCN reorganization and its functional impact in normal, abnormal and post treatment vision. EEG-recordings were time-locked to visual stimulus presentation; graph analysis of neurophysiological oscillations were used to characterize millisecond FCN dynamics in healthy subjects and in patients with optic nerve damage before and after neuromodulation with alternating currents stimulation and were correlated with visual performance. We showed that rapid and transient FCN synchronization patterns in humans can evolve and dissolve in millisecond speed during visual processing. This rapid FCN reorganization is functionally relevant because disruption and recovery after treatment in optic nerve patients correlated with impaired and recovered visual performance, respectively. Because FCN hub and node interactions can evolve and dissolve in millisecond speed to manage spatial and temporal neural synchronization during visual processing and recovery, we propose "Brain Spacetime" as a fundamental principle of the human mind not only in visual cognition but also in vision restoration.


Subject(s)
Brain/physiopathology , Electric Stimulation Therapy/methods , Nerve Net/physiopathology , Optic Nerve Diseases/physiopathology , Optic Nerve Diseases/therapy , Recovery of Function , Visual Perception , Adult , Cognition , Double-Blind Method , Electroencephalography/methods , Electroencephalography Phase Synchronization , Evoked Potentials, Visual , Female , Humans , Male , Middle Aged , Treatment Outcome , Visual Field Tests/methods , Visual Fields
15.
Sci Rep ; 11(1): 16490, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531410

ABSTRACT

There is growing evidence for the efficacy of music, specifically Mozart's Sonata for Two Pianos in D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known about the mechanism underlying this beneficial "Mozart K448 effect" for persons with epilepsy. Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges (IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we observed increased frontal theta power during transitions from prolonged musical segments. All other presented musical stimuli were associated with nonsignificant IED alterations. These results suggest that the "Mozart K448 effect" is dependent on the duration of exposure and may preferentially modulate activity in frontal emotional networks, providing insight into the mechanism underlying this response. Our findings encourage the continued evaluation of Mozart's K448 as a noninvasive, non-pharmacological intervention for refractory epilepsy.


Subject(s)
Auditory Perception/physiology , Brain/physiopathology , Drug Resistant Epilepsy/physiopathology , Music Therapy/methods , Music , Seizures/physiopathology , Acoustic Stimulation , Adult , Aged , Drug Resistant Epilepsy/therapy , Electroencephalography , Epilepsy , Female , Humans , Male , Middle Aged , Seizures/therapy , Treatment Outcome
16.
Neural Plast ; 2021: 2662585, 2021.
Article in English | MEDLINE | ID: mdl-34456996

ABSTRACT

Acupuncture is widely recognized as a potentially effective treatment for stroke rehabilitation. Researchers in this area are actively investigating its therapeutic mechanisms. Magnetic resonance imaging (MRI), as a noninvasive, high anatomical resolution technique, has been employed to investigate neuroplasticity on acupuncture in stroke patients from a system level. However, there is no review on the mechanism of acupuncture treatment for stroke based on MRI. Therefore, we aim to summarize the current evidence about this aspect and provide useful information for future research. After searching PubMed, Web of Science, and Embase databases, 24 human and five animal studies were identified. This review focuses on the evidence on the possible mechanisms underlying mechanisms of acupuncture therapy in treating stroke by regulating brain plasticity. We found that acupuncture reorganizes not only motor-related network, including primary motor cortex (M1), premotor cortex, supplementary motor area (SMA), frontoparietal network (LFPN and RFPN), and sensorimotor network (SMN), as well as default mode network (aDMN and pDMN), but also language-related brain areas including inferior frontal gyrus frontal, temporal, parietal, and occipital lobes, as well as cognition-related brain regions. In addition, acupuncture therapy can modulate the function and structural plasticity of post-stroke, which may be linked to the mechanism effect of acupuncture.


Subject(s)
Acupuncture Therapy/methods , Brain/diagnostic imaging , Neuronal Plasticity/physiology , Stroke Rehabilitation/methods , Stroke/diagnostic imaging , Brain/physiopathology , Humans , Magnetic Resonance Imaging , Stroke/physiopathology , Treatment Outcome
17.
Nat Neurosci ; 24(10): 1488-1500, 2021 10.
Article in English | MEDLINE | ID: mdl-34426698

ABSTRACT

Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations. We demonstrate highly abnormal and epileptiform-like activity in organoids derived from induced pluripotent stem cells from individuals with Rett syndrome, accompanied by transcriptomic differences revealed by single-cell analyses. We also rescue key physiological activities with an unconventional neuroregulatory drug, pifithrin-α. Together, these findings provide an essential foundation for the utilization of brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.


Subject(s)
Brain/physiopathology , Epilepsy/physiopathology , Neurons , Adult , Benzothiazoles/pharmacology , Brain/growth & development , Calcium Signaling , Child, Preschool , Epilepsy/diagnostic imaging , Female , Humans , Induced Pluripotent Stem Cells , Methyl-CpG-Binding Protein 2/genetics , Nerve Net/physiopathology , Neurogenesis/genetics , Neuroimaging , Rett Syndrome/diagnostic imaging , Rett Syndrome/physiopathology , Single-Cell Analysis , Synapses , Toluene/analogs & derivatives , Toluene/pharmacology , Transcriptome
18.
J Stroke Cerebrovasc Dis ; 30(9): 105987, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34273708

ABSTRACT

OBJECTIVES: The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS: This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS: The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS: Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.


Subject(s)
Apoptosis/drug effects , Brain/drug effects , Ginkgolides/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Lactones/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Reperfusion Injury/prevention & control , Animals , Apoptosis Regulatory Proteins/metabolism , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Brain/physiopathology , Brain Edema/metabolism , Brain Edema/pathology , Brain Edema/prevention & control , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Motor Activity/drug effects , Neurons/metabolism , Neurons/pathology , PC12 Cells , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Signal Transduction
19.
Drug Discov Today ; 26(12): 2881-2888, 2021 12.
Article in English | MEDLINE | ID: mdl-34332094

ABSTRACT

Alzheimer's disease (AD) is an irreversible dementia state with characteristic clinical manifestations, including declining cognitive skills and loss of memory, which particularly affects the older population. Despite significant efforts in the field of nano-based drug delivery, there have been few successes achieved in the design of a rational drug therapy. Nanoemulsions (NEs) have potential for the delivery of AD therapeutics owing to their capability for brain drug delivery. Still, there is a long way to go before such therapeutics become a reality in the clinic. In this review, we highlight the preclinical assessment of NEs for AD and discuss the regulatory constraints to their clinical acceptance.


Subject(s)
Alzheimer Disease/drug therapy , Drug Delivery Systems , Nanoparticles , Aged , Alzheimer Disease/physiopathology , Animals , Brain/metabolism , Brain/physiopathology , Drug Evaluation, Preclinical/methods , Emulsions , Humans , Tissue Distribution
20.
Aging (Albany NY) ; 13(14): 18689-18700, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326271

ABSTRACT

Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder characterized by hyper-response to environmental cues as well as the associated depressive and cognitive dysfunctions. According to the key roles of hippocampus for cognitive and emotional regulation, improving hippocampal functions, particularly hippocampal neural plasticity, is the necessary pathway to attenuate the core symptoms of PTSD. The effects of the alternative therapies such as exercise and natural compounds to reduce PTSD symptoms and promote adult hippocampal neurogenesis have been widely demonstrated. However, what is the effect of combining the exercise with traditional Chinese medical compounds remains unknown. In current study, we evaluated the effects of catalpol, which showed the pro-neurogenic effects in previous report, in regulating exercise-mediated PTSD therapeutic effects. With behavioral tests, we found that catalpol treatment promoted the effects of exercise to reduce the response of mice to dangerous cues, and simultaneously enhanced the antidepressant and cognitive protection effects. Moreover, by immunofluorescence we identified that catalpol promoted exercise-mediated hippocampal neurogenesis by enhancing the neural differentiation and mature neuronal survive. We further found that the promote effects of catalpol to exercise-induced environmental hyper-response, antidepressant effects and cognitive protective effects were all compromised by blocking neurogenesis with temozolomide (TMZ). This result indicates that hippocampal neurogenesis is prerequisite for catalpol to promote exercise-mediated brain functional improvement in PTSD model. In conclusion, our research identified the new function of natural compounds catalpol to promote the exercise-mediated brain functional changes in PTSD model, which depend on its effect promoting adult hippocampal neurogenesis.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Exercise Therapy , Hippocampus/drug effects , Iridoid Glucosides/therapeutic use , Neurogenesis/drug effects , Phytotherapy , Stress Disorders, Post-Traumatic/drug therapy , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/physiopathology , Cognition/drug effects , Cognitive Dysfunction/prevention & control , Drugs, Chinese Herbal/pharmacology , Hippocampus/physiology , Iridoid Glucosides/pharmacology , Male , Mice, Inbred C57BL , Neuronal Plasticity , Physical Conditioning, Animal/physiology , Rehmannia/chemistry , Stress Disorders, Post-Traumatic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL