Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.261
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38575184

ABSTRACT

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Subject(s)
Breast Neoplasms , Breast , Humans , Animals , Mice , Female , Cell Line, Tumor , Breast/metabolism , Breast Neoplasms/metabolism , Estrogens , Homeostasis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glucuronosyltransferase/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
2.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624258

ABSTRACT

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Down-Regulation , Plant Extracts , Plants, Medicinal , Receptor, ErbB-2 , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Plants, Medicinal/chemistry , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Terminalia/chemistry , Mucuna/chemistry
3.
J Agric Food Chem ; 72(13): 7089-7099, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512774

ABSTRACT

Breast cancer patients undergoing chemotherapy often experience muscle wasting and weakness, which impact their quality of life. A potential solution lies in customizing amino acid compositions based on exome-derived formulations (ExAAs). The study hypothesized that tailoring dietary amino acids using ExAAs could enhance muscle health. Theoretical amino acid requirements were calculated from the genome's exome region, and a breast cancer mouse model undergoing paclitaxel treatment was established. The mice were supplemented with a cancer-specific nutritional formula (QJS), and the effects of QJS and amino acid-adjusted QJS (adjQJS) were compared. Both formulations improved the nutritional status without compromising tumor growth. Notably, adjQJS significantly enhanced muscle strength compared to QJS (1.51 ± 0.25 vs. 1.30 ± 0.08 fold change, p < 0.05). Transcriptome analysis revealed alterations in complement and coagulation cascades, with an observed upregulation of C3 gene expression in adjQJS. Immune regulation also changed, showing a decrease in B cells and an increase in monocytes in skeletal muscle with adjQJS. Importantly, adjQJS resulted in a notable increase in Alistipes abundance compared to QJS (10.19 ± 0.04% vs. 5.03 ± 1.75%). This study highlights the potential of ExAAs as valuable guide for optimizing amino acid composition in diets for breast cancer patients undergoing chemotherapy.


Subject(s)
Breast Neoplasms , Exome , Humans , Animals , Mice , Female , Exome/genetics , Quality of Life , Amino Acids/metabolism , Diet , Muscle Strength , Muscle, Skeletal/metabolism , Dietary Supplements , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism
4.
Sci Rep ; 14(1): 6768, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514638

ABSTRACT

Breast cancer, the prevailing malignant tumor among women, is linked to progesterone and its receptor (PR) in both tumorigenesis and treatment responsiveness. Despite thorough investigation, the precise molecular mechanisms of progesterone in breast cancer remain unclear. The human progesterone receptor (PR) serves as an essential therapeutic target for breast cancer treatment, warranting the rapid design of small molecule therapeutics that can effectively inhibit HPR. By employing cutting-edge computational techniques like molecular screening, simulation, and free energy calculation, the process of identifying potential lead molecules from natural products has been significantly expedited. In this study, we employed pharmacophore-based virtual screening and molecular simulations to identify natural product-based inhibitors of human progesterone receptor (PR) in breast cancer treatment. High-throughput molecular screening of traditional Chinese medicine (TCM) and zinc databases was performed, leading to the identification of potential lead compounds. The analysis of binding modes for the top five compounds from both database provides valuable structural insights into the inhibition of HPR for breast cancer treatment. The top five hits exhibited enhanced stability and compactness compared to the reference compound. In conclusion, our study provides valuable insights for identifying and refining lead compounds as HPR inhibitors.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Pharmacophore , Receptors, Progesterone , Progesterone/therapeutic use , Early Detection of Cancer , Ligands
5.
Comput Biol Chem ; 110: 108037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460436

ABSTRACT

Cancer is the most prevalent disease globally, which presents a significant challenge to the healthcare industry, with breast and lung cancer being predominant malignancies. This study used RNA-seq data from the TCGA database to identify potential biomarkers for lung and breast cancer. Tumor Necrosis Factor (TNFAIP8) and Sulfite Oxidase (SUOX) showed significant expression variation and were selected for further study using structure-based drug discovery (SBDD). Compounds derived from the Euphorbia ammak plant were selected for in-silico study with both TNFAIP8 and SUOX. Stigmasterol had the greatest binding scores (normalized scores of -8.53 kcal/mol and -9.69 kcal/mol) with both proteins, indicating strong stability in their binding pockets throughout the molecular dynamics' simulation. Although Stigmasterol first changed its initial conformation (RMSD = 0.5 nm with the starting conformation) in SUOX, it eventually reached a stable conformation (RMSD of 1.5 nm). The compound on TNFAIP8 showed a persistent shape (RMSD of 0.35 nm), indicating strong protein stability. The binding free energy of the complex was calculated using the MM/GBSA technique; TNFAIP8 had a ΔGTOTAL of -24.98 kcal/mol, with TYR160 being the most significant residue, contributing -2.52 kcal/mol. On the other hand, the SUOX complex had a binding free energy of -16.87 kcal/mol, with LEU151 being the primary contributor (-1.17 kcal/mol). Analysis of the complexes' free energy landscape unveiled several states with minimum free energy, indicating robust interactions between the protein and ligand. In its conclusion, this work emphasises the favourable ability of Stigmasterol to bind with prospective targets for lung and breast cancer, indicating the need for more experimental study.


Subject(s)
Breast Neoplasms , Euphorbia , Lung Neoplasms , Stigmasterol , Euphorbia/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Stigmasterol/chemistry , Stigmasterol/pharmacology , Stigmasterol/analogs & derivatives , Stigmasterol/isolation & purification , Female , Molecular Dynamics Simulation , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Thermodynamics , Molecular Docking Simulation
6.
Carbohydr Polym ; 332: 121931, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431421

ABSTRACT

Lumpectomy plus radiation is a treatment option offering better survival than conventional mastectomy for patients with early-stage breast cancer. However, successive radioactive therapy remains tedious and unsafe with severe adverse reactions and secondary injury. Herein, a composite hydrogel with pH- and photothermal double-sensitive activity is developed via physical crosslinking. The composite hydrogel incorporated with tempo-oxidized cellulose nanofiber (TOCN), polyvinyl alcohol (PVA) and a polydopamine (PDA) coating for photothermal therapy (PTT) triggered in situ release of doxorubicin (DOX) drug was utilized to optimize postoperative strategies of malignant tumors inhibition. The incorporation of TOCN significantly affects the performance of composite hydrogels. The best-performing TOCN/PVA7 was selected for drug loading and polydopamine coating by rational design. In vitro studies have demonstrated that the composite hydrogel exhibited high NIR photothermal conversion efficiency, benign cytotoxicity to L929 cells, pH-dependent release profiles, and strong MCF-7 cell inhibitory effects. Then the TOCN/PVA7-PDA@DOX hydrogel is implanted into the tumor resection cavity for local in vivo chemo-photothermal synergistical therapy to ablate residue tumor tissues. Overall, this work suggests that such a chemo-photothermal hydrogel delivery system has great potential as a promising tool for the postsurgical management of breast cancer.


Subject(s)
Breast Neoplasms , Cellulose, Oxidized , Hyperthermia, Induced , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Photothermal Therapy , Hydrogels/chemistry , Phototherapy , Mastectomy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Hydrogen-Ion Concentration
7.
Mol Nutr Food Res ; 68(6): e2300688, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342595

ABSTRACT

The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like ß-glucuronidases and ß-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Female , Humans , Phytoestrogens , Gastrointestinal Microbiome/physiology , Equol/metabolism , Estrogens/metabolism , Breast Neoplasms/metabolism
8.
Integr Cancer Ther ; 23: 15347354241233258, 2024.
Article in English | MEDLINE | ID: mdl-38369762

ABSTRACT

BACKGROUND: Soothing the liver (called Shu Gan Jie Yu in Chinese, SGJY) is a significant therapeutic method for breast cancer in TCM. In this study, 3 liver-soothing herbs, including Cyperus rotundus L., Citrus medica L. var. sarcodactylis Swingle and Rosa rugosa Thunb. were selected and combined to form a SGJY herbal combinatory. THE AIM OF THE STUDY: To investigate the inhibiting effect of SGJY on breast cancer in vivo and vitro, and to explore the potential mechanisms. MATERIALS AND METHODS: SGJY herbal combination was extracted using water. A breast cancer rat model was developed by chemical DMBA by gavage, then treated with SGJY for 11 weeks. The tumor tissue was preserved for RNA sequencing and analyzed by IPA software. The inhibition effects of SGJY on MCF-7 and T47D breast cancer cells were investigated by SRB assay and cell apoptosis analysis, and the protein expression levels of SNCG, ER-α, p-AKT and p-ERK were measured by western blotting. RESULTS: SGJY significantly reduced the tumor weight and volume, and the level of estradiol in serum. The results of IPA analysis reveal SGJY upregulated 7 canonical pathways and downregulated 16 canonical pathways. Estrogen receptor signaling was the key canonical pathway with 9 genes downregulated. The results of upstream regulator analysis reveal beta-estradiol was the central target; the upstream regulator network scheme showed that 86 genes could affect the expression of the beta-estradiol, including SNCG, CCL21 and MB. Additionally, SGJY was verified to significantly alter the expression of SNCG mRNA, CCL21 mRNA and MB mRNA which was consistent with the data of RNA-Seq. The inhibition effects of SGJY exhibited a dose-dependent response. The apoptosis rates of MCF7 and T47D cells were upregulated. The protein expression of SNCG, ER-α, p-AKT and p-ERK were all significantly decreased by SGJY on MCF-7 and T47D cells. CONCLUSION: The results demonstrate that SGJY may inhibit the growth of breast cancer. The mechanism might involve downregulating the level of serum estradiol, and suppressing the protein expression in the SNCG/ER-α/AKT-ERK pathway.


Subject(s)
Breast Neoplasms , MAP Kinase Signaling System , Animals , Female , Humans , Rats , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Estradiol , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , MCF-7 Cells , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Estrogen/metabolism , RNA, Messenger/metabolism , RNA-Seq
9.
Aging (Albany NY) ; 16(7): 5856-5865, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38393683

ABSTRACT

Breast cancer (BC) is among the top three most prevalent cancers across the world, especially in women, and its pathogenesis is still unknown. Fatty acid ß-oxidation is highly associated with breast cancer. Serpin family E member 1 (SERPINE1)-induced down-regulation of fatty acid ß-oxidation can facilitate BC cell proliferation, invasion, and metastasis. In this paper, the difference of miR-30d-5p expressions in both cancerous tissues and para-carcinoma tissues was first detected. Next, the expressions of SERPINE1, long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) in the aforementioned tissues were analyzed. Finally, miR-30d-5p mimics were supplemented to breast cancer cells to observe the miR-30d-5p effect upon breast cancer cells. Via immunofluorescence assay and Western blotting, it was found that cancerous tissues had lower expressions of miR-30d-5p, MCAD and LCAD and a higher expression of SERPINE1 than para-carcinoma tissues. The miR-30d-5p mimic group had a decreased SERPINE1 expression and increased MCAD and LCAD expressions compared with the NC group, thus inhibiting BC cell proliferation, invasion, and metastasis. To sum up, miR-30d-5p blocks the cell proliferation, invasion and metastasis by targeting SERPINE1 and promoting fatty acid ß-oxidation. Preclinical studies are further required to establish a fatty acid ß-oxidation-targeting therapy for breast cancer.


Subject(s)
Breast Neoplasms , Cell Movement , Cell Proliferation , Fatty Acids , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasm Invasiveness , Oxidation-Reduction , Plasminogen Activator Inhibitor 1 , Humans , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Cell Proliferation/genetics , Cell Movement/genetics , Fatty Acids/metabolism , Cell Line, Tumor , Middle Aged
10.
Adv Sci (Weinh) ; 11(16): e2308316, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380506

ABSTRACT

Anti-HER2 (human epidermal growth factor receptor 2) therapies significantly increase the overall survival of patients with HER2-positive breast cancer. Unfortunately, a large fraction of patients may develop primary or acquired resistance. Further, a multidrug combination used to prevent this in the clinic places a significant burden on patients. To address this issue, this work develops a nanotherapeutic platform that incorporates bimetallic gold-silver hollow nanoshells (AuAg HNSs) with exceptional near-infrared (NIR) absorption capability, the small-molecule tyrosine kinase inhibitor pyrotinib (PYR), and Herceptin (HCT). This platform realizes targeted delivery of multiple therapeutic effects, including chemo-and photothermal activities, oxidative stress, and immune response. In vitro assays reveal that the HCT-modified nanoparticles exhibit specific recognition ability and effective internalization by cells. The released PYR inhibit cell proliferation by downregulating HER2 and its associated pathways. NIR laser application induces a photothermal effect and tumor cell apoptosis, whereas an intracellular reactive oxygen species burst amplifies oxidative stress and triggers cancer cell ferroptosis. Importantly, this multimodal therapy also promotes the upregulation of genes related to TNF and NF-κB signaling pathways, enhancing immune activation and immunogenic cell death. In vivo studies confirm a significant reduction in tumor volume after treatment, substantiating the potential effectiveness of these nanocarriers.


Subject(s)
Breast Neoplasms , Gold , Hyperthermia, Induced , Receptor, ErbB-2 , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Humans , Mice , Animals , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Hyperthermia, Induced/methods , Gold/chemistry , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Silver/chemistry , Cell Line, Tumor , Disease Models, Animal , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Combined Modality Therapy/methods , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Cell Proliferation/drug effects
11.
Curr Mol Pharmacol ; 17: e18761429263063, 2024.
Article in English | MEDLINE | ID: mdl-38284731

ABSTRACT

Gynecological cancers are serious life-threatening diseases responsible for high morbidity and mortality around the world. Chemotherapy, radiotherapy, and surgery are considered standard therapeutic modalities for these cancers. Since the mentioned treatments have undesirable side effects and are not effective enough, further attempts are required to explore potent complementary and/or alternative treatments. This study was designed to review and discuss the anticancer potentials of baicalin against gynecological cancers based on causal mechanisms and underlying pathways. Traditional medicine has been used for thousands of years in the therapy of diverse human diseases. The therapeutic effects of natural compounds like baicalin have been widely investigated in cancer therapy. Baicalin was effective against gynecological cancers by regulating key cellular mechanisms, including apoptosis, autophagy, and angiogenesis. Baicalin exerted its anticancer property by regulating most molecular signaling pathways, including PI3K/Akt/mTOR, NFκB, MAPK/ERK, and Wnt/ß-catenin. However, more numerous experimental and clinical studies should be designed to find the efficacy of baicalin and the related mechanisms of action.


Subject(s)
Breast Neoplasms , Flavonoids , Genital Neoplasms, Female , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Genital Neoplasms, Female/drug therapy , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects
12.
Biol Pharm Bull ; 47(2): 399-410, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38220208

ABSTRACT

Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor ß (TGFß)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFß/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFß/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFß/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.


Subject(s)
Breast Neoplasms , Flavonoids , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Smad2 Protein/metabolism , Stem Cells/metabolism , Transforming Growth Factor beta/metabolism
13.
J Ethnopharmacol ; 321: 117546, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38061441

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY: This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS: Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS: The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION: This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.


Subject(s)
Agaricales , Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Sulfates/analysis , Cell Cycle Checkpoints , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/analysis , Apoptosis , Triple Negative Breast Neoplasms/drug therapy , Fruiting Bodies, Fungal/chemistry , Cell Movement , Monosaccharides/analysis , Cell Line, Tumor , Cell Cycle
14.
Mol Cancer Res ; 22(3): 268-281, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38085263

ABSTRACT

An increasing number of studies show that platelets as well as platelet-derived microparticles (PMP) play significant roles in cancer malignancy and disease progression. Particularly, PMPs have the capacity to interact and internalize within target cells resulting in the transfer of their bioactive cargo, which can modulate the signaling and activation processes of recipient cells. We recently identified a new subpopulation of these vesicles (termed mitoMPs), which contain functional mitochondria. Given the predominant role of mitochondria in cancer cell metabolism and disease progression, we set out to investigate the impact of mitoMPs on breast cancer metabolic reprograming and phenotypic processes leading to malignancy. Interestingly, we observed that recipient cell permeability to PMP internalization varied among the breast cancer cell types evaluated in our study. Specifically, cells permissive to mitoMPs acquire mitochondrial-dependent functions, which stimulate increased cellular oxygen consumption rates and intracellular ATP levels. In addition, cancer cells co-incubated with PMPs display enhanced malignant features in terms of migration and invasion. Most importantly, the cancer aggressive processes and notable metabolic plasticity induced by PMPs were highly dependent on the functional status of the mitoMP-packaged mitochondria. These findings characterize a new mechanism by which breast cancer cells acquire foreign mitochondria resulting in the gain of metabolic processes and malignant features. A better understanding of these mechanisms may provide therapeutic opportunities through PMP blockade to deprive cancer cells from resources vital in disease progression. IMPLICATIONS: We show that the transfer of foreign mitochondria by microparticles modulates recipient cancer cell metabolic plasticity, leading to greater malignant processes.


Subject(s)
Breast Neoplasms , Cell-Derived Microparticles , Humans , Female , Breast Neoplasms/metabolism , Cell-Derived Microparticles/metabolism , Energy Metabolism , Mitochondria/metabolism , Disease Progression
15.
Breast Cancer Res Treat ; 203(2): 281-289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847456

ABSTRACT

PURPOSE: The International Ki67 Working Group (IKWG) has developed training for immunohistochemistry (IHC) scoring reproducibility and recommends cut points of ≤ 5% and ≥ 30% for prognosis in ER+, HER2-, stage I/II breast cancer. We examined scoring reproducibility following IKWG training and evaluated these cut points for selecting patients for further testing with the 21-gene Recurrence Score (RS) assay. METHODS: We included 307 women aged 50+ years with node-negative, ER+PR+HER2- breast cancer and with available RS results. Slides from the diagnostic biopsy were stained for Ki67 and scored using digital image analysis (IA). Two IHC pathologists underwent IKWG training and visually scored slides, blinded to each other and IA readings. Interobserver reproducibility was examined using intraclass correlation (ICC) and Kappa statistics. RESULTS: Depending on reader, 8.8-16.0% of our cohort had Ki67 ≤ 5% and 11.4-22.5% had scores ≥ 30%. The ICC for Ki67 scores by the two pathologists was 0.82 (95% CI 0.78-0.85); it was 0.79 (95% CI 0.74-0.83) for pathologist 1 and IA and 0.76 (95% CI 0.71-0.80) for pathologist 2 and IA. For Ki67 scores ≤ 5%, the percentages with RS < 26 were 92.6%, 91.8%, and 90.9% for pathologist 1, pathologist 2, and IA, respectively. For Ki67 scores ≥ 30%, the percentages with RS ≥ 26 were 41.5%, 51.4%, and 27.5%, respectively. CONCLUSION: The IKWG's Ki67 training resulted in moderate to strong reproducibility across readers but cut points had only moderate overlap with RS cut points, especially for Ki67 ≥ 30% and RS ≥ 26; thus, their clinical utility for a 21-gene assay testing pathway remains unclear.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Ki-67 Antigen/metabolism , Reproducibility of Results , Prognosis , Immunohistochemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis
16.
Chem Biol Interact ; 388: 110833, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38101600

ABSTRACT

Many chemotherapeutic drugs suffer from multidrug resistance (MDR). Efflux transporters, namely ATP-binding cassettes (ABCs), that pump the drugs out of the cancer cells comprise one major reason behind MDR. Therefore, ABC inhibitors have been under development for ages, but unfortunately, without clinical success. In the present study, an l-type amino acid transporter 1 (LAT1)-utilizing derivative of probenecid (PRB) was developed as a cancer cell-targeted efflux inhibitor for P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and/or several multidrug resistant proteins (MRPs), and its ability to increase vinblastine (VBL) cellular accumulation and apoptosis-inducing effects were explored. The novel amino acid derivative of PRB (2) increased the VBL exposure in triple-negative human breast cancer cells (MDA-MB-231) and human glioma cells (U-87MG) by 10-68 -times and 2-5-times, respectively, but not in estrogen receptor-positive human breast cancer cells (MCF-7). However, the combination therapy had greater cytotoxic effects in MCF-7 compared to MDA-MB-231 cells due to the increased oxidative stress recorded in MCF-7 cells. The metabolomic study also revealed that compound 2, together with VBL, decreased the transport of those amino acids essential for the biosynthesis of endogenous anti-oxidant glutathione (GSH). Moreover, the metabolic differences between the outcomes of the studied breast cancer cell lines were explained by the distinct expression profiles of solute carriers (SLCs) that can be concomitantly inhibited. Therefore, attacking several SLCs simultaneously to change the nutrient environment of cancer cells can serve as an adjuvant therapy to other chemotherapeutics, offering an alternative to ABC inhibitors.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Vinblastine/pharmacology , Vinblastine/metabolism , Vinblastine/therapeutic use , Probenecid/pharmacology , Probenecid/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Apoptosis , Oxidative Stress , Amino Acids/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor
17.
ACS Appl Mater Interfaces ; 15(51): 59117-59133, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38091266

ABSTRACT

Cell membrane-coated nanoplatforms for drug delivery have garnered significant attention due to their inherent cellular properties, such as immune evasion and homing abilities, making them a subject of widespread interest. The coating of mixed membranes from different cell types onto the surface of nanoparticles offers a way to harness natural cell functions, enhancing biocompatibility and improving therapeutic efficacy. In this study, we merged membranes from murine-derived 4T1 breast cancer cells with RAW264.7 (RAW) membranes, creating a hybrid biomimetic coating referred to as TRM. Subsequently, we fabricated hybrid TRM-coated Fe3O4 nanoparticles loaded with indocyanine green (ICG) and imiquimod (R837) for combination therapy in breast cancer. Comprehensive characterization of the RIFe@TRM nanoplatform revealed the inherent properties of both cell types. Compared to bare Fe3O4 nanoparticles, RIFe@TRM nanoparticles exhibited remarkable cell-specific self-recognition for 4T1 cells in vitro, leading to significantly prolonged circulation life span and enhanced in vivo targeting capabilities. Furthermore, the biomimetic RIFe@TRM nanoplatform induced tumor necrosis through the Fenton reaction and photothermal effects, while R837 facilitated enhanced uptake of tumor-associated antigens, further activating CD8+ cytotoxic T cells to strengthen antitumor immunotherapy. Hence, RIFe@TRM nanoplatform demonstrated outstanding synergy in chemodynamic/immunotherapy/photothermal therapies, displaying significant inhibition of breast tumor growth. In summary, this study presents a promising biomimetic nanoplatform for effective treatment of breast cancer.


Subject(s)
Breast Neoplasms , Nanoparticles , Mice , Humans , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Photothermal Therapy , Imiquimod , Cell Membrane/metabolism , Nanoparticles/therapeutic use , Macrophages/metabolism , Immunotherapy , Cell Line, Tumor , Phototherapy
18.
Cells ; 12(23)2023 11 26.
Article in English | MEDLINE | ID: mdl-38067141

ABSTRACT

Overcoming drug resistance and specifically targeting cancer stem cells (CSCs) are critical challenges in improving cancer therapy. Nowadays, the use of novel and native medicinal plants can provide new sources for further investigations for this purpose. The aim of this study was to assess the potential of S. bachtiarica, an endemic plant with diverse medicinal applications, in suppressing and targeting cancer and cancer stem cells in glioblastoma and breast cancer. The effect of S. bachtiarica on viability, migration, invasion, and clonogenic potential of MDAMB-231 and U87-MG cells was assessed in both two- and three-dimensional cell culture models. Additionally, we evaluated its effects on the self-renewal capacity of mammospheres. The experimental outcomes indicated that S. bachtiarica decreased the viability and growth rate of cells and spheroids by inducing apoptosis and inhibited colony formation, migration, and invasion of cells and spheroids. Additionally, colony and sphere-forming ability, as well as the expression of genes associated with EMT and stemness were reduced in mammospheres treated with S. bachtiarica. In conclusion, this study provided valuable insights into the anti-cancer effects of S. bachtiarica, particularly in relation to breast CSCs. Therefore, S. bachtiarica may be a potential adjuvant for the treatment of cancer.


Subject(s)
Breast Neoplasms , Glioblastoma , Satureja , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Apoptosis , Neoplastic Stem Cells/metabolism
19.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139092

ABSTRACT

The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , MCF-7 Cells , Breast Neoplasms/metabolism , Sphingomyelins , Ascorbic Acid/pharmacology , Tandem Mass Spectrometry , Vitamins/pharmacology , Cell Line, Tumor , Cell Proliferation
20.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139241

ABSTRACT

Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically viable treatment for the triple-negative BC cases (TNBCs). The current study aims to identify potent agents that can target TNBCs. Extracts from microbial sources have been reported to contain pharmacological agents that can selectively inhibit cancer cell growth. We have screened and identified pigmented microbial extracts (PMBs) that can inhibit BC cell proliferation by targeting legumain (LGMN). LGMN is an oncogenic protein expressed not only in malignant cells but also in tumor microenvironment cells, including tumor-associated macrophages. An LGMN inhibition assay was performed, and microbial extracts were evaluated for in vitro anticancer activity in BC cell lines, angiogenesis assay with chick chorioallantoic membrane (CAM), and tumor xenograft models in Swiss albino mice. We have identified that PMB from the Exiguobacterium (PMB1), inhibits BC growth more potently than PMB2, from the Bacillus subtilis strain. The analysis of PMB1 by GC-MS showed the presence of a variety of fatty acids and fatty-acid derivatives, small molecule phenolics, and aldehydes. PMB1 inhibited the activity of oncogenic legumain in BC cells and induced cell cycle arrest and apoptosis. PMB1 reduced the angiogenesis and inhibited BC cell migration. In mice, intraperitoneal administration of PMB1 retarded the growth of xenografted Ehrlich ascites mammary tumors and mitigated the proliferation of tumor cells in the peritoneal cavity in vivo. In summary, our findings demonstrate the high antitumor potential of PMB1.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Breast Neoplasms/metabolism , Bacillus subtilis , Exiguobacterium , Cell Cycle Checkpoints , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cell Proliferation , Cell Line, Tumor , Apoptosis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL