Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.192
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Nutr ; 154(6): 1781-1789, 2024 06.
Article in English | MEDLINE | ID: mdl-38615734

ABSTRACT

BACKGROUND: Infant formulas are typically manufactured using skimmed milk, whey proteins, and vegetable oils, which excludes milk fat globule membranes (MFGM). MFGM contains polar lipids, including sphingomyelin (SM). OBJECTIVE: The objective of this study was comparison of infant plasma SM and acylcarnitine species between infants who are breastfed or receiving infant formulas with different fat sources. METHODS: In this explorative study, we focused on SM and acylcarnitine species concentrations measured in plasma samples from the TIGGA study (ACTRN12608000047392), where infants were randomly assigned to receive either a cow milk-based infant formula (CIF) with vegetable oils only or a goat milk-based infant formula (GIF) with a goat milk fat (including MFGM) and vegetable oil mixture to the age ≥4 mo. Breastfed infants were followed as a reference group. Using tandem mass spectrometry, SM species in the study formulas and SM and acylcarnitine species in plasma samples collected at the age of 4 mo were analyzed. RESULTS: Total SM concentrations (∼42 µmol/L) and patterns of SM species were similar in both formulas. The total plasma SM concentrations were not different between the formula groups but were 15 % (CIF) and 21% (GIF) lower in the formula groups than in the breastfed group. Between the formula groups, differences in SM species were statistically significant but small. Total carnitine and major (acyl) carnitine species were not different between the groups. CONCLUSIONS: The higher total SM concentration in breastfed than in formula-fed infants might be related to a higher SM content in human milk, differences in cholesterol metabolism, dietary fatty acid intake, or other factors not yet identified. SM and acylcarnitine species composition in plasma is not closely related to the formula fatty acid composition. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12608000047392.


Subject(s)
Carnitine , Goats , Infant Formula , Milk, Human , Milk , Sphingomyelins , Humans , Infant Formula/chemistry , Animals , Carnitine/blood , Carnitine/analogs & derivatives , Milk, Human/chemistry , Infant , Sphingomyelins/blood , Milk/chemistry , Female , Male , Cattle , Breast Feeding , Esters/blood , Infant, Newborn , Plant Oils/chemistry
2.
Clin Ther ; 46(5): 404-410, 2024 May.
Article in English | MEDLINE | ID: mdl-38594107

ABSTRACT

PURPOSE: L-carnitine supplementation has been recommended to improve cardiometabolic health markers in diabetic patients. Our purpose was to assess the dose-dependent effects of l-carnitine supplementation on cardiometabolic risk factors in patients with type 2 diabetes. METHODS: PubMed/Medline, Scopus, and Web of Science were searched until May 2022 for randomized controlled trials that examined the impact of l-carnitine supplementation on cardiometabolic risk factors in adults with type 2 diabetes. The mean difference (MD) and its 95% confidence interval (CI) were estimated utilizing a random-effects model. Nonlinear dose-response associations were modeled with restricted cubic splines. The certainty of evidence was rated using the GRADE approach. FINDINGS: Twenty-one randomized trials with 2041 patients with type 2 diabetes were included. We found that every 1 g/d supplementation with l-carnitine significantly reduced body mass index (MD: -0.37 kg/m2, 95% CI: -0.59, -0.15; I2 =93%, n=13, GRADE=low), HbA1c (MD: -0.16%, 95% CI: -0.32, -0.01; I2 = 94%, n = 18, GRADE = moderate), and low-density lipoprotein cholesterol (MD: -0.11 mmol/L, 95% CI: -0.16, -0.05; I2 = 91%, n = 11, GRADE = high). There were also reductions in serum triglycerides (MD: 0.07 mmol/L), total cholesterol (MD: -0.13 mmol/L), and fasting plasma glucose (MD: -0.17 mmol/L). A U-shaped effect was demonstrated for body mass index, with the largest reduction at 2 g/d. A linear reduction was seen for serum triglycerides, total cholesterol, and fasting plasma glucose up to l-carnitine supplementation of 4 g/d. IMPLICATIONS: L-carnitine supplementation resulted in a small reduction in serum lipids and plasma glucose in patients with type 2 diabetes. However, due to high statistical heterogeneity, the results should be interpreted very cautiously.


Subject(s)
Blood Glucose , Carnitine , Diabetes Mellitus, Type 2 , Dietary Supplements , Glycemic Control , Weight Loss , Humans , Blood Glucose/drug effects , Blood Glucose/metabolism , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Carnitine/administration & dosage , Carnitine/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Dose-Response Relationship, Drug , Glycated Hemoglobin/metabolism , Heart Disease Risk Factors , Randomized Controlled Trials as Topic , Weight Loss/drug effects
3.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38513237

ABSTRACT

ABSTRACT: Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.


Subject(s)
Carnitine , Erythrocytes , Hemolysis , Carnitine/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Polymorphism, Single Nucleotide , Erythrocyte Aging , Genome-Wide Association Study , Male , Female , Solute Carrier Family 22 Member 5/genetics , Solute Carrier Family 22 Member 5/metabolism , Blood Preservation/methods
4.
Cryobiology ; 115: 104884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460835

ABSTRACT

l-carnitine (LC) transports fatty acids to the mitochondria for energy production, reducing lipid availability for peroxidation through ß-oxidation. This research examines the effect of LC supplementation to two skimmed milk-based extenders on the cryosurvival of chilled (5°C) and frozen-thawed Peruvian Paso horse spermatozoa .An initial experiment determined the optimal LC concentration (0, 1, 5, 10, 25, and 50 mM) when added to INRA-96® and UHT (skimmed milk + 6% egg yolk) extenders, using nine ejaculates from three stallions chilled for up to 96 h. Subsequently, the effect of 25 mM LC supplementation (the optimal concentration) on chilling (INRA-96) and freezing (INRA-Freeze®) extenders was evaluated using eight pooled samples from sixteen ejaculates (2 ejaculates/pool) from four stallions. Results indicated that all LC concentrations produced significantly higher values (P<0.05) for kinematic variables (total [TM] and progressive motilities, curvilinear [VCL] and straight-line [VSL] velocity, and beat-cross frequency [BCF]), and the integrity of plasma/acrosome membranes (IPIA) compared to non-supplemented chilled sperm samples for up to 96 h with both extenders. Moreover, the use of 25 mM LC was more efficient (P<0.05) in preserving the post-chilled values of velocity, BCF, and IPIA for the long term than lower LC concentrations (1-10 mM). Post-thaw values of total motility, the amplitude of lateral head displacement (ALH), and IPIA were significantly improved (P<0.05) when INRA-Freeze extender was supplemented with 25 mM LC. In conclusion, supplementation of l-carnitine to skimmed milk-based extenders enhanced kinematic variables and protected the membrane integrity in chilled and frozen-thawed Peruvian Paso horse spermatozoa.


Subject(s)
Carnitine , Cell Membrane , Cryopreservation , Cryoprotective Agents , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Male , Horses , Semen Preservation/methods , Semen Preservation/veterinary , Cryopreservation/methods , Cryopreservation/veterinary , Spermatozoa/drug effects , Carnitine/pharmacology , Cryoprotective Agents/pharmacology , Sperm Motility/drug effects , Cell Membrane/drug effects , Freezing , Biomechanical Phenomena/drug effects
5.
Article in English | MEDLINE | ID: mdl-38464914

ABSTRACT

Background: L-2-hydroxyglutaric aciduria (L2HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by pathogenic variants in the L2HGDH gene which encodes mitochondrial 2-hydroxyglutarate dehydrogenase. Here, we report a case of L2HGA in a Mexican-Mayan patient with a homozygous mutation at L2HGDH gene and clinical response to vitamin supplements and levocarnitine. Case report: A 17-year-old, right-handed female patient with long-term history of seizures, developmental delay and ataxia was referred to a movement disorders specialist for the evaluation of tremor. Her brain MRI showed typical findings of L2HGA. The diagnosis was corroborated with elevated levels of 2-hydroxyglutaric acid in urine and genetic test which revealed a homozygous genetic known variant c.569C>T in exon 5 of L2HGDH gene. She was treated with levocarnitine and vitamin supplements, showing improvement in tremor and gait. Discussion: To our knowledge this is the first report of a Mexican patient with L2HGA. This case adds information about a rare condition in a different ethnic group and supports the findings of other authors which encountered symptomatic improvement with the use of flavin adenine dinucleotide (and its precursor riboflavin), and levocarnitine. Highlights: We report the first case of Mexican-Mayan patient with L2HGA showing a missense homozygous mutation in L2HGDH gene, and improvement of symptoms with vitamin supplements and levocarnitine.


Subject(s)
Brain Diseases, Metabolic, Inborn , Carnitine , Tremor , Humans , Female , Adolescent , Mutation/genetics , Vitamins , Alcohol Oxidoreductases/genetics
6.
Nutr J ; 23(1): 31, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38444016

ABSTRACT

BACKGROUND: Sepsis, a life-threatening organ dysfunction caused by a host's dysregulated response to infection with an inflammatory process, becomes a real challenge for the healthcare systems. L-carnitine (LC) has antioxidant and anti-inflammatory properties as in previous studies. Thus, we aimed to determine the effects of LC on inflammation, oxidative stress, and clinical parameters in critically ill septic patients. METHODS: A randomized double-blinded controlled trial was conducted. A total of 60 patients were randomized to receive LC (3 g/day, n = 30) or placebo (n = 30) for 7 days. Inflammatory and oxidative stress parameters (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (TAC), 28-day mortality rate, and some monitoring variables were evaluated. RESULTS: There was no statistically significant difference between study arms in baseline characteristics and disease severity scores. CRP (p < 0.001) and ESR (p: 0.004) significantly reduced, and SOD (p < 0.001) and TAC (p < 0.001) significantly improved in the LC group after 7 days. Between-group analysis revealed a significant reduction in CRP (p: 0.001) and serum chloride (p: 0.032), an increase in serum albumin (p: 0.036) and platelet (p: 0.004) significantly, and an increase in SOD marginally (p: 0.073). The 28-day mortality rate was also lower in the LC group compared with placebo (7 persons vs. 15 persons) significantly (odds ratio: 0.233, p: 0.010). CONCLUSIONS: L-carnitine ameliorated inflammation, enhanced antioxidant defense, reduced mortality, and improved some clinical outcomes in critically ill patients with sepsis. TRIAL REGISTRATION: IRCT20201129049534N1; May 2021.


Subject(s)
Antioxidants , Sepsis , Humans , Antioxidants/therapeutic use , Critical Illness , Inflammation/drug therapy , Oxidative Stress , C-Reactive Protein , Sepsis/drug therapy , Carnitine/therapeutic use , Superoxide Dismutase , Dietary Supplements
7.
Eur Rev Med Pharmacol Sci ; 28(5): 1680-1694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38497852

ABSTRACT

OBJECTIVE: The goal of this study was to investigate the potential protective effect of L-carnitine (20 mg/kg bw, 1/20 LD 50) against aluminum chloride (AlCl3) on the quality of the male rats' testicles and sperm, as well as to determine whether or not the effects of AlCl3 could be counteracted by using L-carnitine as an antioxidant. MATERIALS AND METHODS: Six groups of 36 adult male albino rats (n=6) were randomly formed. In Group I (Gp I), saline injection was given orally as a control. Group II (Gp II) was injected orally with 75 mg/kg body weight of L-carnitine. Group III (Gp III) was given a high dose of L-carnitine (150 mg/kg body weight) orally, while Group IV (G IV) was given a low dose of AlCl3 (20 mg/kg body weight). Group V (Gp V) was given an oral injection of AlCl3 (20 mg/kg) and L-carnitine (75 mg/kg body weight). Group VI (Gp VI) was given AlCl3 at a dose of 20 mg/kg and L-carnitine at a dose of 150 mg/kg body weight for 60 days. The reproductive capacity of each group was assessed. Thus, in addition to histopathological analysis and the comet assay to evaluate sperm DNA deterioration, final body weight, testicular weight change, and sperm analysis were carried out. RESULTS: The findings revealed that AlCl3 caused a significant decrease in final body weight, relative weight of sex organs, sperm concentration, motility and viability, serum testosterone concentration, and a significant increase in sperm abnormalities. Furthermore, AlCl3 caused visible changes in the histological structure of the testis. CONCLUSIONS: L-carnitine treatment alleviated the harmful effects of AlCl3, as evidenced histopathologically by a noticeable improvement in testis tissues. When it comes to treating AlCl3-induced reproductive toxicity in male rat testes, L-carnitine shows promise.


Subject(s)
Antioxidants , Testis , Male , Rats , Animals , Aluminum Chloride , Antioxidants/pharmacology , Semen , Carnitine/pharmacology , Body Weight
8.
Front Endocrinol (Lausanne) ; 15: 1358404, 2024.
Article in English | MEDLINE | ID: mdl-38505756

ABSTRACT

Background: Fatigue of unknown origin is a hallmark symptom in chronic fatigue syndrome (CFS) and is also found in 20% of hypothyroidism patients despite appropriate levothyroxine treatment. Here, we suggest that in these disorders, peripheral serotonin levels are low, and elevating them to normal range with L-carnitine is accompanied with reduced fatigue. Methods: We conducted a retrospective analysis of follow-up clinical data (CFS N=12; hypothyroidism with fatigue N=40) where serum serotonin and fatigue levels were compared before vs. after 7 weeks of oral L-carnitine supplementation. Results: After L-carnitine, serotonin increased (8-fold in CFS, Sig. = 0.002, 6-fold in hypothyroidism, Sig. < 0.001) whereas fatigue decreased (2-fold in both CFS and hypothyroidism, Sig. = 0.002 for CFS, Sig. < 0.001 for hypothyroidism). There was a negative correlation between serotonin level and fatigue (for CFS, rho = -0.49 before and -0.67 after L-carnitine; for hypothyroidism, rho = -0.24 before and -0.83 after L-carnitine). Conclusions: These findings suggest a new link between low peripheral serotonin, L-carnitine, and fatigue.


Subject(s)
Fatigue Syndrome, Chronic , Hypothyroidism , Humans , Carnitine/therapeutic use , Fatigue Syndrome, Chronic/drug therapy , Fatigue Syndrome, Chronic/diagnosis , Serotonin , Retrospective Studies , Hypothyroidism/complications , Hypothyroidism/drug therapy
9.
J Inherit Metab Dis ; 47(4): 731-745, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38356271

ABSTRACT

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid ß-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.


Subject(s)
Acyl-CoA Dehydrogenase , Lipid Metabolism, Inborn Errors , Lipidomics , Phospholipids , Triglycerides , Humans , Lipid Metabolism, Inborn Errors/blood , Lipidomics/methods , Child , Male , Female , Triglycerides/blood , Phospholipids/blood , Child, Preschool , Acyl-CoA Dehydrogenase/deficiency , Infant , Adolescent , Lipid Metabolism , Case-Control Studies , Fatty Acids/blood , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry/methods , Carnitine/blood
10.
J Nutr ; 154(3): 949-961, 2024 03.
Article in English | MEDLINE | ID: mdl-38331348

ABSTRACT

BACKGROUND: Severe acute malnutrition (SAM) is a major public health concern among low- and middle-income countries, where the majority of the children encountering this acute form of malnutrition suffer from environmental enteric dysfunction (EED). However, evidence regarding the effects of L-carnitine supplementation on the rate of weight gain and EED biomarkers in malnourished children is limited. OBJECTIVES: We aimed to investigate the role of L-carnitine supplementation on the rate of weight gain, duration of hospital stays, and EED biomarkers among children with SAM. METHODS: A prospective, double-blind, placebo-controlled, randomized clinical trial was conducted at the Nutritional Rehabilitation Unit (NRU) of Dhaka Hospital, International Centre for Diarrheal Disease Research, Bangladesh. Children with SAM aged 9-24 mo were randomly assigned to receive commercial L-carnitine syrup (100 mg/kg/d) or placebo for 15 d in addition to standard of care. A total of 98 children with Weight-for-Length-z-score (WLZ) < -3 Standard deviation were enrolled between October 2021 and March 2023. Analyses were conducted on an intention-to-treat basis. RESULTS: The primary outcome variable, "rate of weight gain," was comparable between L-carnitine and placebo groups (2.09 ± 2.23 compared with 2.07 ± 2.70; P = 0.973), which was consistent even after adjusting for potential covariates (age, sex, Weight-for-Age z-score, asset index, and WASH practices) through linear regression [ß: 0.37; 95% confidence interval (CI): -0.63,1.37; P = 0.465]. The average hospital stay was ∼4 d. The results of adjusted median regression showed that following intervention, there was no significant difference in the EED biomarkers among the treatment arms; Myeloperoxidase (ng/mL) [ß: -1342.29; 95% CI: -2817.35, 132.77; P = 0.074], Neopterin (nmol/L) [ß: -153.33; 95% CI: -556.58, 249.91; P = 0.452], alpha-1-antitrypsin (mg/mL) [ß: 0.05; 95% CI: -0.15, 0.25; P = 0.627]. Initial L-carnitine (µmol/L) levels (median, interquartile range) for L-carnitine compared with placebo were 54.84 (36.0, 112.9) and 59.74 (45.7, 96.0), whereas levels after intervention were 102.05 (60.9, 182.1) and 105.02 (73.1, 203.7). CONCLUSIONS: Although our study findings suggest that L-carnitine bears no additional effect on SAM, we recommend clinical trials with a longer duration of supplementation, possibly with other combinations of interventions, to investigate further into this topic of interest. This trial was registered at clinicaltrials.gov as NCT05083637.


Subject(s)
Malnutrition , Severe Acute Malnutrition , Child , Humans , Infant , Bangladesh , Biomarkers , Carnitine/therapeutic use , Dietary Supplements , Prospective Studies , Severe Acute Malnutrition/drug therapy , Weight Gain , Double-Blind Method
11.
Asian J Androl ; 26(3): 239-244, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38305695

ABSTRACT

Oxidative stress is one of the main mechanisms responsible for male infertility. Various conditions such as varicocele, obesity, advanced age, and lifestyle can lead to an increase in reactive oxygen species, causing an oxidative imbalance in the reproductive environment. Spermatozoa are sensitive to reactive oxygen species and require energy to carry out their main function of fertilizing the egg. Excessive reactive oxygen species can affect sperm metabolism, leading to immobility, impaired acrosome reaction, and cell death, thereby impairing reproductive success. This double-blind randomized study evaluated the effect of supplementation with L-carnitine, acetyl-L-carnitine, vitamins, and other nutrients on semen quality in 104 infertile patients with or without varicocele, while also investigating the impact of factors such as obesity and advanced age on treatment. Sperm concentration significantly increased in the supplemented group compared to the placebo group ( P = 0.0186). Total sperm count also significantly increased in the supplemented group ( P = 0.0117), as did sperm motility ( P = 0.0120). The treatment had a positive effect on patients up to 35 years of age in terms of sperm concentration ( P = 0.0352), while a body mass index (BMI) above 25 kg m -2 had a negative effect on sperm concentration ( P = 0.0110). Results were not showing a net benefit in stratifying patients in accordance with their BMI since sperm quality increase was not affected by this parameter. In conclusion, antioxidant supplementation may be beneficial for infertile patients and has a more positive effect on younger patients with a normal weight.


Subject(s)
Antioxidants , Body Mass Index , Carnitine , Sperm Count , Varicocele , Humans , Male , Varicocele/complications , Varicocele/drug therapy , Antioxidants/therapeutic use , Adult , Double-Blind Method , Carnitine/therapeutic use , Sperm Motility/drug effects , Dietary Supplements , Semen Analysis , Infertility, Male/drug therapy , Infertility, Male/etiology , Age Factors , Oxidative Stress/drug effects , Oligospermia/drug therapy , Vitamins/therapeutic use , Acetylcarnitine/therapeutic use , Asthenozoospermia/drug therapy , Spermatozoa/drug effects
12.
Reprod Biol ; 24(2): 100853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38367331

ABSTRACT

The quality of the recipient cytoplasm was reported as a crucial factor in maintaining the vitality of SCNT embryos and SCNT efficiency for dairy cows. Compared with oocytes matured in vivo, oocytes matured in vitro showed abnormal accumulation and metabolism of cytoplasmic lipids. L-carnitine treatment was found to control fatty acid transport into the mitochondrial ß-oxidation pathway, which improved the process of lipid metabolism. The results of this study show that 0.5 mg/ml L-carnitine significantly reduced the cytoplasmic lipid content relative to control. No significant difference was observed in the rate of oocyte nuclear maturation, but the in vitro developmental competence of SCNT embryos was improved in terms of increased blastocyst production and lower apoptotic index in the L-carnitine treatment group. In addition, the pregnancy rate with SCNT embryos in the treatment group was significantly higher than in the control group. In conclusion, the present study demonstrated that adding L-carnitine to the maturation culture medium could improve the developmental competence of SCNT embryos both in vitro and in vivo by reducing the lipid content of the recipient cytoplasm.


Subject(s)
Carnitine , Embryonic Development , In Vitro Oocyte Maturation Techniques , Oocytes , Carnitine/pharmacology , Animals , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Female , Embryonic Development/drug effects , Cattle , Oocytes/drug effects , Cloning, Organism/veterinary , Cloning, Organism/methods , Nuclear Transfer Techniques/veterinary , Pregnancy , Embryo Culture Techniques , Lipid Metabolism/drug effects , Blastocyst/drug effects
13.
Am J Nephrol ; 55(3): 369-379, 2024.
Article in English | MEDLINE | ID: mdl-38377965

ABSTRACT

INTRODUCTION: Chronic kidney disease (CKD) negatively affects musculoskeletal health, leading to reduced mobility, and quality of life. In healthy populations, carnitine supplementation and aerobic exercise have been reported to improve musculoskeletal health. However, there are inconclusive results regarding their effectiveness and safety in CKD. We hypothesized that carnitine supplementation and individualized treadmill exercise would improve musculoskeletal health in CKD. METHODS: We used a spontaneously progressive CKD rat model (Cy/+ rat) (n = 11-12/gr): (1) Cy/+ (CKD-Ctrl), (2) CKD-carnitine (CKD-Carn), and (3) CKD-treadmill (CKD-TM). Carnitine (250 mg/kg) was injected daily for 10 weeks. Rats in the treadmill group ran 4 days/week on a 5° incline for 10 weeks progressing from 30 min/day for week one to 40 min/day for week two to 50 min/day for the remaining 8 weeks. At 32 weeks of age, we assessed overall cardiopulmonary fitness, muscle function, bone histology and architecture, and kidney function. Data were analyzed by one-way ANOVA with Tukey's multiple comparisons tests. RESULTS: Moderate to severe CKD was confirmed by biochemistries for blood urea nitrogen (mean 43 ± 5 mg/dL CKD-Ctrl), phosphorus (mean 8 ± 1 mg/dL CKD-Ctrl), parathyroid hormone (PTH; mean 625 ± 185 pg/mL CKD-Ctrl), and serum creatinine (mean 1.1 ± 0.2 mg/mL CKD-Ctrl). Carnitine worsened phosphorous (mean 11 ± 3 mg/dL CKD-Carn; p < 0.0001), PTH (mean 1,738 ± 1,233 pg/mL CKD-Carn; p < 0.0001), creatinine (mean 1 ± 0.3 mg/dL CKD-Carn; p < 0.0001), cortical bone thickness (mean 0.5 ± 0.1 mm CKD-Ctrl, 0.4 ± 0.1 mm CKD-Carn; p < 0.05). Treadmill running significantly improves maximal aerobic capacity when compared to CKD-Ctrl (mean 14 ± 2 min CKD-TM, 10 ± 2 min CKD-Ctrl; p < 0.01). CONCLUSION: Carnitine supplementation worsened CKD progression, mineral metabolism biochemistries, and cortical porosity and did not have an impact on physical function. Individualized treadmill running improved maximal aerobic capacity but did not have an impact on CKD progression or bone properties. Future studies should seek to better understand carnitine doses in conditions of compromised renal function to prevent toxicity which may result from elevated carnitine levels and to optimize exercise prescriptions for musculoskeletal health.


Subject(s)
Carnitine , Dietary Supplements , Physical Conditioning, Animal , Renal Insufficiency, Chronic , Carnitine/administration & dosage , Animals , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/blood , Rats , Male , Parathyroid Hormone/blood , Disease Models, Animal , Muscle, Skeletal/drug effects , Cardiorespiratory Fitness , Phosphorus/blood , Creatinine/blood
14.
Mol Nutr Food Res ; 68(8): e2300614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38389158

ABSTRACT

SCOPE: Comprehensive assessment of l-carnitine's safety and effectiveness in reducing inflammatory markers in osteoarthritis (OA) patients. METHODS AND RESULTS: Journal articles on l-carnitine for OA are gathered using computer searches of PubMed, Embase, the Cochrane Library, and Web of Science. The kind of literature that is found is restricted to clinical randomized controlled trials (RCTs). The Cochrane Handbook risk of bias assessment tool RevMan 5.4 software is used to conduct a meta-analysis. The systematic assessment comprises eight trials totaling 619 patients; the included studies' quality is mediocre. The study's findings demonstrate that OA patients' Western Ontario and McMaster University (WOMAC) function improves and that treatment efficacy outperforms that of the control group (mean difference [MD] = -7.75, 95% CI [-14.63, -0.86]; Z = 2.21; p = 0.03), WOMAC total (MD = -10.24, 95% CI [-18.97, -1.51]; Z = 2.30; p = 0.02), and visual analogue scale (VAS) pain (MD = -14.01, 95% CI [-16.16, -11.85]; Z = 12.74; p < 0.00001). The studies that are methodically reviewed also discover heterogeneity, which may have resulted from the created pooled data and requires more analysis. CONCLUSION: In patients with OA, l-carnitine effectively decreases clinical signs and symptoms, inflammatory markers, pain, and stiffness indicators, and significantly improves WOMAC and VAS scores.


Subject(s)
Carnitine , Dietary Supplements , Osteoarthritis , Humans , Carnitine/pharmacology , Carnitine/administration & dosage , Osteoarthritis/drug therapy , Randomized Controlled Trials as Topic
15.
Int J Biol Macromol ; 263(Pt 2): 130517, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423444

ABSTRACT

Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.


Subject(s)
Chitosan , Nanoparticles , Humans , Phytic Acid , Pectins/pharmacology , Carnitine , MCF-7 Cells , Colon , Drug Carriers
16.
Animal ; 18(2): 101049, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215677

ABSTRACT

Our understanding of metabolic alterations triggered by heat stress is incomplete, which limits the designing of nutritional strategies to mitigate negative productive and health effects. Thus, this study aimed to explore the metabolic responses of heat-stressed dairy cows to dietary supplementation with vitamin D3/Ca and vitamin E/Se. Twelve multiparous Holstein cows were enrolled in a split-plot Latin square design with two distinct vitamin E/Se supplementation levels, either at a low (ESe-, n = 6, 11.1 IU/kg vitamin E and 0.55 mg/kg Se) or a high dose (ESe+, n = 6 223 IU/kg vitamin E and 1.8 mg/kg Se) as the main plot. Treatment subplots, arranged in a replicated 3 × 3 Latin square design, comprised heat challenge (Temperature Humidity Index, THI: 72.0-82.0) supplemented with different levels of vitamin D3/Ca: either low (HS/DCa-, 1 012 IU/kg and 0.73%, respectively) or high (HS/DCa+, 3 764 IU/kg and 0.97%, respectively), and a pair-fed control group in thermoneutrality (THI = 61.0-64.0) receiving the low dose of vitamin D3/Ca (TN). The liquid chromatography-mass spectrometry-based metabolome profile was determined in blood plasma and milk sampled at the beginning (day 0) and end (day 14) of each experimental period. The results were analyzed for the effect of (1) TN vs. HS/ESe-/DCa-, and (2) the vitamin E/Se and vitamin D3/Ca supplementation. No group or group × day effects were detected in the plasma metabolome (false discovery rate, FDR > 0.05), except for triglyceride 52:2 being higher (FDR = 0.03) on day 0 than 14. Taurine, creatinine and butyryl-carnitine showed group × day interactions in the milk metabolome (FDR ≤ 0.05) as creatinine (+22%) and butyryl-carnitine (+190%) were increased (P < 0.01) on day 14, and taurine was decreased (-65%, P < 0.01) on day 14 in the heat stress (HS) cows, compared with day 0. Most compounds were unaffected by vitamin E/Se or vitamin D3/Ca supplementation level or their interaction (FDR > 0.05) in plasma and milk, except for milk alanine which was lower (-69%, FDR = 0.03) in the E/Se+ groups, compared with E/Se-. Our results indicated that HS triggered more prominent changes in the milk than in the plasma metabolome, with consistent results in milk suggesting increased muscle catabolism, as reflected by increased creatinine, alanine and citrulline levels. Supplementing with high levels of vitamin E/Se or vitamin D3/Ca or their combination did not appear to affect the metabolic remodeling triggered by HS.


Subject(s)
Lactation , Milk , Female , Cattle , Animals , Milk/metabolism , Creatinine/analysis , Creatinine/metabolism , Creatinine/pharmacology , Diet/veterinary , Hot Temperature , Dietary Supplements/analysis , Heat-Shock Response , Vitamin E , Carnitine/metabolism , Alanine/analysis , Alanine/metabolism , Alanine/pharmacology , Amino Acids/metabolism , Vitamin D/metabolism
17.
J Ovarian Res ; 17(1): 9, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191449

ABSTRACT

OBJECTIVE: To investigate the effect of L-carnitine supplementation during the controlled ovarian stimulation (COS) cycle with antagonist protocol in patients with polycystic ovary syndrome (PCOS) diagnosis undergoing IVF/ICSI treatment. METHODS AND MATERIALS: This was a double-blind clinical trial study including 110 patients with PCOS attended to Royan Institute between March 2020 and February 2023. At the beginning of the COS cycle, the eligible patients were allocated into two groups randomly according to the coding list of the drugs prepared by the statistical consultant. In the experimental group, patients received 3 tablets daily (L-carnitine 1000 mg) from the second day of menstruation of the previous cycle until the puncture day in the cases of freeze-all embryos (6 weeks) or until the day of the pregnancy test (8 weeks) in fresh embryo transfer cycle. In the control group, patients received 3 placebo tablets for the same period of time. Weight assessment and fasting blood sugar and insulin tests, as well as serum lipid profile were also measured at the baseline and ovum pick-up day. The results of the COS cycle as well as the implantation and pregnancy rates were compared between groups. RESULTS: Finally, 45 cases in L-carnitine group versus 47 cases in the placebo group were completed study per protocol. Data analysis showed that the two groups were homogeneous in terms of demographic characteristics and baseline laboratory tests and severity of PCOS. There is no statistically significant difference in terms of the oocyte recovery ratio and oocyte maturity rate, and the number and quality of embryos, as well as the rates of the fertilization, chemical and clinical pregnancy between groups. However, the means of weight (P < 0.001) and serum levels of fasting blood sugar (P = 0.021), fasting insulin (P = 0.004), triglyceride (P < 0.001) and cholesterol (P < 0.001), LDL (P < 0.001) have significantly decreased in women after consuming L-carnitine supplementation. CONCLUSION: The oral intake of L-carnitine during COS in PCOS women for 6 weeks had no effect on COS and pregnancy outcomes. However, taking this supplement for 6 weeks has been associated with weight loss and improved lipid profile and serum glucose. TRIAL REGISTRATION: The study was registered in the Clinicaltrials.gov site on December 17, 2020 (NCT04672720).


Subject(s)
Insulins , Polycystic Ovary Syndrome , Pregnancy , Humans , Female , Carnitine/pharmacology , Carnitine/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Blood Glucose , Sperm Injections, Intracytoplasmic , Lipids
18.
Arch Pediatr ; 31(1): 85-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168614

ABSTRACT

The cases were a pair of siblings with a carnitine palmitoyltransferase (CPT2) deficiency detected by tandem mass spectrometry. Their C16 and C18:1 levels were both within the normal range, while C0 was low, and the (C16+C18:1)/C2 ratio was high. Following genetic testing, a novel CPT2 gene mutation was identified in both patients. The male patient had a normal growth rate during 5 years of follow-up after treatment. By contrast, the female patient did not take l-carnitine supplements and died after an infectious disease-associated illness when she was 1 year old. These data emphasize the need to raise awareness about CPT2 deficiency so as to correctly diagnose and accurately manage the disease.


Subject(s)
Carnitine O-Palmitoyltransferase , Metabolism, Inborn Errors , Female , Humans , Infant , Male , Carnitine , Carnitine O-Palmitoyltransferase/genetics , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Mutation , Child, Preschool
19.
Free Radic Biol Med ; 213: 174-189, 2024 03.
Article in English | MEDLINE | ID: mdl-38246515

ABSTRACT

Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Humans , Aged , Osteogenesis/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Carnitine/metabolism , Signal Transduction , Osteoclasts/metabolism , Macrophages/metabolism , Bone Resorption/complications , Bone Resorption/metabolism , Osteoporosis/drug therapy , Osteoporosis/genetics , RANK Ligand/pharmacology
20.
Fish Physiol Biochem ; 50(1): 77-96, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36604356

ABSTRACT

The widely available crop oil is an effective alternative to the increasingly scarce marine fish oil. However, simple alternative strategies have led to declining growth and the edible value of farmed fish. It is worthwhile to explore the effects of micro supplements in diets to improve the tolerance of fish to different dietary lipid sources, which finally optimizes the feeding strategies. This study aimed to investigate the regulation of L-carnitine and dietary oil conditions on nutrient composition, lipid metabolism, and glucose regulation of Rhynchocypris lagowskii. Four diets were prepared according to fish oil, fish oil supplemented with L-carnitine, corn oil, and corn oil supplemented with L-carnitine, and FO, LCFO, CO, and LCCO were labeled, respectively. R. lagowskii was fed experimental diets for 8 weeks, and the glucose tolerance test was performed. The CO diet significantly resulted in higher crude lipid content in muscle but a lower level of serum lipid parameters of R. lagowskii than the FO diet. However, dietary L-carnitine supplementation significantly reduced the crude lipid content in the hepatopancreas and muscle of the fish fed with the CO diet yet increased the serum lipid parameters. Additionally, the crude lipid content of muscle was reduced in the fish fed with an FO diet supplemented with L-carnitine. Compared with the FO diet, the CO diet significantly reduced the ratio of n3/n6 polyunsaturated fatty acid in the hepatopancreas and muscle of R.lagowskii. Dietary L-carnitine supplementation significantly reduced the contents of total saturated fatty acids and total monounsaturated fatty acids in hepatopancreas under both dietary lipid sources. The CO diet significantly up-regulated the expression of genes related to lipid uptake and adipogenesis in hepatopancreas, including lipoprotein lipase (lpl), acetyl-coenzyme A carboxylase alpha (accα), and sterol regulatory element binding protein-1 (srebp1), compared with the FO diet. While dietary L-carnitine supplementation significantly down-regulated the expressions of lpl, accα, srebp1, and fatty acid synthase in hepatopancreas and muscle of fish under both dietary lipid sources, along with up-regulated expression of carnitine palmitoyltransferase 1 in hepatopancreas. Moreover, the fish fed with a CO diet significantly increased the expression of glucose uptake and clearance and significantly down-regulated the expressions of glucose regulation-related genes, including glucose transporter 1, glycogen synthase 1, and phosphofructokinase in hepatopancreas and muscle, resulting in slower glucose uptake and clearance than fish fed with FO diet. Nevertheless, dietary L-carnitine supplementation up-regulated the expression of gluconeogenesis-related genes, including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the hepatopancreas of R. lagowskii under both dietary lipid sources. In conclusion, a higher dietary n6 PUFA resulted in lipid deposition, decreased serum lipid parameters, and limited serum glucose utilization of R. lagowskii. While the regulatory effect of L-carnitine on lipid metabolism and glucose utilization of R. lagowskii varies with dietary lipid sources and tissues.


Subject(s)
Fatty Acids, Omega-3 , Lipid Metabolism , Animals , Corn Oil , Carnitine/pharmacology , Glucose , Dietary Fats , Diet/veterinary , Fish Oils , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL