Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.861
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38602916

ABSTRACT

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Subject(s)
Arginine , Ligases , Arginine/metabolism , Citrulline/metabolism , Ammonia , Ornithine/genetics , Adenosine Triphosphate/metabolism , Phosphates , Adenosine , Catalysis
2.
Food Res Int ; 181: 114136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448105

ABSTRACT

To achieve an integrative understanding of the spatial distribution and chronological flavoring compounds accumulation, desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) and multi-omics techniques were performed on the leaf samples collected from the enzymatic-catalyzed-process (ECP) stage of Tieguanyin oolong tea manufacturing. The result of DESI-MSI visualization indicated transform or re-distribution of catechins, flavonols and amino acids were on-going attributing to the multi-stress over ECP stage. Out of identified 2621 non-volatiles and 45,771 transcripts, 43 non-volatiles and 12 co-expressed pathways were screened out as biomarkers and key cascades in response to adverse conditions. The targeted metabolic analysis on the characteristic flavoring compounds showed that the accumulations of free amino acids were enhanced, while catechins, flavonol glycosides, and alkaloids exhibited dynamic changes. This result suggests withering and turning-over process are compatible and collectively regulate the metabolic accumulation and development of flavoring metabolites, facilitating to the development of characteristic quality of Tieguanyin tea.


Subject(s)
Amino Acids , Catechin , Commerce , Flavonols , Flavoring Agents , Catalysis , Tea
3.
Environ Sci Pollut Res Int ; 31(18): 26806-26823, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453761

ABSTRACT

Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.


Subject(s)
Rosaniline Dyes , Water Pollutants, Chemical , Zinc Oxide , Adsorption , Rosaniline Dyes/chemistry , Zinc Oxide/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Nanoparticles/chemistry , Plant Extracts/chemistry , Coloring Agents/chemistry , Flowers/chemistry , Ferric Compounds/chemistry
4.
Environ Sci Pollut Res Int ; 31(18): 26916-26927, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456980

ABSTRACT

Catalytic wet peroxide oxidation (CWPO) has become an important deep oxidation technology for organics removal in wastewater treatments. Supported Cu-based catalysts belong to an important type of CWPO catalyst. In this paper, two Cu catalysts, namely, Cu/Al2O3-air and Cu/Al2O3-H2 were prepared and evaluated through catalytic degradation of phenol. It was found that Cu/Al2O3-H2 had an excellent catalytic performance (TOC removal rate reaching 96%) and less metal dissolution than the Cu/Al2O3-air case. Moreover, when the organic removal rate was promoted at a higher temperature, the metal dissolution amounts was decreased. Combined with hydroxyl radical quenching experiments, a catalytic oxidation mechanism was proposed to explain the above-mentioned interesting behaviors of the Cu/Al2O3-H2 catalyst for CWPO. The catalytic test results as well as the proposed mechanism can provide better guide for design and synthesis of good CWPO catalysts.


Subject(s)
Copper , Oxidation-Reduction , Peroxides , Phenol , Catalysis , Copper/chemistry , Peroxides/chemistry , Phenol/chemistry , Aluminum Oxide/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods
5.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548118

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Subject(s)
Aristolochic Acids , Mitochondrial Diseases , Humans , Aristolochic Acids/toxicity , Glucuronides/metabolism , Microsomes, Liver/metabolism , Reactive Oxygen Species/metabolism , Glucuronosyltransferase/metabolism , Kinetics , Catalysis , Uridine Diphosphate/metabolism
6.
Environ Sci Pollut Res Int ; 31(17): 25524-25537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472585

ABSTRACT

Biodiesel is a highly promising and viable alternative to fossil-based diesel that also addresses the urgent need for effective waste management. It can be synthesized by the chemical modification of triglycerides sourced from vegetable origin, animal fat, or algal oil. The transesterification reaction is the preferred method of producing biodiesel. However, the non-miscibility of alcohol and oil layer causes excessive utilization of alcohol, catalyst, and a substantial reacting time and temperature. In the current investigation, transesterification of waste fish oil was performed with petro-diesel as cosolvent, under the influence of ultrasound energy. The combination of both techniques is a unique and efficient way to minimize the mass transfer limitations considerably and hence reduces the parameters of the reaction. It is also a sincere effort to comply with the principles of green chemistry. The optimum reaction conditions were obtained using response surface methodology (RSM) that were as follows: molar ratio of methanol to oil 9.09:1, catalyst concentration of 0.97 wt%, cosolvent concentration of 29.1 wt%, temperature 60.1℃, and a reacting time 30 min. Under these listed conditions, 98.1% biodiesel was achievable, which was in close agreement with the expected result. In addition, the cosolvent removal step from the crude biodiesel was also eliminated as it could be employed as a blended fuel in CI engines.


Subject(s)
Biofuels , Plant Oils , Animals , Esterification , Methanol , Catalysis
7.
Angew Chem Int Ed Engl ; 63(19): e202403271, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38497510

ABSTRACT

Unnatural amino acids, and their synthesis by the late-stage functionalization (LSF) of peptides, play a crucial role in areas such as drug design and discovery. Historically, the LSF of biomolecules has predominantly utilized traditional synthetic methodologies that exploit nucleophilic residues, such as cysteine, lysine or tyrosine. Herein, we present a photocatalytic hydroarylation process targeting the electrophilic residue dehydroalanine (Dha). This residue possesses an α,ß-unsaturated moiety and can be combined with various arylthianthrenium salts, both in batch and flow reactors. Notably, the flow setup proved instrumental for efficient scale-up, paving the way for the synthesis of unnatural amino acids and peptides in substantial quantities. Our photocatalytic approach, being inherently mild, permits the diversification of peptides even when they contain sensitive functional groups. The readily available arylthianthrenium salts facilitate the seamless integration of Dha-containing peptides with a wide range of arenes, drug blueprints, and natural products, culminating in the creation of unconventional phenylalanine derivatives. The synergistic effect of the high functional group tolerance and the modular characteristic of the aryl electrophile enables efficient peptide conjugation and ligation in both batch and flow conditions.


Subject(s)
Alanine , Alanine/analogs & derivatives , Peptides , Peptides/chemistry , Peptides/chemical synthesis , Catalysis , Alanine/chemistry , Photochemical Processes , Molecular Structure
8.
Enzyme Microb Technol ; 175: 110409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335559

ABSTRACT

The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases. Some process parameters were optimized by the Taguchi method (L16'). As a result, a conversion over 95% of the FFAs of castor oil into esters with lubricants properties was achieved under optimized reaction conditions (15 wt% of biocatalyst content, 1:4 molar ratio (FFAs/alcohol), 30 °C, 180 rpm, 96 h). The substrates molar ratio had the highest influence on the dependent variable (conversion at 24 h). FFAs/2-ethyl-1-hexanol esters were characterized regarding the physicochemical and tribological properties. Interestingly, the modification of the FFAs with 2-ethyl-1-hexanol by ETL increased the oxidative stability of the FFAs feedstock from 0.18 h to 16.83 h. The biolubricants presented a lower friction coefficient than the reference commercial mineral lubricant (0.052 ± 0.07 against 0.078 ± 0.04). Under these conditions, ETL catalyzed the oligomerization of ricinoleic acid (a hydroxyl fatty acid) into estolides, reaching a conversion of 25.15% of the initial FFAs (for the first time).


Subject(s)
Castor Oil , Fatty Acids, Nonesterified , Hexanols , Esterification , Esters/chemistry , Fatty Acids/chemistry , Lipase/metabolism , Ethanol , Catalysis , Enzymes, Immobilized/chemistry
9.
Environ Pollut ; 345: 123522, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38331240

ABSTRACT

Nitrogen cycle is crucial for the Earth's ecosystem and human-nature coexistence. However, excessive fertilizer use and industrial contamination disrupt this balance. Semiconductor-based artificial nitrogen cycle strategies are being actively researched to address this issue. Black phosphorus (BP) exhibits remarkable performance and significant potential in this area due to its unique physical and chemical properties. Nevertheless, its practical application is hindered by ambient instability. This review covers the synthesis methods of BP materials, analyzes their instability factors under environmental conditions, discusses stability improvement strategies, and provides an overview of the applications of ambient-stable BP materials in nitrogen cycle, including N2 fixation, NO3- reduction, NOx removal and nitrides sensing. The review concludes by summarizing the challenges and prospects of BP materials in the nitrogen cycle, offering valuable guidance to researchers.


Subject(s)
Ecosystem , Phosphorus , Humans , Phosphorus/chemistry , Nitrogen Cycle , Physical Phenomena , Catalysis
10.
Chemosphere ; 352: 141338, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331260

ABSTRACT

Resource recovery from solid organic wastes, such as degradable plastics, and upgrading raw bio-oil are important ways for reducing carbon and pollution emissions. Hydrodeoxygenation (HDO) is a common thermochemical treatment to upgrade crude bio-oil. In this study, in order to realize in situ HDO during the hydropyrolysis of heavy bio-oil and degradable plastics, a reduced Fe/Ce oxygen carrier (OC) was used to catalytically remove oxygen from organics under the methanol-zero valent aluminum (ZV Al) media, where the hydrogen was produced during pyrolysis instead of a direct hydrogen supply. The results showed that the reduced OC captured the oxygen from the pyrolysis products of heavy bio-oil and degradable plastic, representing the multi-selectivity of reduced OC to phenols, ketones, etc. The ZV Al system promoted the production and utilization of hydrogen, as evidenced by the increased hydrogen content in gas phase and hydrocarbon content in liquid phase. The hydrocarbon component distribution in the liquid phase increased clearly when hydropyrolysis with degradable plastics addtion, but the excess degradable plastics addition caused increasing of the liquid product viscosity, and decreasing of the liquid products yield for the higher ash content in degradable plastic, and a higher ZV Al amount was required to maintain the hydropyrolysis. Molecular dynamics simulations verified the synergistic effect of degradable plastics and bio-oil by the pyrolysis behavior in different systems and temperatures, and the pyrolysis pathways were proposed. This non-autocatalytic system realized the resource recovery and heavy bio-oil upgrading using an Fe/Ce OC.


Subject(s)
Aluminum , Oxygen , Plant Oils , Methanol , Polyphenols , Hydrogen , Biofuels/analysis , Hot Temperature , Catalysis , Plastics
11.
Environ Sci Pollut Res Int ; 31(12): 18785-18796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349495

ABSTRACT

Recovering renewable chemicals from de-fatted microalgal residue derived from lipid extraction within the algal-derived biofuel sector is crucial, given the rising significance of microalgal-derived biodiesel as a potential substitute for petroleum-based liquid fuels. As a circular economy strategy, effective valorization of de-fatted biomass significantly improves the energetic and economic facets of establishing a sustainable algal-derived biofuel industry. In this scenario, this study investigates flash catalytic pyrolysis as a sustainable pathway for valorizing Scenedesmus sp. post-extraction residue (SPR), potentially yielding a bio-oil enriched with upgraded characteristics, especially renewable aromatic hydrocarbons. In the scope of this study, volatile products from catalytic and non-catalytic flash pyrolysis were characterized using a micro-furnace type temperature programmable pyrolyzer coupled with gas chromatographic separation and mass spectrometry detection (Py-GC/MS). Flash pyrolysis of SPR resulted in volatile products with elevated oxygen and nitrogen compounds with concentrations of 46.4% and 26.4%, respectively. In contrast, flash pyrolysis of lyophilized microalgal biomass resulted in lower concentrations of these compounds, with 40.9% oxygen and 17.3% nitrogen. Upgrading volatile pyrolysis products from SPR led to volatile products comprised of only hydrocarbons, while completely removing oxygen and nitrogen-containing compounds. This was achieved by utilizing a low-cost HZSM-5 catalyst within a catalytic bed at 500 °C. Catalytic experiments also indicate the potential conversion of SPR into a bio-oil rich in monocyclic aromatic hydrocarbons, primarily BETX, with toluene comprising over one-third of its composition, thus presenting a sustainable pathway for producing an aromatic hydrocarbon-rich bio-oil derived from SPR. Another significant finding was that 97.8% of the hydrocarbon fraction fell within the gasoline range (C5-C12), and 35.5% fell within the jet fuel range (C8-C16). Thus, flash catalytic pyrolysis of SPR exhibits significant promise for application in drop-in biofuel production, including green gasoline and bio-jet fuel, aligning with the principles of the circular economy, green chemistry, and bio-refinery.


Subject(s)
Hydrocarbons, Aromatic , Plant Oils , Polyphenols , Scenedesmus , Scenedesmus/metabolism , Pyrolysis , Gasoline , Biofuels , Hot Temperature , Gas Chromatography-Mass Spectrometry , Hydrocarbons/chemistry , Catalysis , Nitrogen , Oxygen , Biomass
12.
J Agric Food Chem ; 72(8): 4257-4266, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38354318

ABSTRACT

Selenium nanoparticles (SeNPs) are important and safe food and feed additives that can be used for dietary supplementation. In this study, a mutagenic strain of Saccharomyces boulardii was employed to obtain biologically synthesized SeNPs (BioSeNPs) with the desired particle size by controlling the dosage and duration of sodium selenite addition, and the average particle size achieved was 55.8 nm with protease A encapsulation. Transcriptomic analysis revealed that increased expression of superoxide dismutase 1 (SOD1) in the mutant strain effectively promoted the synthesis of BioSeNPs and the formation of smaller nanoparticles. Under sodium selenite stress, the mutant strain exhibited significantly increased expression of glutathione peroxidase 2 (GPx2), which was significantly greater in the mutant strain than in the wild type, facilitating the synthesis of glutathione selenol and providing abundant substrates for the production of BioSeNPs. Furthermore, based on the experimental results and transcriptomic analysis of relevant genes such as sod1, gpx2, the thioredoxin reductase 1 gene (trr1) and the thioredoxin reductase 2 gene (trr2), a yeast model for the size-controlled synthesis of BioSeNPs was constructed. This study provides an important theoretical and practical foundation for the green synthesis of controllable-sized BioSeNPs or other metal nanoparticles with potential applications in the fields of food, feed, and biomedicine.


Subject(s)
Metal Nanoparticles , Nanoparticles , Saccharomyces boulardii , Selenium , Catalysis , Saccharomyces boulardii/metabolism , Selenium/metabolism , Sodium Selenite , Superoxide Dismutase/genetics , Superoxide Dismutase-1
13.
ACS Appl Mater Interfaces ; 16(9): 11251-11262, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38394459

ABSTRACT

Nanozyme has been proven to be an attractive and promising candidate to alleviate the current pressing medical problems. However, the unknown clinical safety and limited function beyond the catalysis of the most reported nanozymes cannot promise an ideal therapeutic outcome in further clinical application. Herein, we find that ferric maltol (FM), a clinically approved iron supplement synthesized through a facile scalable method, exhibits excellent peroxidase-like activity than natural horseradish peroxidase-like (HRP) and commonly reported Fe-based nanozymes, and also shows high antibacterial performance for methicillin-resistant Staphylococcus aureus (MRSA) elimination (100%) and wound disinfection. In addition, with added effects inherited from contained maltol, FM can accelerate skin barrier recovery. Therefore, the exploration of FM as a safe and desired nanozyme provides a timely alternative to current antibiotic therapy against drug-resistant bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pyrones , Disinfection , Ferric Compounds/pharmacology , Horseradish Peroxidase , Catalysis , Anti-Bacterial Agents/pharmacology , Hydrogen Peroxide , Peroxidase
14.
Chemosphere ; 350: 141104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171400

ABSTRACT

The loss of active components, weak acid resistance, and low recover efficiency of common Ca-based catalysts limited its further development and application. In this study, to effectively produce biodiesel from waste cooking oil (WCO), a green and recyclable magnetic acid-base bifunctional CoFe/biochar/CaO catalyst was prepared from sargassum and river snail shell waste via hydrothermal method. The catalysts' structure and properties were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), CO2/NH3 temperature programmed desorption (CO2/NH3 TPD), etc., The prepared catalyst mainly consisted of the carbon skeleton, CoFe alloy, and CaO. CoFe alloy provided catalyst's ferromagnetism for magnetic separation as well as acid sites for transesterification of WCO. Ca and other metal species with nanoscale (∼5.64 nm) were dispersively anchored on sargassum biochar surface, thereby leading to good catalytic activity (99.21% biodiesel yield) and stability (91.70% biodiesel yield after the 5th cycle). In addition, response surface methodology-Box-Behnken design (RSM-BBD) revealed the optimal operational conditions were 16:1 methanol/oil molar ratio, 3 wt% catalyst dosage, 73 °C for 157 min. The maximum biodiesel yield predicted value was 98.29% and the experimental value was 99.21%, indicating good satisfaction of the established model. Moreover, the quality of WCO biodiesel met the ASTM D6751 standards. This study benefits magnetic waste-derived acid-base bifunctional catalysts for the disposal of WCO towards sustainable biodiesel production.


Subject(s)
Biofuels , Charcoal , Plant Oils , Plant Oils/chemistry , Biofuels/analysis , Carbon Dioxide , Esterification , Cooking , Catalysis , Alloys , Magnetic Phenomena
15.
J Agric Food Chem ; 72(2): 1017-1024, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170676

ABSTRACT

Locally sourced waste cooking oil (WCO) was successfully base-catalyzed and transesterified with methanol into biodiesel to produce biostimulant (nitrobenzene) formulations and replace high-risk carrier solvents. Ideal synthesis conditions were composed of 1% NaOH, MeOH/oil molar ratio (6:1), reaction temperature (65 °C), a 3 h mixing rate, and 97-98% yields. Gas chromatography-mass spectrometry (GC-MS) analysis identified five fatty acid methyl esters (FAMEs) including palmitic, linoleic, oleic, stearic, and eicosenoic acids with high solubilization and olfactory characteristics. Using anionic and nonionic emulsifiers in conjunction with recycled biodiesel, a stable emulsifiable concentrate (NB 35% EC) was created with greater storage stability, wettability, and spreading capabilities than those of organic solvent-based ones. The highest counts of fruits per plant (35.80), flowers per plant (60.00), yield per plant (3.56 kg), and yield per hectare (143.7 quintals) were recorded in treatments with 4 mL/L biodiesel-based EC in field bioassays. In addition to having superior biosafety, FAME-based EC exhibits minimal phytotoxicity and is less harmful to aquatic creatures. It was discovered that the average cost-effectiveness was 5.49 times less expensive than solvent-based EC. In order to utilize waste oils as a locally obtained, sustainable alternative solvent with a wide solubilization range, low ecotax profile, circular economy, and high renewable carbon index, this integrative technique was expanded.


Subject(s)
Biofuels , Plant Oils , Plant Oils/chemistry , Solvents , Esterification , Biofuels/analysis , Fatty Acids/chemistry , Cooking , Catalysis
16.
Nat Commun ; 15(1): 460, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212655

ABSTRACT

Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves. Upon cellular internalization, the CuS-I@P1 NPs undergo furin-guided condensation reactions, leading to the formation of CuS-I nanoparticle assemblies through dityrosine bond. The tumour-specific furin-instructed intracellular assembly of CuS-I NPs exhibits activatable dual-modal imaging capability and enhanced photothermal effect, enabling highly efficient imaging and therapy of tumours. The robust nanoparticle self-catalysis-regulated in situ assembly, facilitated by natural handles, offers the advantages of convenient fabrication, high reaction specificity, and biocompatibility, representing a generalizable strategy for target-specific activatable biomedical imaging and therapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Furin , Phototherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Nanoparticles/chemistry , Catalysis , Copper/chemistry
17.
Artif Cells Nanomed Biotechnol ; 52(1): 59-68, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38214666

ABSTRACT

The present study describes a method for the preparation of green titanium dioxide (TiO2) nanoparticles from the peel of Solanum tuberosum, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO2 (G- TiO2) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO2 nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO2, the cell viability in normal as well as cancer cells was assessed. Further, the in vivo toxicity of the G- TiO2 nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.


Subject(s)
Nanoparticles , Solanum tuberosum , Animals , Zebrafish , Nanoparticles/chemistry , Titanium/pharmacology , Titanium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Catalysis
18.
Chemosphere ; 351: 141261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244873

ABSTRACT

Rapid industrial growth and urbanization have resulted in a significant rise in environmental pollution issues, particularly indoor air pollutants. As a result, it is crucial to design and develop technologies and/or catalysts that are not only cost-effective but also promising high performance and practical applicability. However, achieving this goal has been so far remained a challenging task. Herein, a series of transition metal M - TiO2 (M = W, Fe, Mn) nanocrystals was prepared for photocatalytic degradation of volatile organic compounds (VOCs), i.e., toluene. Of the nanocomposites tested, W-TiO2 showed significantly improved photocatalytic activity for VOC degradation under UV irradiation compared to the others. In particular, the optimized W dopant amount of 0.5 wt% resulted in the outstanding degradation performance of toluene (96%) for the obtained W-TiO2(0.5%) nanocomposite. Moreover, W-TiO2(0.5%) nanocomposite exhibited good stability for 32 h working under high toluene concentration (10 ppm) compared to the pristine TiO2. The current work demonstrates the potential usage of M - TiO2 nanocrystals, particularly W-TiO2(0.5%), as a promising photocatalyst for efficient VOCs degradation.


Subject(s)
Air Pollutants , Nanocomposites , Titanium/chemistry , Ultraviolet Rays , Toluene/chemistry , Nanocomposites/chemistry , Catalysis , Air Pollutants/chemistry
19.
Chemosphere ; 351: 141251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253084

ABSTRACT

This study presents the catalytic pyrolysis of microalgae, Chlorella vulgaris (C. vulgaris), using pure CH4 and H2-rich gas evolved from CH4 decomposition on three different HZSM-5 catalysts loaded with Zn, Ga, and Pt, aimed specifically at producing high-value mono-aromatics such as benzene, toluene, ethylbenzene, and xylene (BTEX). In comparison with that for the typical inert N2 environment, a pure CH4 environment increased the bio-oil yield from 32.4 wt% to 37.4 wt% probably due to hydrogen and methyl radical insertion in the bio-oil components. Furthermore, the addition of bimetals further increased bio-oil yield. For example, ZnPtHZ led to a bio-oil yield of 47.7 wt% in pure CH4. ZnGaHZ resulted in the maximum BTEX yield (6.68 wt%), which could be explained by CH4 activation, co-aromatization, and hydrodeoxygenation. The BTEX yield could be further increased to 7.62 wt% when pyrolysis was conducted in H2-rich gas evolved from CH4 decomposition over ZnGaHZ, as rates of aromatization and hydrodeoxygenation were relatively high under this condition. This study experimentally validated that the combination of ZnGaHZ and CH4 decomposition synergistically increases BTEX production using C. vulgaris.


Subject(s)
Chlorella vulgaris , Microalgae , Plant Oils , Polyphenols , Hot Temperature , Pyrolysis , Toluene , Benzene , Xylenes , Catalysis , Zinc , Biofuels
20.
Water Res ; 251: 121170, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38277831

ABSTRACT

In this study, we found that alumina (Al2O3) may improve the degradation of phenolic pollutants by KMnO4 oxidation. In KMnO4/Al2O3 system, the removal efficiency of 2,4-Dibromophenol (2,4-DBP) was increased by 26.5%, and the apparent activation energy was decreased from 44.5 kJ/mol to 30.9 kJ/mol. The mechanism of Al2O3-catalytic was elucidated by electrochemical processes, X-ray photoelectron spectroscopy (XPS) characterization and theoretical analysis that the oxidation potential of MnO4- was improved from 0.46 V to 0.49 V. The improvement was attributed to the formation of coordination bonds between the O atoms in MnO4- and the empty P orbitals of the Al atoms in Al2O3 crystal leading to the even-more electron deficient state of MnO4-. The excellent reusability of Al2O3, the good performance on degradation of 2,4-DBP in real water, the satisfactory degradation of fixed-bed reactor, and the enhanced removal of 6 other phenolic pollutants demonstrated that the KMnO4/Al2O3 system has satisfactory potential industrial application value. This study offers evidence for the improvement of highly-efficient MnO4- oxidation systems.


Subject(s)
Aluminum Oxide , Water Pollutants, Chemical , Aluminum Oxide/chemistry , Oxides/chemistry , Oxidation-Reduction , Manganese Compounds/chemistry , Phenols , Catalysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL