Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Biochemistry ; 60(51): 3868-3878, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34898176

ABSTRACT

Valerena-1,10-diene synthase (VDS) catalyzes the conversion of the universal precursor farnesyl diphosphate into the unusual sesquiterpene valerena-1,10-diene (VLD), which possesses a unique isobutenyl substituent group. In planta, one of VLD's isobutenyl terminal methyl groups becomes oxidized to a carboxylic acid forming valerenic acid (VA), an allosteric modulator of the GABAA receptor. Because a structure-activity relationship study of VA for its modulatory activity is desired, we sought to manipulate the VDS enzyme for the biosynthesis of structurally diverse scaffolds that could ultimately lead to the generation of VA analogues. Using three-dimensional structural homology models, phylogenetic sequence comparisons to well-characterized sesquiterpene synthases, and a substrate-active site contact mapping approach, the contributions of specific amino acid residues within or near the VDS active site to possible catalytic cascades for VLD and other sesquiterpene products were assessed. An essential role of Tyr535 in a germacrenyl route to VLD was demonstrated, while its contribution to a family of other sesquiterpenes derived from a humulyl route was not. No role for Cys415 or Cys452 serving as a proton donor to reaction intermediates in VLD biosynthesis was observed. However, a gatekeeper role for Asn455 in directing farnesyl carbocations down all-trans catalytic cascades (humulyl and germacrenyl routes) versus a cisoid cascade (nerolidyl route) was demonstrated. Altogether, these results have mapped residues that establish a context for the catalytic cascades operating in VDS and future manipulations for generating more structurally constrained scaffolds.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Sesquiterpenes/metabolism , Alkyl and Aryl Transferases/genetics , Amino Acid Sequence , Amino Acid Substitution , Biocatalysis , Catalytic Domain/genetics , Kinetics , Metabolic Networks and Pathways , Models, Molecular , Mutagenesis, Site-Directed , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Structure, Tertiary , Sesquiterpenes/chemistry , Substrate Specificity , Valerian/enzymology , Valerian/genetics
2.
Molecules ; 26(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499015

ABSTRACT

Tyrosinase is an enzyme that plays a crucial role in the melanogenesis of humans and the browning of food products. Thus, tyrosinase inhibitors that are useful to the cosmetic and food industries are required. In this study, we have used evolutionary chemical binding similarity (ECBS) to screen a virtual chemical database for human tyrosinase, which resulted in seven potential tyrosinase inhibitors confirmed through the tyrosinase inhibition assay. The tyrosinase inhibition percentage for three of the new actives was over 90% compared to 61.9% of kojic acid. From the structural analysis through pharmacophore modeling and molecular docking with the human tyrosinase model, the pi-pi interaction of tyrosinase inhibitors with conserved His367 and the polar interactions with Asn364, Glu345, and Glu203 were found to be essential for tyrosinase-ligand interactions. The pharmacophore features and the docking models showed high consistency, revealing the possible essential binding interactions of inhibitors to human tyrosinase. We have also presented the activity cliff analysis that successfully revealed the chemical features related to substantial activity changes found in the new tyrosinase inhibitors. The newly identified inhibitors and their structure-activity relationships presented here will help to identify or design new human tyrosinase inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Catalytic Domain/genetics , Drug Design , Drug Evaluation, Preclinical , Humans , In Vitro Techniques , Ligands , Molecular Docking Simulation , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/genetics , Pyrones/chemistry , Pyrones/pharmacology , Small Molecule Libraries , Structural Homology, Protein , Structure-Activity Relationship , User-Computer Interface
3.
Curr Drug Discov Technol ; 18(3): 423-436, 2021.
Article in English | MEDLINE | ID: mdl-32357815

ABSTRACT

BACKGROUND: Different parts of Psidium guajava are consumed as food and used for medicinal purposes around the world. Although studies have reported their antiproliferative effects via different biochemical mechanisms, their modulatory effects on epigenetic modification of DNA molecules via histone deacetylases (HDACs) are largely unknown. OBJECTIVE: This study was carried out to investigate the histone deacetylase 6 (HDAC6) and histone deacetylase 10 (HDAC10) binding propensity of guava-derived compounds, using in silico methods, in other to identify compounds with HDAC inhibitory potentials. METHODS: Fifty-nine guava-derived compounds and apicidin, a standard HDAC inhibitor, were docked with HDAC6 and HDAC10 using AutodockVina after modeling (SWISS-MODEL server) and validating (ERRAT and VERIFY-3D) the structure of HDAC10. Molecular interactions between the ligands and the HDACs were viewed with Discovery Studio Visualizer. Prediction of binding sites, surface structural pockets, active sites, area, shape and volume of every pocket and internal cavities of proteins was done using Computed Atlas of Surface Topography of proteins (CASTp) server, while absorption, distribution, metabolism, and excretion (ADME) study of notable compounds was done using Swiss online ADME web tool. RESULTS: 2α-hydroxyursolic acid, asiatic acid, betulinic acid, crategolic acid, guajadial A and B, guavacoumaric acid, guavanoic acid, ilelatifol D, isoneriucoumaric acid, jacoumaric acid, oleanolic acid, psiguadial A, B, and C demonstrated maximum interaction with the selected HDACs. ADME studies revealed that although isoneriucoumaric and jacoumaric acid ranked very high as HDAC inhibitors, they both violated the Lipinski's rule of 5. CONCLUSION: This study identified 13 drugable guava-derived compounds that can be enlisted for further studies as potential HDAC6 and HDAC10 inhibitors.


Subject(s)
Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Neoplasms/drug therapy , Plant Extracts/pharmacology , Psidium/chemistry , Catalytic Domain/drug effects , Catalytic Domain/genetics , Drug Discovery/methods , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/genetics , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/genetics , Humans , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Protein Binding/genetics , Sequence Homology, Amino Acid
4.
Interdiscip Sci ; 12(3): 335-348, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32617855

ABSTRACT

Most recently, an outbreak of severe pneumonia caused by the infection of SARS-CoV-2, a novel coronavirus first identified in Wuhan, China, imposes serious threats to public health. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Therefore, the role and inhibition of nsp12 are indispensable. A cryo-EM structure of RdRp from SARs-CoV-2 was used to identify novel drugs from Northern South African medicinal compounds database (NANPDB) by using computational virtual screening and molecular docking approaches. Considering Remdesivir as the control, 42 compounds were shortlisted to have docking score better than Remdesivir. The top 5 hits were validated by using molecular dynamics simulation approach and free energy calculations possess strong inhibitory properties than the Remdesivir. Thus, this study paved a way for designing novel drugs by decoding the architecture of an important enzyme and its inhibition with compounds from natural resources. This disclosing of necessary knowledge regarding the screening and the identification of top hits could help to design effective therapeutic candidates against the coronaviruses and design robust preventive measurements.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Biological Products/pharmacology , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/chemistry , Betacoronavirus/genetics , Biological Products/chemistry , COVID-19 , Catalytic Domain/genetics , Computer Simulation , Coronavirus Infections/epidemiology , Coronavirus RNA-Dependent RNA Polymerase , Databases, Pharmaceutical , Drug Evaluation, Preclinical , Genome, Viral , Host Microbial Interactions/drug effects , Humans , Ligands , Molecular Docking Simulation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
5.
Biomed Res Int ; 2020: 3064290, 2020.
Article in English | MEDLINE | ID: mdl-32258111

ABSTRACT

A full-length cDNA encoding digestive lipase (SmDL) was cloned from the pancreas of the smooth-hound (Mustelus mustelus). The obtained cDNA was 1350 bp long encoding 451 amino acids. The deduced amino acid sequence has high similarity with known pancreatic lipases. Catalytic triad and disulphide bond positions are also conserved. According to the established phylogeny, the SmDL was grouped with those of tuna and Sparidae lipases into one fish digestive lipase cluster. The recently purified enzyme shows no dependence for bile salts and colipase. For this, the residue-level interactions between lipase-colipase are yet to be clearly understood. The structural model of the SmDL was built, and several dissimilarities were noticed when analyzing the SmDL amino acids corresponding to those involved in HPL binding to colipase. Interestingly, the C-terminal domain of SmDL which holds the colipase shows a significant role for colipase interaction. This is apt to prevent the interaction between fish lipase and the pancreatic colipase which and can provide more explanation on the fact that the classical colipase is unable to activate the SmDL.


Subject(s)
Colipases/genetics , Elasmobranchii/genetics , Lipase/genetics , Pancreas/enzymology , Amino Acid Sequence/genetics , Amino Acids/chemistry , Amino Acids/genetics , Animals , Bile Acids and Salts/genetics , Catalytic Domain/genetics , Colipases/chemistry , DNA, Complementary/chemistry , DNA, Complementary/genetics , Digestion/genetics , Fishes/genetics , Lipase/chemistry , Pancreas/chemistry , Triglycerides/chemistry , Triglycerides/genetics
6.
Interdiscip Sci ; 12(1): 32-43, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31309397

ABSTRACT

Ent-copalyl diphosphate synthase controls the biosynthesis of gibberellin plant hormones, which in turn coordinate the expression of numerous enzymes. Some gibberellin-dependent genes encode enzymes coordinating the biosynthesis of tanshinones: diterpene derivatives with broad medical applications. New biotechnological approaches, such as metabolic engineering using naturally occurring or mutated enzymes, have been proposed to meet the growing demand for tanshinones which is currently met by the Chinese medicinal plant Salvia miltiorrhiza Bunge. These mutants may be prepared by directed evolution, saturation mutagenesis or rational enzyme design. In the presented paper, 15,257 non-synonymous variants of Arabidopsis thaliana ent-copalyl diphosphate synthase were obtained using the SNAP2 tool. The obtained forms were screened to isolate variants with potentially improved biological functions. A group of 455 mutants with potentially improved stability was isolated and subjected to further screening on the basis of ligand-substrate affinity, and both secondary structure and active site structure stability. Finally, a group of six single mutants was obtained, which were used to construct double mutants with potentially improved stability and ligand affinity. The potential influence of single mutations on protein stability and ligand affinity was evaluated by double mutant cycle analysis. Finally, the procedure was validated by in silico assessment of the experimentally verified enzyme mutants with reduced enzymatic activity.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Plant Proteins/metabolism , Alkyl and Aryl Transferases/genetics , Amino Acid Sequence , Catalytic Domain/genetics , Catalytic Domain/physiology , Mutagenesis/genetics , Mutagenesis/physiology , Phylogeny , Plant Proteins/genetics
7.
Free Radic Biol Med ; 145: 321-329, 2019 12.
Article in English | MEDLINE | ID: mdl-31580947

ABSTRACT

Peroxiredoxins (Prxs), scavenge cellular peroxides by forming recyclable disulfides but under high oxidative stress, hyperoxidation of their active-site Cys residue results in loss of their peroxidase activity. Saccharomyces cerevisiae deficient in human Prx (hPrx) orthologue TSA1 show growth defects under oxidative stress. They can be complemented with hPRXI but not by hPRXII, but it is not clear how the disulfide and hyperoxidation states of the hPrx vary in yeast under oxidative stress. To understand this, we used oxidative-stress sensitive tsa1tsa2Δ yeast strain to express hPRXI or hPRXII. We found that hPrxI in yeast exists as a mixture of disulfide-linked dimer and reduced monomer but becomes hyperoxidized upon elevated oxidative stress as analyzed under denaturing conditions (SDS-PAGE). In contrast, hPrxII was present predominantly as the disulfide in unstressed cells and readily converted to its hyperoxidized, peroxidase-inactive form even with mild oxidative stress. Interestingly, we found that plant extracts containing polyphenol antioxidants provided further protection against the growth defects of the tsa1tsa2Δ strain expressing hPrx and preserved the peroxidase-active forms of the Prxs. The extracts also helped to protect against hyperoxidation of hPrxs in HeLa cells. Based on these findings we can conclude that resistance to oxidative stress of yeast cells expressing individual hPrxs requires the hPrx to be maintained in a redox state that permits redox cycling and peroxidase activity. Peroxidase activity decreases as the hPrx becomes hyperoxidized and the limited protection by hPrxII compared with hPrxI can be explained by its greater sensitivity to hyperoxidation.


Subject(s)
Homeodomain Proteins/genetics , Oxidative Stress/genetics , Peroxidases/genetics , Saccharomyces cerevisiae Proteins/genetics , Antioxidants/metabolism , Catalytic Domain/genetics , Cysteine/metabolism , Disulfides/metabolism , HeLa Cells , Homeodomain Proteins/metabolism , Humans , Hydrogen Peroxide/metabolism , Oxidation-Reduction/drug effects , Peroxidases/metabolism , Peroxides/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
Sci Rep ; 9(1): 8059, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147608

ABSTRACT

Catechol O-methyltransferase (COMT) is widely distributed in nature and installs a methyl group onto one of the vicinal hydroxyl groups of a catechol derivative. Enzymes belonging to this family require two cofactors for methyl transfer: S-adenosyl-l-methionine as a methyl donor and a divalent metal cation for regiospecific binding and activation of a substrate. We have determined two high-resolution crystal structures of Rv0187, one of three COMT paralogs from Mycobacterium tuberculosis, in the presence and absence of cofactors. The cofactor-bound structure clearly locates strontium ions and S-adenosyl-l-homocysteine in the active site, and together with the complementary structure of the ligand-free form, it suggests conformational dynamics induced by the binding of cofactors. Examination of in vitro activities revealed promiscuous substrate specificity and relaxed regioselectivity against various catechol-like compounds. Unexpectedly, mutation of the proposed catalytic lysine residue did not abolish activity but altered the overall landscape of regiospecific methylation.


Subject(s)
Bacterial Proteins/metabolism , Catechol O-Methyltransferase/metabolism , Mycobacterium tuberculosis/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/ultrastructure , Catalytic Domain/genetics , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/isolation & purification , Catechol O-Methyltransferase/ultrastructure , Coenzymes/metabolism , Crystallography, X-Ray , Enzyme Assays , Lysine/genetics , Lysine/metabolism , Methylation , Models, Molecular , Mutation , Mycobacterium tuberculosis/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , S-Adenosylhomocysteine/metabolism , Strontium/metabolism , Substrate Specificity/genetics
9.
FASEB J ; 33(6): 7168-7179, 2019 06.
Article in English | MEDLINE | ID: mdl-30848931

ABSTRACT

Polymerase γ catalytic subunit (POLG) gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting POLG are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus erythro-9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested POLG-mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.


Subject(s)
DNA Polymerase gamma/deficiency , DNA, Mitochondrial/metabolism , Deoxyribonucleotides/pharmacology , Fibroblasts/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adult , Catalytic Domain/genetics , Cells, Cultured , DNA Polymerase gamma/genetics , DNA Replication/drug effects , DNA, Mitochondrial/genetics , Deoxyribonucleotides/metabolism , Ethidium/pharmacology , Female , Fibroblasts/drug effects , Genotype , Humans , Male , Mitochondria, Muscle/genetics , Models, Molecular , Mutation, Missense , Phenotype , Point Mutation , Protein Conformation , Real-Time Polymerase Chain Reaction , Sequence Deletion
10.
Acc Chem Res ; 52(3): 585-595, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30735358

ABSTRACT

Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin-(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L-1 in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo. With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of "endowing organometallic chemistry with a genetic memory." With this goal in mind, we have identified E. coli's periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype-genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C-H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems.


Subject(s)
Biotin/chemistry , Enzymes/chemistry , Metalloproteins/chemistry , Streptavidin/chemistry , Catalysis , Catalytic Domain/genetics , Directed Molecular Evolution , Enzymes/genetics , Escherichia coli/genetics , HEK293 Cells , Humans , Metalloproteins/genetics , Streptavidin/genetics
11.
Chembiochem ; 20(9): 1133-1138, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30618116

ABSTRACT

Histone demethylases play a critical role in mammalian gene expression by removing methyl groups from lysine residues in degree- and site-specific manner. To specifically interrogate members and isoforms of this class of enzymes, we have developed demethylase variants with an expanded active site. The mutant enzymes are capable of performing lysine demethylation with wild-type proficiency, but are sensitive to inhibition by cofactor-competitive molecules embellished with a complementary steric "bump". The selected inhibitors show more than 20-fold selectivity over the wild-type demethylase, thus overcoming issues typical to pharmacological and genetic approaches. The mutant-inhibitor pairs are shown to act on a physiologically relevant full-length substrate. By engineering a conserved amino acid to achieve member-specific perturbation, this study provides a general approach for studying histone demethylases in diverse cellular processes.


Subject(s)
Enzyme Inhibitors/chemistry , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Amino Acids/chemistry , Biocatalysis , Catalytic Domain/genetics , Demethylation , Histones/chemistry , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/genetics , Molecular Structure , Mutation , Oxalates/chemistry , Protein Engineering/methods , Substrate Specificity
12.
PLoS Comput Biol ; 14(4): e1006101, 2018 04.
Article in English | MEDLINE | ID: mdl-29659563

ABSTRACT

The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes.


Subject(s)
Amino Acyl-tRNA Synthetases/classification , Amino Acyl-tRNA Synthetases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/genetics , Arginine/chemistry , Base Sequence , Catalytic Domain/genetics , Codon/genetics , Computational Biology , Evolution, Molecular , Genetic Variation , Humans , Ligands , Models, Molecular , Mutagenesis , Protein Conformation , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism
13.
J Biosci Bioeng ; 125(6): 644-648, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29366718

ABSTRACT

An ATP regeneration system is advantageous for industrial processes that are coupled with ATP-dependent enzymes. For ATP regeneration from AMP, a few methods have been reported; however, these methods employ multiple enzymes. To establish an ATP regeneration system using a single enzyme, we focused on class III polyphosphate kinase 2 (class III PPK2) that can synthesize ATP from AMP and polyphosphate. We constructed an ATP regeneration system from AMP using Deipr_1912, a class III PPK2 from Deinococcus proteolyticus NBRC 101906T, coupled with aminoacyl proline (Xaa-Pro) synthesis catalyzed by the adenylation domain of tyrocidine synthetase A (TycA-A). Using this system, 0.87 mM of l-Trp-l-Pro was successfully synthesized from AMP after 72 h. Farther, addition of inorganic pyrophosphatase from Escherichia coli to the coupling reaction increased the reaction rate by 14-fold to yield 6.2 mM l-Trp-l-Pro. When the coupling reaction was applied to whole-cell reactions in E. coli BL21(DE3) pepQ-putA-, ATP was successfully regenerated from AMP by Deipr_1912, and 6.7 mM of l-Trp-l-Pro was produced after 24 h with the supplementation of 10 mM AMP. In addition, by altering the substrate amino acid of TycA-A, not only l-Trp-l-Pro, but also various other l-Xaa-l-Pro (Xaa = Val, Leu, Met, or Tyr) were produced using the whole-cell reaction incorporating ATP regeneration. Therefore, a production method for Xaa-Pro employing the adenylation domain of a nonribosomal peptide synthetase was established by introducing an ATP regeneration system that utilizes class III PPK2 with pyrophosphatase.


Subject(s)
Adenosine Triphosphate/metabolism , Amino Acids/metabolism , Aminoacylation , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Proline/metabolism , Catalytic Domain/genetics , Cloning, Molecular , Dipeptides/metabolism , Escherichia coli/metabolism , Peptide Synthases/genetics , Phosphotransferases (Phosphate Group Acceptor)/genetics , Proline/analogs & derivatives , Protein Domains/genetics , Protein Engineering , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
14.
Sci Rep ; 6: 38413, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929074

ABSTRACT

Understanding the dynamics of the key pectinase, polygalacturonase, and improving its thermotolerance and catalytic efficiency are of importance for the cost-competitive bioconversion of pectic materials. By combining structure analysis and molecular dynamics (MD) simulations, eight mutagenesis sites having the potential to form cation-π interactions were identified in the widely used fungal endo-polygalacturonase PG63. In comparison to the wild-type, three single mutants H58Y, T71Y and T304Y showed improved thermostability (the apparent Tms increased by 0.6-3.9 °C) and catalytic efficiency (by up to 32-fold). Chromatogram analysis of the hydrolysis products indicated that a larger amount of shorter sugars were released from the polygalacturonic acid by these three mutants than by the wild-type. MD analysis of the enzyme-substrate complexes illustrated that the mutants with introduced cation-π interaction have modified conformations of catalytic crevice, which provide an enviable environment for the catalytic process. Moreover, the lower plasticity of T3 loop 2 at the edge of the subsite tunnel appears to recruit the reducing ends of oligogalacturonide into the active site tunnel and initiates new hydrolysis reactions. This study demonstrates the importance of cation-π interaction in protein conformation and provides a realistic strategy to enhance the thermotolerance and catalytic performance of endo-polygalacturonases.


Subject(s)
Mutagenesis/genetics , Polygalacturonase/chemistry , Polygalacturonase/genetics , Protein Conformation , Amino Acid Sequence/genetics , Catalysis , Catalytic Domain/genetics , Cations , Kinetics , Molecular Dynamics Simulation , Pectins/chemistry , Pectins/metabolism , Penicillium/chemistry , Penicillium/enzymology , Polygalacturonase/metabolism , Thermotolerance
15.
Proc Natl Acad Sci U S A ; 113(48): 13756-13761, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27856757

ABSTRACT

MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pKa above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH), Formycin A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.


Subject(s)
Formycins/chemistry , Helicobacter pylori/enzymology , Purine-Nucleoside Phosphorylase/chemistry , S-Adenosylhomocysteine/chemistry , Adenine/analogs & derivatives , Adenine/chemistry , Catalytic Domain/genetics , Crystallography, X-Ray , Deoxyadenosines/chemistry , Helicobacter pylori/chemistry , Hydrogen Bonding , Models, Molecular , Neutrons , Protein Binding , Protons , Purine-Nucleoside Phosphorylase/genetics , Pyrrolidines/chemistry , Substrate Specificity , Thionucleosides/chemistry
16.
J Med Genet ; 53(10): 710-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27287393

ABSTRACT

BACKGROUND: Citrullinemia type 1 is an autosomal-recessive urea cycle disorder caused by mutations in the ASS1 gene and characterised by increased plasma citrulline concentrations. Of the ∼90 argininosuccinate synthetase (ASS) missense mutations reported, 21 map near the substrate (aspartate or citrulline) binding site, and thus are potential kinetic mutations whose decreased activities could be amenable to substrate supplementation. This article aims at characterising these 21 ASS mutations to prove their disease-causing role and to test substrate supplementation as a novel therapeutic approach. METHODS: We used an Escherichia coli expression system to study all potentially kinetic ASS mutations. All mutant enzymes were nickel-affinity purified, their activity and kinetic parameters were measured using tandem mass spectrometry and their thermal stability using differential scanning fluorimetry. Structural rationalisation of the effects of these mutations was performed. RESULTS: Of the characterised mutants, 13 were totally inactive while 8 exhibited decreased affinity for aspartate and citrulline. The activity of these eight kinetic mutations could be rescued to ∼10-99% of the wild-type using high l-aspartate concentrations. CONCLUSIONS: Substrate supplementation raised in vitro the activity of eight citrullinemia type 1 mutations with reduced affinity for aspartate. As a direct translation of these results to the clinics, we propose to further evaluate the use of oxaloacetate, a nitrogen-free aspartate precursor and already available medical food (anti-ageing and brain stimulating, not considered as a drug by the US Food and Drug Administration), in patients with citrullinemia type 1 with decreased aspartate affinity. Although only patients with kinetic mutations would benefit, oxaloacetate could offer a safe novel treatment.


Subject(s)
Argininosuccinate Synthase/genetics , Aspartic Acid/therapeutic use , Citrullinemia/enzymology , Argininosuccinate Synthase/metabolism , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Catalytic Domain/genetics , Citrulline/metabolism , Citrullinemia/drug therapy , Citrullinemia/genetics , Humans , Kinetics , Mutation, Missense
17.
FEBS J ; 282(16): 3060-74, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25619330

ABSTRACT

UNLABELLED: The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have identified an alternative gatekeeper residue that similarly controls dioxygen reactivity in the grass pollen allergen Phl p 4, a member of this superfamily that has glucose dehydrogenase activity and the highest redox potential measured in a flavoenzyme. A substitution at the alternative gatekeeper site (I153V) transformed the enzyme into an efficient oxidase by increasing dioxygen reactivity by a factor of 60,000. An inverse exchange (V169I) in the structurally related berberine bridge enzyme (BBE) decreased its dioxygen reactivity by a factor of 500. Structural and biochemical characterization of these and additional variants showed that our model enzymes possess a cavity that binds an anion and resembles the 'oxyanion hole' in the proximity of the flavin ring. We showed also that steric control of access to this site is the most important parameter affecting dioxygen reactivity in BBE-like enzymes. Analysis of flavin-dependent oxidases from other superfamilies revealed similar structural features, suggesting that dioxygen reactivity may be governed by a common mechanistic principle. DATABASE: Structural data are available in PDB database under the accession numbers 4PVE, 4PVH, 4PVJ, 4PVK, 4PWB, 4PWC and 4PZF.


Subject(s)
Oxygenases/chemistry , Oxygenases/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Allergens/chemistry , Allergens/genetics , Allergens/metabolism , Allosteric Regulation , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Catalytic Domain/genetics , Crystallography, X-Ray , Flavin-Adenine Dinucleotide/metabolism , Flavins/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Oxidation-Reduction , Oxidoreductases, N-Demethylating/chemistry , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Oxygen/metabolism , Oxygenases/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Poaceae/enzymology , Poaceae/genetics , Poaceae/immunology , Pollen/enzymology , Pollen/genetics , Pollen/immunology , Protein Engineering , Sequence Homology, Amino Acid
18.
Antimicrob Agents Chemother ; 59(1): 450-60, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25385095

ABSTRACT

In Candida albicans, the ERG11 gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations in ERG11 that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. Although ERG11 mutations have been observed in clinical isolates, the specific contributions of individual ERG11 mutations to azole resistance in C. albicans have not been widely explored. We sequenced ERG11 in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation in ERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinct ERG11 alleles were recovered, with 10 ERG11 alleles containing a single amino acid substitution. We then characterized 19 distinct ERG11 alleles by introducing them into the wild-type azole-susceptible C. albicans SC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥ 4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations in ERG11 are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities.


Subject(s)
14-alpha Demethylase Inhibitors/therapeutic use , Azoles/therapeutic use , Candida albicans/drug effects , Candidiasis/drug therapy , Sterol 14-Demethylase/genetics , Amino Acid Substitution , Antifungal Agents/therapeutic use , Candidiasis/microbiology , Catalytic Domain/genetics , Drug Resistance, Fungal , Fluconazole/therapeutic use , Humans , Itraconazole/therapeutic use , Microbial Sensitivity Tests , Molecular Sequence Data , Voriconazole/therapeutic use
19.
FEBS J ; 281(17): 3855-68, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25040801

ABSTRACT

Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues.


Subject(s)
Polyketide Synthases/metabolism , Acyl Coenzyme A/metabolism , Biopolymers/biosynthesis , Carotenoids/biosynthesis , Catalytic Domain/genetics , Hypericum/enzymology , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Phylogeny , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Substrate Specificity
20.
Biochemistry ; 53(12): 1916-24, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24611875

ABSTRACT

Genetic code expansion has provided the ability to site-specifically incorporate a multitude of noncanonical amino acids (ncAAs) into proteins for a wide variety of applications, but low ncAA incorporation efficiency can hamper the utility of this powerful technology. When investigating proteins containing the post-translational modification 3-nitro-tyrosine (nitroTyr), we developed second-generation amino-acyl tRNA synthetases (RS) that incorporate nitroTyr at efficiencies roughly an order of magnitude greater than those previously reported and that advanced our ability to elucidate the role of elevated cellular nitroTyr levels in human disease (e.g., Franco, M. et al. Proc. Natl. Acad. Sci. U.S.A 2013 , 110 , E1102 ). Here, we explore the origins of the improvement achieved in these second-generation RSs. Crystal structures of the most efficient of these synthetases reveal the molecular basis for the enhanced efficiencies observed in the second-generation nitroTyr-RSs. Although Tyr is not detectably incorporated into proteins when expression media is supplemented with 1 mM nitroTyr, a major difference between the first- and second-generation RSs is that the second-generation RSs have an active site more compatible with Tyr binding. This feature of the second-generation nitroTyr-RSs appears to be the result of using less stringent criteria when selecting from a library of mutants. The observation that a different selection strategy performed on the same library of mutants produced nitroTyr-RSs with dramatically improved efficiencies suggests the optimization of established selection protocols could lead to notable improvements in ncAA-RS efficiencies and thus the overall utility of this technology.


Subject(s)
Tyrosine-tRNA Ligase/chemistry , Tyrosine-tRNA Ligase/metabolism , Tyrosine/chemistry , Catalytic Domain/genetics , Cell Line , Crystallography, X-Ray , Genetic Code , Humans , Mutation , Protein Structure, Secondary , Tyrosine/genetics , Tyrosine/metabolism , Tyrosine-tRNA Ligase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL