Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Transl Med ; 22(1): 132, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310289

ABSTRACT

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Subject(s)
Cell-Free Nucleic Acids , Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Phosphatidylinositol 3-Kinases/genetics , Drug Evaluation, Preclinical , Proto-Oncogene Proteins p21(ras)/genetics , Early Detection of Cancer , Liquid Biopsy , Phosphoinositide-3 Kinase Inhibitors , Biomarkers , Class I Phosphatidylinositol 3-Kinases/genetics , Mutation/genetics
2.
PLoS One ; 19(1): e0295813, 2024.
Article in English | MEDLINE | ID: mdl-38194422

ABSTRACT

OBJECTIVE: To explore their association with the development of diabetes retinopathy (DR), single nucleotide polymorphism (SNP) mutations were screened out by high-throughput sequencing and validated in patients diagnosed with DR. To understand the role of PIK3CA in the pathogenesis of DR and explore the relationship between PIK3CA,phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR),and DR, the effect of PIK3CA.rs17849079 mutation was investigated in a DR cell model. METHODS: Twelve patients diagnosed with DR at the Qinghai Provincial People's Hospital from September 2020 to June 2021 were randomly selected as the case group, while 12 healthy subjects of similar age and gender who underwent physical examination in Qinghai Provincial People's Hospital physical examination center during the same period were randomly selected as the control group. Blood samples (2 mL) were collected from both groups using EDTA anticoagulant blood collection vessels and frozen at -20°C for future analysis. SNP mutations were detected by high-throughput sequencing, and the shortlisted candidates were subjected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The detected SNP candidates were verified by expanding the sample size (first validation: 56 patients in the case group and 58 controls; second validation: 157 patients in the case group and 96 controls). A lentivirus vector carrying mutated or wild-type PIK3CA.rs17849079 was constructed. ARPE-19 cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS) to establish a DR cell model. PIRES2-PIK3CA-MT and PIRES2-PIK3CA-WT vectors were transfected into DR model cells, which were categorized into control, mannitol, model, empty vector, PIK3CA wild-type, and PIK3CA mutant-type groups. Cell activity was detected by the cell counting kit (CCK)-8 assay, and cellular apoptosis was evaluated by flow cytometry. Glucose concentration and levels of cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1ß were detected using enzyme-linked immunosorbent assay kits. The expression of PIK3CA, AKT1, mTOR, and VEGF genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR), while the expression of PI3K, p-PI3K, AKT1, p-AKT1, mTOR, p-mTOR, and VEGF proteins was detected by western blotting. RESULTS: The mutated SNPs were mainly enriched in the PI3K/AKT pathway, calcium ion pathway, and glutamatergic synaptic and cholinergic synaptic signaling pathways. Seven SNPs, including PRKCE.rs1533476, DNAH11.rs10485983, ERAP1.rs149481, KLHL1.rs1318761, APOBEC3C.rs1969643, FYN.rs11963612, and KCTD1.rs7240205, were not related to the development of DR. PIK3CA.rs17849079 was prone to C/T mutation. The risk of DR increased with the presence of the C allele and decreased in the presence of the T allele. High glucose induced the expression of PIK3CA and VEGF mRNAs as well as the expression of PI3K, p-PI3K, p-AKT1, p-mTOR, and VEGF proteins in ARPE-19 cells, which led to secretion of inflammatory factors TNF-αand IL-1, cell apoptosis, and inhibition of cell proliferation. The PIK3CA.rs17849079 C allele accelerated the progression of DR. These biological effects were inhibited when the C allele of PIK3CA.rs17849079 was mutated to T allele. CONCLUSION: The mutated SNP sites in patients with DR were mainly enriched in PI3K/AKT, calcium ion, and glutamatergic synaptic and cholinergic synaptic signaling pathways. The rs17849079 allele of PIK3CA is prone to C/T mutation where the C allele increases the risk of DR. High glucose activates the expression of PIK3CA and promotes the phosphorylation of PI3K, which leads to the phosphorylation of AKT and mTOR. These effects consequently increase VEGF expression and accelerate the development of DR. The C to T allele mutation in PIK3CA.rs17849079 can play a protective role and reduce the risk of DR.


Subject(s)
Diabetes Mellitus , Retinal Diseases , Humans , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Calcium , Vascular Endothelial Growth Factor A , Class I Phosphatidylinositol 3-Kinases/genetics , TOR Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha , Cholinergic Agents , Glucose , Aminopeptidases , Minor Histocompatibility Antigens
3.
J Ethnopharmacol ; 323: 117729, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38190953

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) is a traditional medicinal herb with a long history of medicinal use. DH has been recorded as protecting the gastrointestinal function. Modern pharmacology research shows that DH regulates intestinal flora, intestinal mucosal immunity, gastrointestinal peristalsis and secretion of digestive juices. At the same time, some studies have shown that DH has a good therapeutic effect on ulcerative colitis, but its mechanism of action has not been fully elucidated. AIMS OF THIS STUDY: To investigate the mechanism and effect of Dendrobium huoshanense C. Z. Tang et S. J. Cheng (DH) in the treatment of ulcerative colitis (UC) by combining network pharmacology and in vivo experimental validation. METHODS: A network pharmacology approach was used to perform component screening, target prediction, PPI network interaction analysis, GO and KEGG enrichment analysis to initially predict the mechanism of DH treatment for UC. Then, the mechanism was validated with the UC mouse model induced by 3% DSS. RESULTS: Based on the network pharmacological analysis, a comprehensive of 101 active components were identified, with 19 of them potentially serving as the crucial elements in DH's effectiveness against UC treatment. Additionally, the study revealed 314 potential core therapeutic targets along with the top 5 key targets: SRC, STAT3, AKT1, HSP90AA1, and PIK3CA. In experiments conducted on live mice with UC, DH was found to decrease the levels of IL-6 and TNF-α in the blood, while increasing the levels of IL-10 and TGF-ß. This led to notable improvements in colon length, injury severity, and an up-regulation of SRC, STAT3, HSP90AA1, PIK3CA, p-AKT1 and PI3K/AKT signaling pathway expression in the colon tissue. CONCLUSIONS: In this study, the active components and main targets of DH for UC treatment were initially forecasted, and the potential mechanism was investigated through network pharmacology. These findings offer an experimental foundation for the clinical utilization of DH.


Subject(s)
Colitis, Ulcerative , Dendrobium , Drugs, Chinese Herbal , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Network Pharmacology , Phosphatidylinositol 3-Kinases , Class I Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation
4.
J Ethnopharmacol ; 323: 117667, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38159821

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Stephania cephalantha Hayata is an important traditional medicinal plant widely used in traditional medicine to treat cancer. Cepharanthine (CEP) was extracted from the roots of Stephania cephalantha Hayata. It has been found to exhibit anticancer activity in different types of cancer cells. Nevertheless, the activity of CEP against nasopharyngeal carcinoma (NPC) and its underlying mechanism warrant further investigation. AIMS OF THE STUDY: NPC is an invasive and highly metastatic malignancy that affects the head and neck region. This research aimed to investigate the pharmacological properties and underlying mechanism of CEP against NPC, aiming to offer novel perspectives on treating NPC using CEP. MATERIALS AND METHODS: In vitro, the pharmacological activity of CEP against NPC was evaluated using the CCK-8 assay. To predict and elucidate the anticancer mechanism of CEP against NPC, we employed network pharmacology, conducted molecular docking analysis, and performed Western blot experiments. In vivo validation was performed through a nude mice xenograft model of human NPC, Western blot and immunohistochemical (IHC) assays to confirm pharmacological activity and the mechanism. RESULTS: In a dose-dependent manner, the proliferation and clonogenic capacity of NPC cells were significantly inhibited by CEP. Additionally, NPC cell migration was suppressed by CEP. The results obtained from network pharmacology experiments revealed that anti-NPC effect of CEP was associated with 8 core targets, including EGFR, AKT1, PIK3CA, and mTOR. By performing molecular docking, the binding capacity of CEP to the candidate core proteins (EGFR, AKT1, PIK3CA, and mTOR) was predicted, resulting in docking energies of -10.0 kcal/mol for EGFR, -12.4 kcal/mol for PIK3CA, -10.8 kcal/mol for AKT1, and -8.6 kcal/mol for mTOR. The Western blot analysis showed that CEP effectively suppressed the expression of EGFR and the phosphorylation levels of downstream signaling proteins, including PI3K, AKT, mTOR, and ERK. After CEP intervention, a noteworthy decrease in tumor size, without inducing any toxicity, was observed in NPC xenograft nude mice undergoing in vivo treatment. Additionally, IHC analysis demonstrated a significant reduction in the expression levels of EGFR and Ki-67 following CEP treatment. CONCLUSION: CEP exhibits significant pharmacological effects on NPC, and its mechanistic action involves restraining the activation of the EGFR/PI3K/AKT pathway. CEP represents a promising pharmaceutical agent for addressing and mitigating NPC.


Subject(s)
Benzodioxoles , Benzylisoquinolines , Nasopharyngeal Neoplasms , Proto-Oncogene Proteins c-akt , Stephania , Animals , Mice , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Molecular Docking Simulation , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Network Pharmacology , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Class I Phosphatidylinositol 3-Kinases/therapeutic use , ErbB Receptors
5.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5365-5376, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114126

ABSTRACT

The present study aimed to explore the underlying mechanism of Wuling Capsules in the treatment of hepatic fibrosis(HF) through network pharmacology, molecular docking, and animal experiments. Firstly, the chemical components and targets of Wuling Capsules against HF were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicines Integrated Database(TCMID), GeneCards, and literature retrieval. The protein-protein interaction(PPI) network analysis was carried out on the common targets by STRING database and Cytoscape 3.9.1 software, and the core targets were screened, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. Enrichment analysis was conducted on the core targets and the "drug-core component-target-pathway-disease" network was further constructed. Subsequently, molecular docking between core components and core targets was conducted using AutoDock Vina software to predict the underlying mechanism of action against HF. Finally, an HF model induced by CCl_4 was constructed in rats, and the general signs and liver tissue morphology were observed. HE and Masson staining were used to analyze the liver tissue sections. The effects of Wuling Capsules on the levels of inflammatory factors, hydroxyproline(HYP) levels, and core targets were analyzed by ELISA, RT-PCR, etc. A total of 445 chemical components of Wuling Capsules were screened, corresponding to 3 882 potential targets, intersecting with 1 240 targets of HF, and 47 core targets such as TNF, IL6, INS, and PIK3CA were screened. GO and KEGG enrichment analysis showed that the core targets mainly affected the process of cell stimulation response and metabolic regulation, involving cancer, PI3K-Akt, MAPK, and other signaling pathways. Molecular docking showed that the core components of Wuling Capsules, such as lucidenic acid K, ganoderic acid B, lucidenic acid N, saikosaponin Q2, and neocryptotanshinone, had high affinities with the core targets, such as TNF, IL6 and PIK3CA. Animal experiments showed that Wuling Capsules could reduce fat vacuole, inflammatory infiltration, and collagen deposition in rat liver, decrease the levels of inflammatory cytokines TNF-α, IL-6, and HYP, and downregulated the expressions of PI3K and Akt mRNA. This study suggests that the anti-HF effect of Wuling Capsules may be achieved by regulating the PI3K-Akt signaling pathway, reducing the levels of TNF-α and IL-6 inflammatory factors, and inhibiting the excessive deposition of collagen.


Subject(s)
Animal Experimentation , Drugs, Chinese Herbal , Animals , Rats , Interleukin-6 , Network Pharmacology , Tumor Necrosis Factor-alpha , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Medicine, Chinese Traditional , Capsules , Class I Phosphatidylinositol 3-Kinases , Collagen , Drugs, Chinese Herbal/pharmacology
6.
Medicine (Baltimore) ; 102(47): e36179, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38013375

ABSTRACT

BACKGROUND: Ischemic stroke (IS) is affected by a wide range of factors and has certain treatment limitations. Studies have reported that compound musk injection (CMI) is effective in the treatment of IS, however, its mechanism of action is still unclear. METHODS: The main active ingredients in CMI were retrieved from HERB, TCMSP and BATMAN databases, and the relevant targets were predicted by Swiss Target Prediction platform. MalaCards, OMIM, DrugBank, DisGeNET, Genecards and TTD databases were used to obtain the genes related to IS. The intersection of drugs and disease targets was used to construct protein-protein interaction networks, and gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. AutoDock Vina software was used for molecular docking, and cell experiments were conducted to verify the results. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression level of relative mRNA in cells. RESULTS: Network analysis and molecular docking results showed that the key targets of CMI in the treatment of IS were SRC, TP53, PIK3R1, MAPK3, PIK3CA, MAPK1, etc. KEGG pathway enrichment analysis mainly involved PI3K/Akt signaling pathway, Rap1 signaling pathway and MAPK signaling pathway. The molecular docking results all showed that the key ingredients were strong binding activity with the key targets. The quantitative RT-PCR results indicated that CMI may increase the expression of PIK3CA, MAPK3 mRNA and decrease the expression of SRC mRNA. CONCLUSIONS: CMI can treat IS by regulating pathways and targets related to inflammatory response and apoptosis in a multi-component manner.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , Humans , Ischemic Stroke/drug therapy , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Class I Phosphatidylinositol 3-Kinases , RNA, Messenger
7.
Sci Rep ; 13(1): 17385, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833363

ABSTRACT

To investigate the potential mechanism of Er-Xian decoction (EXD) in treating aplastic anemia (AA), the active components of EXD were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the targets of the components were predicted by the Swiss Target Prediction database. AA targets were collected from the GeneCards, OMIM, DisGeNET, PharmGKB, DrugBank, and TTD databases, the intersection of AA targets and EXD targets was calculated, and an herb-component-target network was constructed by Cytoscape 3.7.2 software. The STRING database was used for protein‒protein interaction (PPI) analysis, and Cytoscape 3.7.2 software was used to construct a PPI network and perform topology analysis. The core targets were imported into the DAVID database for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The molecular docking software AutoDock was used to measure the affinity between active components and key targets. Finally, we established a mouse model of AA and verified the key targets and signaling pathways of EXD by RT‒PCR, ELISA and Western blot analysis. A total of 53 active components were screened from EXD, 2516 AA-related targets were collected, and 195 common targets were obtained. An herb-component-target network and a PPI network were successfully constructed, and 36 core targets were selected from the PPI network. The main active components of EXD include luteolin, kaempferol, berberine, etc., and key targets include PIK3CA, AKT1, STAT3, etc. GO functional enrichment analysis showed that cell components, molecular functions and biological processes with significant correlations were macromolecular complexes, protein serine/threonine/tyrosine kinase activity and protein phosphorylation, respectively. KEGG pathway analysis showed that the pathways with significant correlations included the PI3K-Akt signaling pathway and JAK-STAT signaling pathway. Molecular docking results showed that the tested key targets had good affinity for the corresponding active components. In AA mice, we found that EXD significantly increased white blood cell count, red blood cell count, platelet count and hemoglobin levels, increased mRNA levels of PIK3CA, PIK3CD, AKT1, JAK2, STAT3 and MAPK1, and promoted phosphorylation of PI3K, AKT, ERK1/2 and STAT3. In summary, EXD acts on PI3K, AKT, STAT3 and other targets through berberine, luteolin, quercetin and other components to regulate the PI3K-Akt pathway, JAK-STAT pathway and other pathways, thus exerting its therapeutic effect on AA. This study explained the Chinese medicine theory of treating AA with EXD by tonifying kidney-yang and provides a scientific basis for the use of EXD in treating AA.


Subject(s)
Anemia, Aplastic , Berberine , Drugs, Chinese Herbal , Animals , Mice , Anemia, Aplastic/drug therapy , Network Pharmacology , Janus Kinases , Luteolin/pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , STAT Transcription Factors , Signal Transduction , Class I Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal/pharmacology
8.
Bioorg Chem ; 140: 106815, 2023 11.
Article in English | MEDLINE | ID: mdl-37672953

ABSTRACT

PI3Kδ inhibitors play an important role in the treatment of leukemia, lymphoma and autoimmune diseases. Herein, using our reported compounds as the lead compound, we designed and synthesized a series of selenium-containing PI3Kδ inhibitors based on quinazoline and pyrido[3,2-d]pyrimidine skeletons. Among them, compound Se15 showed sub-nanomolar inhibition against PI3Kδ and strong δ-selectivity. Moreover, Se15 showed potent anti-proliferative effect on SU-DHL-6 cells with an IC50 value of 0.16 µM. Molecular docking study showed that Se15 was able to form multiple hydrogen bonds with PI3Kδ and was close proximity and stacking with PI3Kδ selective region. In conclusion, the Se-containing compound Se15 bearing pyrido[3,2-d]pyrimidine scaffold is a novel potent and selective PI3Kδ inhibitor. The introduction of selenium can enrich the structure of PI3Kδ inhibitors and provide a new idea for design of novel PI3Kδ inhibitors.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Leukemia , Selenium , Humans , Hydrogen Bonding , Molecular Docking Simulation , Pyrimidines/pharmacology , Selenium/chemistry , Selenium/pharmacology , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Drug Design
9.
Cell Rep Med ; 4(4): 101002, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37044095

ABSTRACT

A genome-wide PiggyBac transposon-mediated screen and a resistance screen in a PIK3CAH1047R-mutated murine tumor model reveal NF1 loss in mammary tumors resistant to the phosphatidylinositol 3-kinase α (PI3Kα)-selective inhibitor alpelisib. Depletion of NF1 in PIK3CAH1047R breast cancer cell lines and a patient-derived organoid model shows that NF1 loss reduces sensitivity to PI3Kα inhibition and correlates with enhanced glycolysis and lower levels of reactive oxygen species (ROS). Unexpectedly, the antioxidant N-acetylcysteine (NAC) sensitizes NF1 knockout cells to PI3Kα inhibition and reverts their glycolytic phenotype. Global phospho-proteomics indicates that combination with NAC enhances the inhibitory effect of alpelisib on mTOR signaling. In public datasets of human breast cancer, we find that NF1 is frequently mutated and that such mutations are enriched in metastases, an indication for which use of PI3Kα inhibitors has been approved. Our results raise the attractive possibility of combining PI3Kα inhibition with NAC supplementation, especially in patients with drug-resistant metastases associated with NF1 loss.


Subject(s)
Breast Neoplasms , Humans , Mice , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Phosphatidylinositol 3-Kinase , Acetylcysteine/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/genetics
10.
Comput Biol Med ; 155: 106660, 2023 03.
Article in English | MEDLINE | ID: mdl-36809697

ABSTRACT

A diabetic ulcer (DU) is a dreaded and resistant complication of diabetes mellitus with high morbidity. Fu-Huang ointment (FH ointment) is a proven recipe for treating chronic refractory wounds; however, its molecular mechanisms of action are unclear. In this study, we identified 154 bioactive ingredients and their 1127 target genes in FH ointment through the public database. The intersection of these target genes with 151 disease-related targets in DUs resulted in 64 overlapping genes. Overlapping genes were identified in the PPI network and enrichment analyses. The PPI network identified 12 core target genes, whereas Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that upregulation of the PI3K/Akt signalling pathway was involved in the role of FH ointment in treating diabetic wounds. Molecular docking showed that 22 active compounds in FH ointment could enter the active pocket of PIK3CA. Molecular dynamics was used to prove the binding stability of the active ingredients and protein targets. We found that PIK3CA/Isobutyryl shikonin and PIK3CA/Isovaleryl shikonin combinations had strong binding energies. An in vivo experiment was conducted on PIK3CA, which was the most significant gene.This study comprehensively elucidated the active compounds, potential targets, and molecular mechanism of FH ointment application in treating DUs, and believed that PIK3CA is a promising target for accelerated healing.


Subject(s)
Diabetes Mellitus , Drugs, Chinese Herbal , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Ointments , Class I Phosphatidylinositol 3-Kinases
11.
Biosci Rep ; 43(2)2023 02 27.
Article in English | MEDLINE | ID: mdl-36645186

ABSTRACT

BACKGROUND: Multiple studies have assessed the role of Cassiae semen (CS) in regulating lipid metabolism. However, the mechanism of action of CS on non-alcoholic fatty liver disease (NAFLD) has seen rare scrutiny. OBJECTIVE: The objective of this study was to explore the regulatory mechanism of CS on lipid metabolism in NAFLD. METHODS: Components of CS ethanol extract (CSEE) were analyzed and identified using UPLC-Q-Orbirap HRMS. The candidate compounds of CS and its relative targets were extracted from the Traditional Chinese Medicine Systems Pharmacology, Swiss-Target-Prediction, and TargetNet web server. The Therapeutic Target Database, Genecards, Online Mendelian Inheritance in Man, and DisGeNET were searched for NAFLD targets. Binding affinity between potential core components and key targets was established employing molecular docking simulations. After that, free fatty acid (FFA)-induced HepG2 cells were used to further validate part of the network pharmacology results. RESULTS: Six genes, including Caspase 3 (CASP3), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α (PIK3CA), epidermal growth factor receptor (EGFR), and amyloid ß (A4) precursor protein (APP) were identified as key targets. The mitogen-activated protein kinase (MAPK) signaling pathway was found to associate closely with CS's effect on NAFLD. Per molecular docking findings, toralactone and quinizarin formed the most stable combinations with hub genes. About 0.1 (vs. FFA, P<0.01) and 0.2 (vs. FFA, P<0.05) mg/ml CSEE decreased lipid accumulation in vitro by reversing the up-regulation of CASP3, EGFR, and APP and the down-regulation of PIK3CA. CONCLUSION: CSEE can significantly reduce intracellular lipid accumulation by modulating the MAPK signaling pathway to decrease CASP3 and EGFR expression.


Subject(s)
Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Humans , Caspase 3 , Network Pharmacology , Lipid Metabolism , Amyloid beta-Peptides , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , ErbB Receptors , Class I Phosphatidylinositol 3-Kinases , Seeds , Lipids , Drugs, Chinese Herbal/pharmacology
12.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 983-1000, 2023 05.
Article in English | MEDLINE | ID: mdl-36576506

ABSTRACT

Ulcerative colitis (UC) is a chronic nonspecific intestinal inflammatory disease, which belongs to a subtype of inflammatory bowel disease, but still lacks effective drug treatment. Bletilla striata (B. striata) is one of the most valuable traditional Chinese medicines (TCMs) in China, can stop bleeding, can promote wound healing, and can regulate immunity. Based on data mining, B. striata was found to be a common TCM for the treatment of UC, but the exact therapeutic mechanism is not yet known. This study aims to explore the potential mechanisms of B. striata in the treatment of UC using network pharmacology, molecular docking techniques, and in vivo experimental research. We extracted the active ingredients and targets of B. striata from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and analysis platform. We retrieved and screened the corresponding UC-related target genes in multiple databases. Subsequently, we constructed an herb-ingredient-target-disease-network, generated a protein-protein interaction network, performed Gene Ontology enrichment analysis, and performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify potential treatment mechanisms. After screening for key active ingredients and target genes, we performed molecular docking using AutoDock Vina software to select the best binding target for molecular docking and validate the binding activity. The UC model was established in mice, and the results of network pharmacology and molecular docking were verified by in vivo experiments. In all, 5 compounds were obtained from the TCMSP database, and 74 UC-related pathogenic genes were obtained from GeneCards, DisGeNET, OMIM, TTD, and DrugBank. After KEGG enrichment analysis, pathways in cancer, the phosphatidylinositol 3-kinase (PI3K)/AKT signalling pathway, and metabolic pathways were identified as the top three signalling pathways associated with UC treatment. The results of molecular docking showed that the active components of B. striata have good binding activities to the pivotal targets epidermal growth factor receptor (EGFR) and PIK3CA. In a dextran sulphate sodium-induced colitis model, we found that B. striata can alleviate the symptoms of UC, decrease the secretion of the inflammatory cytokines interleukin-6 and tumour necrosis factor-α, and downregulate the expression levels of EGFR, PIK3CA, and p-AKT. In conclusion, the treatment of UC with B. striata may alleviate the inflammatory response of the colon, and B. striata mainly inhibits the EGFR/PI3K/AKT signalling pathways.


Subject(s)
Colitis, Ulcerative , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , ErbB Receptors , Class I Phosphatidylinositol 3-Kinases
13.
Comput Math Methods Med ; 2022: 5367753, 2022.
Article in English | MEDLINE | ID: mdl-36238480

ABSTRACT

Acute myocardial infarction (AMI) is the most severe form of coronary heart disease caused by ischemia and hypoxia. The study is aimed at investigating the role of neuropeptides and the mechanism of electroacupuncture (EA) in acute myocardial infarction (AMI) treatment. Compared with the normal population, a significant increase in substance P (SP) was observed in the serum of patients with AMI. PGI2 expression was increased in the SP-treated AMI mouse model, and TXA2 expression was decreased. And PI3K pathway-related genes, including Pik3ca, Akt, and Mtor, were upregulated in myocardial tissue of SP-treated AMI patients. Human cardiomyocyte cell lines (HCM) treated with SP increased mRNA and protein expression of PI3K pathway-related genes (Pik3ca, Pik3cb, Akt, and Mtor). Compared to MI control and EA-treated MI rat models, Myd88, MTOR, Akt1, Sp, and Irak1 were differentially expressed, consistent with in vivo and in vitro studies. EA treatment significantly enriched PI3K/AKT signaling pathway genes within MI-associated differentially expressed genes (DEGs) according to Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, it was confirmed by molecular docking analysis that PIK3CA, AKT1, and mTOR form stable dockings with neuropeptide SP. PI3K/AKT pathway activity may be affected directly or indirectly by EA via SP, which corrects the PGI2/TXA2 metabolic imbalance in AMI. MI treatment is now better understood as a result of this finding.


Subject(s)
Electroacupuncture , Myocardial Infarction , Animals , Class I Phosphatidylinositol 3-Kinases/metabolism , Computational Biology , Homeostasis , Humans , Mice , Molecular Docking Simulation , Myeloid Differentiation Factor 88/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger , Rats , Receptors, Epoprostenol/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Substance P/genetics , Substance P/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
14.
Chem Biodivers ; 19(10): e202200386, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36073658

ABSTRACT

Myocardial ischemia is a cardio-physiological condition due to a decrease in blood perfusion to the heart, leading to reduced oxygen supply and abnormal myocardial energy metabolism. Guizhi-Fuling (GZFL) is effective in treating Myocardial ischemia. However, its mechanism of action is unclear and requires further exploration. We attempt to decipher the mechanisms behind GZFL treating Myocardial ischemia by integrating metabolomics and network pharmacology. In this study, myocardial metabolomic analysis was performed using GC/MS to identify the potential mechanism of action of GZFL during myocardial ischemia. Then, network pharmacology was utilized to analyze key pathways and construct a pathway-core target network. Molecular docking was incorporated to validate core targets within network pharmacological signaling pathways. Finally, western blots were utilized to verify core targets of metabolomics, network pharmacology integrated pathways, and key signaling targets. Thus, 22 critical biomarkers of GZFL for treating myocardial ischemia were identified. Most of these metabolites were restored using modulation after GZFL treatment. Based on the network pharmacology, 297 targets of GZFL in treating myocardial ischemia were identified. The further comprehensive analysis focused on three key targets, such as Tyrosine hydroxylase (TH), myeloperoxidase (MPO), and phosphatidylinositol 3-kinases (PIK3CA), and their related metabolites and pathways. Compared with the model group, the protein expression levels of TH, MPO and PIK3CA were reduced in GZFL. Therefore, the mechanism of GZFL for treating myocardial ischemia could inhibit myocardial inflammatory factors, reduce myocardial inflammation, and restore endothelial function while controlling norepinephrine release and uric acid concentration.


Subject(s)
Drugs, Chinese Herbal , Myocardial Ischemia , Humans , Peroxidase , Molecular Docking Simulation , Uric Acid/therapeutic use , Tyrosine 3-Monooxygenase/therapeutic use , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Metabolomics , Myocardial Ischemia/drug therapy , Biomarkers , Norepinephrine/therapeutic use , Phosphatidylinositol 3-Kinases , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Oxygen
15.
Andrologia ; 54(10): e14555, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36064190

ABSTRACT

Lingze tablets has been used as a drug in the treatment of kidney deficiency-dampnes shea-stasis type benign prostatic hyperplasia (BPH) in Traditional Chinese Medicine, and it was found effective for BPH treatment. We aimed to investigate the mechanism of the Lingze tablets in the treatment of BPH through the network pharmacology and molecular docking technology. The active compounds of Lingze tablets were retrieved from the TCMSP, BATMAN-TCM and ETCM databases. The ADME of active compounds was screened for Swiss target prediction, and the targets of the active compounds were predicted. DisGeNET, Genecards and OMIM were used to obtain the disease targets of BPH, and the targets of Lingze tablets in the treatment of BPH were obtained by venny2.1. String platform and cytoscape softwares were used to construct the PPI network. Go enrichment analysis and KEGG signal pathway analysis were analysed by mediascape. The 'component-target-pathway' networks diagram was constructed by the cytoscape software. Molecular docking was carried out by autodock software. Lingze tablets could serve as a drug for BPH treatment by regulating SRC, MAPK1, PIK3CA, JAK2 and other disease targets, intervening in biological processes such as cell migration, cell activity, cytokine secretion, protein phosphorylation, MAPK, transferase activity and PI3K/AKT signalling pathways.


Subject(s)
Drugs, Chinese Herbal , Prostatic Hyperplasia , Class I Phosphatidylinositol 3-Kinases , Cytokines , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Male , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Prostatic Hyperplasia/drug therapy , Proto-Oncogene Proteins c-akt , Tablets , Technology
16.
Phytomedicine ; 106: 154400, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36049428

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin (PF) was found to exhibit renal protection from diabetic kidney disease (DKD) in previous trials, but its specific mechanism remains to be elucidated. AIM OF THE STUDY: This study furtherly explored the specific mechanism of PF in protect podocyte injury in DKD. MATERIALS AND METHODS: We observed the effects of PF on renal tissue and podocytes in DKD by constructing the vitro and vivo models after measuring the pharmacokinetic characteristics of PF. Target proteins of PF were found through target prediction, and verified by molecular docking, CESTA, and SPR, and then furtherly explored the downstream regulation mechanism related to podocyte autophagy and apoptosis by network prediction and co-immunoprecipitation. Finally, by using the target protein inhibitor in vivo and knocking down the target protein gene in vitro, it was verified that PF played a role in regulating autophagy and apoptosis through the target protein in diabetic nephropathy. RESULTS: This study found that in STZ-induced mice model, PF could improve the renal biochemical and pathological damage and podocyte injure (p < 0.05), upregulate autophagy activity (p < 0.05), but inhibit apoptosis (p < 0.01). Vascular endothelial growth factor receptor 2 (VEGFR2), predicted as the target of PF, directly bind with PF reflected by molecular docking and surface plasmon resonance detection. Animal studies demonstrated that VEGFR2 inhibitors have a protective effect similar to that of PF on DKD. Network prediction and co-immunoprecipitation further confirmed that VEGFR2 was able to bind PIK3CA to regulate PI3K-AKT signaling pathway. Furthermore, PF downregulated the phosphorylation of PI3K and AKT (p < 0.05). In vitro, similarly to autophagy inhibitors, PF was also found to improve podocyte markers (p < 0.05) and autophagy activity (p < 0.05), decrease caspase 3 protein (p < 0.05) and further inhibited VEGFR2-PI3K-AKT activity (p < 0.05). Finally, the results of VEGFR2 knockdown were similar to the effect of PF in HG-stimulated podocytes. CONCLUSION: In conclusion, PF restores autophagy and inhibits apoptosis by targeting the VEGFR2-mediated PI3K-AKT pathway to improve renal injury in DKD, that provided a theoretical basis for PF treatment in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Animals , Apoptosis , Autophagy , Caspase 3/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Diabetic Nephropathies/metabolism , Glucosides , Mice , Molecular Docking Simulation , Monoterpenes , Phosphatidylinositol 3-Kinases/metabolism , Podocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Phytomedicine ; 105: 154360, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35964457

ABSTRACT

BACKGROUND: Panlongqi Tablet (PLQT) is a Chinese patent drug composed of 29 kinds of traditional Chinese medicines. Clinical practice has shown that PLQT can relieve osteoarthritis-caused joint pain, but its effects and mechanisms in other pathological links of osteoarthritis have not been characterized. PURPOSE: The purpose of this study is to reposition the pharmacodynamic effects of PLQT through network pharmacology analysis combined with experimental validation, and also to preliminarily explore its possible mechanism. METHODS: On the basis of integrating the relevant targets of PLQT in multiple drug databases and osteoarthritis-related targets in the disease database, an interaction network of related genes was constructed. The hub candidate targets of PLQT in the treatment of osteoarthritis were determined by calculating the main network topological characteristics, The specific functions and pathways of these targets acting on osteoarthritis were modularly analyzed. In addition, the modified Hulth-induced rat model of osteoarthritis and IL-1ß-induced in vitro model of osteoarthritis were established to further validate the potential efficacy and possible mechanism of PLQT. RESULTS: A total of 138 key targets related to osteoarthritis were selected based on topological parameters, and their biological functions were mainly enriched in four over-expressed modules of cartilage degeneration, inflammatory response, immune response, and subchondral bone metabolism. The hub candidate targets had the highest enrichment degree in the TLR4-RAC1-PIK3CA-Akt-NFκB signaling axis of the PI3K/Akt signaling pathway. In vivo results showed that PLQT treatment significantly inhibited the degeneration of proteoglycan and collagen in the cartilage of osteoarthritis rats, suppressed chondrocyte apoptosis, and reduced the Mankin score of joints. Moreover, PLQT alleviated synovial inflammation, reduced the Krenn score of synovium, inhibited the formation of osteophytes in osteoarthritis rats, reduced the bone mineral density (BMD), fractional bone volume (BV/TV), and trabecular thickness (Tb.Th.), as well as increased the trabecular separation (Tb.Sp.) of subchondral bone and the thickness of the subchondral bone plate (SBP.Th.). PLQT suppressed the expressions of TLR4, RAC1, PIK3CA, p-Akt, MMP-13, and ADAMTS-5 in the cartilage, and inhibited the expression of NFκB p65 in the chondrogenic nucleus. Meanwhile, as downstream effector factors of the predictive pathways, the levels of serum interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), and prostaglandin E2 (PGE2) were decreased after PLQT treatment. In vitro results also showed that PLQT could inhibit the expression of key proteins and downstream effector factors of the signaling axis, and this inhibition disappeared when pathway agonists were added. CONCLUSION: PLQT exerted pharmacological effects on the key pathological links of osteoarthritis including chondrocyte apoptosis, extracellular matrix degradation, inflammation, and subchondral bone metabolism by inhibiting the TLR4-RAC1-PIK3CA-Akt-NFκB axis-related proteins.


Subject(s)
Osteoarthritis , Toll-Like Receptor 4 , Animals , Class I Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal , Inflammation , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats
18.
Elife ; 112022 07 05.
Article in English | MEDLINE | ID: mdl-35787784

ABSTRACT

Background: Lymphatic malformations (LMs) often pose treatment challenges due to a large size or a critical location that could lead to disfigurement, and there are no standardized treatment approaches for either refractory or unresectable cases. Methods: We examined the genomic landscape of a patient cohort of LMs (n = 30 cases) that underwent comprehensive genomic profiling using a large-panel next-generation sequencing assay. Immunohistochemical analyses were completed in parallel. Results: These LMs had low mutational burden with hotspot PIK3CA mutations (n = 20) and NRAS (n = 5) mutations being most frequent, and mutually exclusive. All LM cases with Kaposi sarcoma-like (kaposiform) histology had NRAS mutations. One index patient presented with subacute abdominal pain and was diagnosed with a large retroperitoneal LM harboring a somatic PIK3CA gain-of-function mutation (H1047R). The patient achieved a rapid and durable radiologic complete response, as defined in RECIST1.1, to the PI3Kα inhibitor alpelisib within the context of a personalized N-of-1 clinical trial (NCT03941782). In translational correlative studies, canonical PI3Kα pathway activation was confirmed by immunohistochemistry and human LM-derived lymphatic endothelial cells carrying an allele with an activating mutation at the same locus were sensitive to alpelisib treatment in vitro, which was demonstrated by a concentration-dependent drop in measurable impedance, an assessment of cell status. Conclusions: Our findings establish that LM patients with conventional or kaposiform histology have distinct, yet targetable, driver mutations. Funding: R.P. and W.A. are supported by awards from the Levy-Longenbaugh Fund. S.G. is supported by awards from the Hugs for Brady Foundation. This work has been funded in part by the NCI Cancer Center Support Grants (CCSG; P30) to the University of Arizona Cancer Center (CA023074), the University of New Mexico Comprehensive Cancer Center (CA118100), and the Rutgers Cancer Institute of New Jersey (CA072720). B.K.M. was supported by National Science Foundation via Graduate Research Fellowship DGE-1143953. Clinical trial number: NCT03941782.


Subject(s)
Antineoplastic Agents , Class I Phosphatidylinositol 3-Kinases , GTP Phosphohydrolases , Lymphangioma , Lymphatic Abnormalities , Membrane Proteins , Thiazoles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , GTP Phosphohydrolases/genetics , Genomics , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Lymphangioma/drug therapy , Lymphangioma/genetics , Lymphatic Abnormalities/drug therapy , Lymphatic Abnormalities/genetics , Membrane Proteins/genetics , Mutation , Sequence Analysis, DNA , Thiazoles/pharmacology , Thiazoles/therapeutic use
19.
Curr Pharm Des ; 28(23): 1932-1948, 2022.
Article in English | MEDLINE | ID: mdl-35619259

ABSTRACT

BACKGROUND: Reperfusion Injury Acute ischemic stroke is increasing in people recently and Musk, as a commonly used Traditional Chinese Medicine (TCM), has been suggested as a potential agent against acute ischemic stroke, but the efficacies and underlying mechanisms of it remain unknown. OBJECTIVE: This study was aimed to test the hypotheses that volatile compounds of musk could attenuate nerve injury and identify the bioactive compounds and potential mechanisms of Musk. METHODS: Transient middle cerebral artery occlusion (MCAO) model in vivo in Sprague-Dawley rats (SD rats) was used to test this hypothesis. Collecting ingredients of Musk and their related targets were discerned from the Gas chromatography-olfactory mass spectrometry (GC-O-MS) experiment. Then the potential mechanisms and targets of the compounds were searched by network pharmacology techniques. Finally, the pathway was verified by Western Bolt (WB). RESULTS: First, Musk treatment significantly up-regulated the relative levels of AKT1, PI3KA, and VEGFA in the hippocampus, and improved the sport functions in the post-MCAO ischemic rats in vivo. Next, twenty potential flavor active compounds were recognized by GC-O-MS. A total of 89 key targets including HIF-1, PIK3CA, TNF signaling pathway, and VEGF were identified. AKT1, HIF1A, PIK3CA, and VEGFA were viewed as the most important genes, which were validated by molecular docking simulation. CONCLUSION: The Volatile compounds of musk can attenuate nerve injury and improving post-cerebral ischemic exercise functions by HIF1A pathways, and the combined data provide novel insight for Musk volatile compounds developed as new drug for improving reperfusion injury in acute ischemic stroke.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , Reperfusion Injury , Animals , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Fatty Acids, Monounsaturated , Humans , Infarction, Middle Cerebral Artery/drug therapy , Ischemic Stroke/drug therapy , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley , Receptor Protein-Tyrosine Kinases , Receptors, Cholinergic , Reperfusion Injury/drug therapy
20.
BMC Med ; 20(1): 175, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35546399

ABSTRACT

BACKGROUND: Deregulation of cell-cycle pathway is ubiquitously observed in human papillomavirus negative (HPVneg) head and neck squamous cell carcinoma (HNSCC). Despite being an attractive target, CDK4/6 inhibition using palbociclib showed modest or conflicting results as monotherapy or in combination with platinum-based chemotherapy or cetuximab in HPVneg HNSCC. Thus, innovative agents to augment the efficacy of palbociclib in HPVneg HNSCC would be welcomed. METHODS: A collection of 162 FDA-approved and investigational agents was screened in combinatorial matrix format, and top combinations were validated in a broader panel of HPVneg HNSCC cell lines. Transcriptional profiling was conducted to explore the molecular mechanisms of drug synergy. Finally, the most potent palbociclib-based drug combination was evaluated and compared with palbociclib plus cetuximab or cisplatin in a panel of genetically diverse HPVneg HNSCC cell lines and patient-derived xenograft models. RESULTS: Palbociclib displayed limited efficacy in HPVneg HNSCC as monotherapy. The high-throughput combination drug screening provided a comprehensive palbociclib-based drug-drug interaction dataset, whereas significant synergistic effects were observed when palbociclib was combined with multiple agents, including inhibitors of the PI3K, EGFR, and MEK pathways. PI3K pathway inhibitors significantly reduced cell proliferation and induced cell-cycle arrest in HPVneg HNSCC cell lines when combined with palbociclib, and alpelisib (a PI3Kα inhibitor) was demonstrated to show the most potent synergy with particularly higher efficacy in HNSCCs bearing PIK3CA alterations. Notably, when compared with cisplatin and cetuximab, alpelisib exerted stronger synergism in a broader panel of cell lines. Mechanistically, RRM2-dependent epithelial mesenchymal transition (EMT) induced by palbociclib, was attenuated by alpelisib and cetuximab rather than cisplatin. Subsequently, PDX models with distinct genetic background further validated that palbociclib plus alpelisib had significant synergistic effects in models harboring PIK3CA amplification. CONCLUSIONS: This study provides insights into the systematic combinatory effect associated with CDK4/6 inhibition and supports further initiation of clinical trials using the palbociclib plus alpelisib combination in HPVneg HNSCC with PIK3CA alterations.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , Cisplatin/pharmacology , Cisplatin/therapeutic use , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/therapeutic use , Drug Combinations , Drug Evaluation, Preclinical , Head and Neck Neoplasms/drug therapy , Humans , Phosphatidylinositol 3-Kinases/therapeutic use , Piperazines , Pyridines , Squamous Cell Carcinoma of Head and Neck/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL