Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Life Sci Soc Policy ; 16(1): 2, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32064544

ABSTRACT

Application of technologies has an important role in agricultural development. Identifying and assessing the impacts of agricultural technologies is necessary. This study aimed at assessing the impacts of laser levelling economically, socially, environmentally, and technically in the viewpoint of the agricultural experts and identifying factors determining their perception of the impacts. The study samples (151 experts) were selected using multi-stage random sampling in Fars Province, Iran. The results revealed that experts considered uniform distribution of water, using conservation tillage, facilitating agricultural activities, decreased water consumption and decrease of water wasting as the most important technical impacts of laser levelling technology. The most environmentally important impacts were the decrease of soil erosion and retention of crop residues. Experts stated the most significant social impacts as improvement in villages living conditions and sense of belonging to rural areas. Besides, an increase of income and reduction of inputs costs were among the economic impacts of laser levelling technology. According to the results, attitude towards water and soil resources conservation and environmental beliefs had the highest direct effect on individual perception toward impacts. Practical recommendations have been presented based on the results of the study.


Subject(s)
Agriculture/methods , Conservation of Water Resources/methods , Environment , Lasers , Water Supply/methods , Conservation of Natural Resources , Humans , Iran , Social Responsibility , Soil , Spirituality
2.
PLoS One ; 14(7): e0219499, 2019.
Article in English | MEDLINE | ID: mdl-31291341

ABSTRACT

Ninety-six sample plots were established for a tree census to explore the multifactor relationships between the soil and water conservation functions and the stand structure in a typical black locust (Robinia pseudoacacia L.) plantation in the Caijiachuan watershed of the Loess Plateau, Western Shanxi Province, China. Based on the observational and experimental data, a topography-structure-function model was built using a structural equation modeling (SEM) approach. The latent variables were the topographical factors, horizontal structure, vertical structure, soil and water conservation, and sediment reduction. The results indicated that the horizontal structure of the Robinia pseudoacacia L. forest was the most obvious latent variable, which was expressed in the path coefficient (pc = 0.85) corresponding to the sediment reduction; the stand density and tree competition index were the major drivers of the structure, with path coefficients of -0.96 and -0.92 and influence coefficients of -0.997 and -0.998. These factors are easily regulated. Among these factors the stand density of the arbor layer is recommended to be kept stable within the range from 1600 to 1700 trees/hm2. These relationships showed that reducing the tree competition index and changing the microtopography could effectively enhance the soil and water conservation functions in this ecologically significant loess area.


Subject(s)
Conservation of Water Resources/methods , Forests , Robinia/physiology , Soil/chemistry , Trees , China , Environmental Restoration and Remediation/methods , Geologic Sediments/analysis , Geologic Sediments/chemistry , Plant Dispersal
3.
Environ Monit Assess ; 190(9): 504, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30088154

ABSTRACT

Soil and water conservation (SWC) measures can be adopted to conserve soil and water and improve soil fertility. The degree to which SWC measures improve soil fertility is affected by the type of SWC measure, soil type, climate, etc. The purpose of this study was to study the effect of the main SWC measures implemented in the Beijing mountain area on soil fertility. Six runoff plots, including a fish pit (fallow) (FPF), fish pit (Platycladus orientalis L. Franco) (FPP), narrow terrace (fallow) (NTF), narrow terrace (Juglans regia L.) (NTJ), tree pan (Juglans regia L.) (TPJ), and fallow land (FL), were established to analyze the differences in soil fertility in the Beijing mountain area. Soil samples were collected in 2005 and 2015 from the six runoff plots. Soil particle size; soil total nitrogen (TN), total phosphorous (TP), total potassium (TK), alkali-hydrolysable nitrogen (Ah-N), available P (Av-P), and available K (Av-K); and soil organic matter (SOM) were measured. The soil integrated fertility index (IFI) was calculated. The results showed that the soil nutrient content and IFI significantly decreased from 2005 to 2015 in the FL plot and significantly increased in the five runoff plots with SWC measures. Compared to the other runoff plots with SWC measures, the FPP plot more significantly improved the soil nutrient content and IFI. The TN, Ah-N, Av-K, SOM, and IFI in the FPP plots increased by 98%, 113%, 61%, 69 and 47%, respectively, from 2005 to 2015. The IFI for the FPP, NTJ, and TPJ exceeded the average IFI of the farmland soil in the study region. The results indicated that the combination of engineering practices and vegetative measures effectively improved soil fertility. These results may be helpful for selecting SWC measures, land-use planning and monitoring and assessing soil fertility.


Subject(s)
Conservation of Water Resources/methods , Soil/chemistry , Water Supply/statistics & numerical data , Beijing , China , Environmental Monitoring/methods , Nitrogen/analysis , Phosphorus/analysis , Trees , Water
4.
Water Res ; 142: 196-207, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29883893

ABSTRACT

Controlled drainage (CD) is a structural conservation practice in which the drainage outlet is managed in order to reduce drain flow volume and nutrient loads to water bodies. The goal of this study was to evaluate the potential of CD to improve water quality for two different seasons and levels of outlet control, using ten years of data collected from an agricultural drained field in eastern Indiana with two sets of paired plots. The Rank Sum test was used to quantify the impact of CD on cumulative annual drain flow and nitrate-N and phosphorus loads. CD plots had a statistically significant (at 5% level) lower annual drain flow (eastern pair: 39%; western pair: 25%) and nitrate load (eastern pair: 43%; western pair: 26%) compared to free draining (FD) plots, while annual soluble reactive phosphorus (SRP) and total phosphorus (TP) loads were not significantly different. An ANCOVA model was used to evaluate the impact of CD on daily drain flow, nitrate-N, SRP and TP concentrations and loads during the two different periods of control. The average percent reduction of daily drain flow was 68% in the eastern pair and 58% in the western pair during controlled drainage at the higher outlet level (winter) and 64% and 58% at the lower outlet level (summer) in the eastern and western pairs, respectively. Nitrate load reduction was similar to drain flow reduction, while the effect of CD on SRP and TP loads was not significant except for the increase in SRP in one pair. These results from a decade-long field monitoring and two different statistical methods enhance our knowledge about water quality impacts of CD system and support this management practice as a reliable system for reducing nitrate loss through subsurface drains, mainly caused by flow reduction.


Subject(s)
Conservation of Water Resources/methods , Nitrates/analysis , Phosphorus/analysis , Water Quality , Agriculture , Environmental Monitoring , Indiana , Nitrogen/analysis , Seasons
5.
Mar Pollut Bull ; 129(1): 412-419, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29540264

ABSTRACT

During the Deepwater Horizon blowout, unprecedented volumes of dispersant were applied both on the surface and at depth. Application at depth was intended to disperse the oil into smaller microdroplets that would increase biodegradation and also reduce the volumes buoyantly rising to the surface, thereby reducing surface exposures, recovery efforts, and potential stranding. In forensically examining 5300 offshore water samples for the Natural Resource Damage Assessment (NRDA) effort, profiles of deep-plume oil droplets (from filtered water samples) were compared with those also containing dispersant indicators to reveal a previously hypothesized but undocumented, accelerated dissolution of the polycyclic aromatic hydrocarbons (PAH) in the plume samples. We interpret these data in a fate-and-transport context and conclude that dispersant applications were functionally effective at depth.


Subject(s)
Conservation of Water Resources/methods , Petroleum Pollution/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Surface-Active Agents/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Gulf of Mexico , Seawater/chemistry , Solubility
6.
Article in English | MEDLINE | ID: mdl-29206081

ABSTRACT

Direct (UV) and hydrogen peroxide-assisted (UV/H2O2) photolysis were investigated in bench-scale for removing the organic compounds present in the electrodialysis reversal (EDR) brine from a refinery wastewater reclamation plant. In the UV/H2O2 experiments, a COD:H2O2 molar ratios of 1:1, 1:2 and 1:3 were tested by recirculating the brine in the UV reactor for 120 min. Results showed a significant reduction in UVA254, whereas no reduction was observed for chemical oxygen demand (COD), in the UV process, suggesting great cleavage but limited mineralization of the organic matter. UV/H2O2 with C:H2O2 ratio of 1:3 exhibited high efficiency in removing the organic matter (COD removal of 92% with an electrical energy per removal order (EEO) value of 22 kW h m-3). Although the EDR brine has high salinity, no strong scavenging effect of •OH was found in the water matrix due to the high concentration of anions, especially chloride and bicarbonate. Finally, UV/H2O2 with C:H2O2 ratio of 1:3 and residence time of 120 min is an efficient alternative for organic matter removal of EDR brine from refinery wastewater reclamation plant showing total capital cost (CapEx) estimated at US$ 369,653.00 and total operational cost (OpEx), at US$ 1.772 per cubic meter of effluent.


Subject(s)
Hydrogen Peroxide/chemistry , Organic Chemicals/isolation & purification , Petroleum , Salts/isolation & purification , Ultraviolet Rays , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Biological Oxygen Demand Analysis , Conservation of Water Resources/methods , Filtration/methods , Humans , Hydrogen Peroxide/pharmacology , Oil and Gas Industry/methods , Oxidation-Reduction , Petroleum/analysis , Photolysis , Salinity , Waste Disposal Facilities , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
7.
Mar Pollut Bull ; 129(2): 623-632, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29102071

ABSTRACT

In case of an oil spill, dispersant application represents a response option, which enhances the natural dispersion of oil and thus reduces coating of seabirds and coastal areas. However, as oil is transferred to the water phase, a trade-off of potential harmful effects shifted to other compartments must be performed. This paper summarizes the results of a workshop on the current knowledge on risks and benefits of the use of dispersants with respect to specific conditions encountered at the German sea areas. The German North Sea coast is a sensitive ecosystem characterised by tidal flats, barrier islands and salt marshes. Many prerequisites for a potential integration of dispersants as spill response option are available in Germany, including sensitivity maps and tools for drift modelling of dispersed and undispersed oil. However, open scientific questions remain concerning the persistence of dispersed oil trapped in the sediments and potential health effects.


Subject(s)
Conservation of Water Resources/methods , Petroleum Pollution/prevention & control , Petroleum/analysis , Surface-Active Agents/chemistry , Water Pollutants, Chemical/analysis , Decision Making , Germany , Guidelines as Topic , Petroleum Pollution/adverse effects , Wetlands
8.
Ecotoxicol Environ Saf ; 145: 119-125, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28728116

ABSTRACT

With the completion of the Danjiangkou Dam, the impoundment and drainage of dams can significantly alter shorelines, hydrological regime, and sediment and can result in the loss of soil and original riparian vegetation. Revegetation may affect soil properties and have broad important implications both for ecological services and soil recovery. In this work, we investigated the soil properties under different restoration approaches, and before and after submergence in the water level fluctuation zone (WLFZ) of the Danjiangkou Reservoir. Soil physical (bulk density and soil moisture), chemical (pH, soil organic carbon, nitrogen, phosphorus and potassium contents), and heavy metals were determined. This study reported that restoration approaches have impacts on soil moisture, pH, N, soil organic carbon, P, K and heavy metals in the WLFZ of the Danjiangkou Reservoir. Our results indicated that different restoration approaches could increase the soil moisture while decrease soil pH. Higher soil organic carbon in propagule banks transplantation (PBT) and shrubs restoration (SR) indicate that PBT and SR may provide soil organic matter more quickly than trees restoration (TR). SR and TR could significantly improve the soil total P and available P. PBT and SR could improve the soil total K and available K. SR and TR could significantly promote Cu and Zn adsorption, and Pb and Fe release by plant. Submergence could significantly affect the soil pH, NO3--N, NH4+-N, total P and available P. Submergence could promote NO3--N and available P adsorption, and NH4+-N and total P release by soil. The soil quality index (SQI) values implied that TR and PBT greatly improved soil quality. The present study suggests that PBT and TR could be effective for soil restoration in WLFZ of the Danjiangkou Reservoir.


Subject(s)
Conservation of Water Resources/methods , Environmental Restoration and Remediation/methods , Soil/chemistry , Trees/growth & development , Water Pollutants, Chemical/analysis , China , Ecology , Metals, Heavy/analysis , Nitrogen/analysis , Phosphorus/analysis , Soil/standards , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL