Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 404
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Phytother Res ; 38(5): 2276-2302, 2024 May.
Article in English | MEDLINE | ID: mdl-38424688

ABSTRACT

Saffron (Crocus sativus), as an herbal medicine, has been extensively investigated for treating neurological and psychiatric disorders. This systematic review aimed to assess the overall effects of saffron on cognition, depression, anxiety, sleep disorders, attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Relevant randomized controlled trials (RCTs) were identified by searching PubMed/Medline, Web of Science, and Clinical Trials databases up to June 2023 according to search terms and inclusion criteria. The participants were either healthy or suffering from some diseases, including neurological and psychiatric disorders, and consumed saffron or its extracts as an intervention. The risk of bias was assessed according to the Cochrane guidelines, and the PRISMA statement was followed. The meta-analysis was performed using RevMan and STATA software. A random-effects or fixed-effects model was used to calculate the pooled effect sizes. Forty-six RCTs were enrolled, and the duration of these trials ranged from 4 to 48 weeks with saffron or its extracts, both alone or in combination with conventional drugs. Saffron was more effective than placebo in improving cognition, depression with an overall effect size of -4.26 (95% CI: -5.76, -2.77), anxiety of -3.75 (95% CI: -5.83, -1.67), and sleep disorders of -1.91 (95% CI: -2.88, -0.93). Saffron was non-inferior to conventional drugs for treating cognitive disorders, depression, anxiety, ADHD, and OCD, and it exhibited good tolerance with few side effects. Saffron may exert protective roles for neurological and psychiatric disorders and represents a relatively favorable and safe treatment.


Subject(s)
Crocus , Plant Extracts , Crocus/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Randomized Controlled Trials as Topic , Sleep Wake Disorders/drug therapy , Nervous System Diseases/drug therapy , Phytotherapy , Attention Deficit Disorder with Hyperactivity/drug therapy , Mental Disorders/drug therapy , Depression/drug therapy , Obsessive-Compulsive Disorder/drug therapy , Anxiety/drug therapy
2.
Phytother Res ; 38(5): 2482-2495, 2024 May.
Article in English | MEDLINE | ID: mdl-38446350

ABSTRACT

Saffron is a spice derived from the flower of Crocus sativus L., which has been used for centuries as a coloring and flavoring agent, as well as a source of medicinal compounds. Saffron contains various bioactive constituents, such as crocin, crocetin, safranal, picrocrocin, and kaempferol, that have shown potential benefits for human health. Among them, crocin is the most abundant and characteristic constituent of saffron, responsible for its bright red color and antioxidant properties. One of the most promising applications of saffron and its constituents is in the prevention and treatment of neurological disorders, such as depression, anxiety, Alzheimer's disease, Parkinson's disease, and other brain disorders. Saffron and its constituents have been reported to exert neuroprotective effects through various mechanisms, such as modulating neurotransmitters, enhancing neurogenesis, reducing neuroinflammation, regulating oxidative stress, activating the Nrf2 signaling pathway, and modulating epigenetic factors. Several clinical and preclinical studies have demonstrated the efficacy and safety of saffron and its constituents in improving cognitive function, mood, and other neurological outcomes. In this review, we summarize the current evidence on the therapeutic potential of saffron and its constituents in neurological disorders, from bench to bedside. We also discuss the challenges and future directions for the development of saffron-based therapies for brain health.


Subject(s)
Brain Diseases , Crocus , Crocus/chemistry , Humans , Animals , Brain Diseases/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carotenoids/pharmacology , Carotenoids/therapeutic use , Oxidative Stress/drug effects
3.
Anal Methods ; 16(9): 1347-1356, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334707

ABSTRACT

Saffron (Crocus sativus L.) is a valuable Chinese herb with high medicinal value. Saffron pistils are used as medicine, so increasing the number of flowers can increase the yield. Plant hormones have essential roles in the growth and development of saffron, as well as the response to biotic and abiotic stresses (especially in floral initiation), which may directly affect the number of flowers. Quantitative analysis of plant hormones provides a basis for more efficient research on their synthesis, transportation, metabolism, and action. However, starch (which interferes with extraction) is present in high levels, and hormone levels are extremely low, in saffron corms, thereby hampering accurate determination of plant-hormone levels in saffron. Herein, we screened an efficient and convenient pre-treatment method for plant materials containing abundant amounts of starch. Also, we proposed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of abscisic acid (ABA) and auxin (IAA). Then, the method was applied for the detection of hormone-content differences between flowering and non-flowering top buds, as well as between lateral and top buds. Our method showed high sensitivity, reproducibility, and reliability. Specifically, good linearity in the range 2-100 ng ml-1 was achieved in the determination of ABA and IAA, and the correlation coefficient (R2) was >0.9982. The relative standard deviation was 2.956-14.51% (intraday) and 9.57-18.99% (interday), and the recovery range was 89.04-101.1% (n = 9). The matrix effect was 80.38-90.50% (n = 3). The method was thoroughly assessed employing various "green" chemistry evaluation tools: Blue Applicability Grade Index (BAGI), Complementary Green Analytical Procedure Index (Complex GAPI) and Red Green Blue 12 Algorithm (RGB12). These tools revealed the good greenness, analytical performance, applicability, and overall sustainability alignment of our method. Quantitative results showed that, compared with saffron with a flowering phenotype cultivated at 25 °C, the contents of IAA and ABA in the terminal buds of saffron cultivated at 16 °C decreased significantly. When cultivated at 25 °C, the IAA and ABA contents in the terminal buds of saffron were 1.54- and 4.84-times higher than those in the lateral buds, respectively. A simple, rapid, and accurate UPLC-MS/MS method was established to determine IAA and ABA contents. Using this method, a connection between the contents of IAA and ABA and the flowering phenotype was observed in the quantification results. Our data lay a foundation for studying the flowering mechanism of saffron.


Subject(s)
Crocus , Plants, Medicinal , Plant Growth Regulators/analysis , Plant Growth Regulators/metabolism , Crocus/chemistry , Crocus/genetics , Reproducibility of Results , Chromatography, Liquid , Tandem Mass Spectrometry , Plants, Medicinal/metabolism , Abscisic Acid/analysis , Abscisic Acid/metabolism , Starch , Hormones
4.
J Ethnopharmacol ; 326: 117898, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38341114

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Crocus sativus L. known as saffron, is a popular food condiment with a high aroma, deep colour, and long and thick threads (stigmas) cultivated in Iran, Morocco, Spain, Italy, China, Japan, France, Turkey, and India. In 'Ayurveda', saffron is acknowledged for its immunostimulant, aphrodisiac, cardiotonic, liver tonic, nervine tonic, carminative, diaphoretic, diuretic, emmenagogue, galactagogue, febrifuge, sedative, relaxant, and anxiolytic activities. The renowned Persian physician and philosopher, Avicenna, delineated saffron as an antidepressant, hypnotic, anti-inflammatory, hepatoprotective, bronchodilator, and aphrodisiac in his book, the Canon of Medicine. Within traditional Iranian Medicine (TIM), saffron is characterized as a mood elevator and a rejuvenator for the body and senses. Further, the ethnopharmacological evidence indicates that saffron has shown an effect against neurodegenerative disorders namely, dementia, Alzheimer's, and Parkinson's with its bioactive constituents i.e., carotenoids and apocarotenoids. AIM: The present study aimed to investigate the potential of standardized (Kashmir Saffron, India) Crocus sativus extract (CSE) in chronic scopolamine-induced cognitive impairment, amyloid beta (Aß) plaque, and neurofibrillary tangles (NFT) accumulation in rat brains by targeting AChE inhibition and scopolamine mechanistic effect. METHODS: The experimental animals were divided into six groups: group 1: normal control, group 2: scopolamine, group 3,4 and 5 rivastigmine tartrate, CSE (p.o. 10 mg/kg, 15 mg/kg, and 20 mg/kg) respectively. Each treatment group received scopolamine after 20 min of dosing, till 4 weeks. The effects of different treatments on learning, acquisition, and reversal memory were performed using a Morris water maze test. In addition to behavioral assessments, biochemical parameters such as AChE, IL-6, and antioxidants were measured in isolated brains. Histological observations were also conducted to assess the presence of Aß plaques and NFT. Furthermore, molecular docking was performed to explore the potential AChE inhibitory activity of the bioactive constituents of standardized CSE. RESULTS: Scopolamine produces memory impairment, and its chronic administration forms Aß plaque and NFT in rat brains. Supplementation with CSE in presence of scopolamine has shown remarkable effects on behavioural activity, special acquisition, and reversal memory. The CSE has also shown promising effects on AChE inhibition and antioxidant activity. The results of the docking study also indicate that trans-crocetin, i.e., a biologically active metabolite of Crocins, has strong AChE inhibitory activity, supported by an in vivo animal experiment. CONCLUSION: Supplementation with CSE significantly attenuates the formation of Aß plaque and NFT in the hippocampus at a dose of 20 mg/kg per day. In addition, CSE also counters scopolamine-induced neuroinflammation.


Subject(s)
Aphrodisiacs , Cognitive Dysfunction , Crocus , Rats , Animals , Amyloid beta-Peptides/metabolism , Crocus/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Neurofibrillary Tangles/metabolism , Iran , Molecular Docking Simulation , Antioxidants/pharmacology , Scopolamine Derivatives
5.
Drug Chem Toxicol ; 47(1): 131-142, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37649374

ABSTRACT

Saffron is a well-known expensive spice, which has many pharmacological properties against a variety of ailments. Saffron stigma and leaf contain apocarotenoids and bioactive phytochemicals having therapeutic potential against human disorders. Polycyclic aromatic hydrocarbons (PAHs) are one of the most common toxins in today's aquatic environment. Benzo[a]pyrene (B[a]P), a high molecular weight PAHs prototype, and reported as a potent neurotoxicant, which is profoundly contaminating the environment. The present study investigated the therapeutic efficacy of Saffron stigma extracts and crocin, on B[a]P-induced behavioral changes, altered antioxidant activities, and neurodegeneration in zebrafish. The behavioral responses monitored through the light-dark preference test and novel tank diving test suggested that B[a]P treated zebrafish group showed alteration in anxiolytic-like behavior. Animals exhibited their native behavior when treated alone with Saffron Stigma Extract (SSE) and crocin, an apocarotenoid which also reduced the altered behavior induced by B[a]P. The SSE and crocin stimulated the antioxidant activities with an accumulation of reduced glutathione and catalase enzymes, indicating a protective role against B[a]P-induced oxidative stress and behavioral deficits. The histopathological studies showed the percentage change of pyknotic cell counts in the Periventricular Gray Zone region of the Optic Tectum was 1.74 folds high in B[a]P treated animals as compared to control. Furthermore, the treatment of SSE and crocin reduced the pyknosis process induced by B[a]P-mediated neurodegeneration, possibly due to a better protective mechanism. Future studies may reveal the detailed mechanisms of action of potent SSE and crocin like bioactive compounds having neuroprotective potentials against neurodegenerative diseases.


Subject(s)
Antioxidants , Carotenoids , Crocus , Humans , Animals , Antioxidants/pharmacology , Zebrafish , Crocus/chemistry , Benzo(a)pyrene/toxicity , Plant Extracts/pharmacology , Plant Extracts/chemistry
6.
BMC Microbiol ; 23(1): 289, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805450

ABSTRACT

BACKGROUND: Although the mechanism of action of nanoemulsion is still unclear, the modern use of nanoemulsions made from natural extracts as antimicrobial and anti-aflatoxigenic agents represents a potential food preservation and a safety target. METHODS: Two natural nanoemulsion extracts of Crocus sativus (the saffron flower) and Achillea millefolium (the yarrow flower) were produced in the current study using a low-energy method that included carboxymethylcellulose and Arabic gum. The synthesized nanoemulsion was fully identified by different analytical methods. Detection of the volatile content was completed using GC-MS analysis. The antioxidant potential, and phenolic compounds content were analyzed in the extractions. The synthesized nanoemulsions were screened for their antimicrobial potential in addition to their anti-aflatoxigenic activity. RESULTS: The droplet size of Saffron flowers was finer (121.64 ± 2.18 nm) than yarrow flowers (151.21 ± 1.12 nm). The Zeta potential measurements of the yarrow flower (-16.31 ± 2.54 mV) and the saffron flower (-18.55 ± 2.31 mV) both showed high stability, along with low PDI values (0.34-0.41). The nanoemulsion of yarrow flower revealed 51 compounds using gas chromatography-mass spectrometry (GCMS), with hexanal (16.25%), ß-Pinene (7.41%), ß-Myrcene (5.24%), D-Limonene (5.58%) and Caryophyllene (4.38%) being the most prevalent. Additionally, 31 compounds were detected in the saffron nanoemulsion, with D-limonene (4.89%), isophorone (12.29%), 4-oxy isophorone (8.19%), and safranal (44.84%) being the most abundant. Compared to the nanoemulsion of the yarrow flower, the saffron nanoemulsion had good antibacterial and antifungal activity. Saffron nanoemulsion inhibited total fungal growth by 69.64-71.90% in a simulated liquid medium and demonstrated the most significant decrease in aflatoxin production. Infected strawberry fruits coated with nanoemulsion extracts exhibited high antimicrobial activity in the form of saffron flower and yarrow flower extract nanoemulsions, which inhibited and/or controlled the growth of Aspergillus fungi. Due to this inhibition, the lag phase was noticeably prolonged, the cell load decreased, and the stability time increased. CONCLUSION: This study will contribute to expanding the theoretical research and utilization of nanoemulsions as green protective agents in agricultural and food industries for a promising protection from the invasion of some pathogenic bacteria and fungi.


Subject(s)
Achillea , Crocus , Achillea/chemistry , Crocus/chemistry , Food Preservatives , Limonene/analysis , Flowers , Anti-Bacterial Agents , Plant Extracts/pharmacology , Plant Extracts/chemistry
7.
Medicine (Baltimore) ; 102(32): e34514, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37565925

ABSTRACT

Polycystic ovary syndrome (PCOS) is a hormonal disorder that affects women of reproductive age, characterized by a range of symptoms, including irregular menstrual cycles, excess male hormones (androgens), metabolic abnormalities such as hyperinsulinemia, hyperlipidemia, and metabolic disturbances like glucose imbalance. Botanical supplements are perceived first and safe choice over available regimens to regulate PCOS. There are several reports available stating that apocarotenoids, carotenoids, and whole extracts of Crocus sativus were identified to have a potential role in the management of women health. This study aimed to propose a network pharmacology-based method to determine the potential therapeutic pathways of phytoconstituents (apocarotenoids and carotenoids) of UHPLC-PDA standardized stigma-based Crocus sativus extract (CSE) for the management of PCOS. Furthermore, to validate the potential targets and signaling pathways, these apocarotenoids, and carotenoids were screened for molecular docking and in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions. The information regarding PCOS-related genes was retrieved from the PCOS knowledge database (PCOSKB), resulting in an established network between putative targets of PCOS and Crocus sativus extract phytochemicals to prevail the mechanism of action. Based on the screening conditions, 4 prominent targets namely, serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription (STAT3), mitogen-activated protein kinase 3 (MAPK3), and mitogen-activated protein kinase 1 (MAPK1), were identified through network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that MAP kinase and serine-threonine pathways were found prominent targets in PCOS. Further, a molecular docking study shows that crocetin, picrocrocin, and safranal had the best binding affinity for the identified targets. In silico ADMET results revealed that carotenoids and apocarotenoids were found to have the maximum bioavailability and were able to cross the blood-brain barrier without any toxic effects. The combined results revealed that the apocarotenoids and carotenoids of Crocus sativus extract could act on various targets to regulate multiple pathways related to PCOS.


Subject(s)
Crocus , Polycystic Ovary Syndrome , Female , Male , Humans , Crocus/chemistry , Crocus/genetics , Crocus/metabolism , Polycystic Ovary Syndrome/drug therapy , Molecular Docking Simulation , Network Pharmacology , Carotenoids/pharmacology , Carotenoids/therapeutic use
8.
Phytomedicine ; 119: 154989, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506574

ABSTRACT

BACKGROUND: Depression is a debilitating condition that affects the mind and the individual's body. The improving effects of saffron on depression and anxiety have long been discussed, with limited information about the molecular mechanism of action. HYPOTHESIS/PURPOSE: Investigating the effect of saffron carotenoids, Crocin and Crocetin, on depression and anxiety in rats by emphasizing some signaling pathways involved. STUDY DESIGN: Depression and anxiety were induced in rats via unpredictable chronic mild stress (UCMS). Then different rat groups were treated with Crocin, Crocetin, Fluoxetine, and vehicle. Behavioral tests were done before and after treatment. METHODS: The serum Serotonin and Corticosterone and the expression of some hippocampal signaling proteins were studied. Furthermore, bioinformatics tools were used to predict the interactions of Crocin/ Crocetin with the Serotonin transporter and NMDA receptor subunit NR2B. Then, the patch-clamp was used to study the interaction of Crocetin with the NMDA receptor. RESULTS: Various behavioral tests confirmed the induction of depression and the improvement of depression by these natural carotenoids. In addition, Crocin/ Crocetin significantly increased the decreased serum Serotonin and reduced the increased serum Corticosterone in the depressed groups. They also increased or caused a trend of increase in the CREB, ERK, BAD, BDNF, p11, and 5-HT1B expression in the hippocampus of the depressed groups. In addition, there were an increase or a trend in p-CREB/CREB, p-ERK1/2 /ERK1/2, and p-BAD/BAD ratios in the Crocin/ Crocetin treated depressed groups. However, the NR2B and FOXO3a expression showed a trend of decrease in depressed groups after treatment. The bioinformatics data indicated that Crocin/ Crocetin could bind to the Serotonin transporter (SLC6A4) and NR2B subunit of the NMDA receptor. Both carotenoids bind to the same site as Fluoxetine in the SLC6A4. However, they bound to different sites on the NR2B. So, Crocetin binds to NR2B at the same site as Ifenprodil. But Crocin bound to another site. The whole cell patch-clamp recording on the normal rat hippocampus revealed a significant decrease in the NMDA peak amplitude after Crocetin treatment, indicating its inhibitory effect on this receptor. CONCLUSION: The antidepressant activities of Crocin/ Crocetin are possibly due to their effects on Serotonin and Corticosterone serum concentrations, NR2B expression, and the downstream signaling pathways. Furthermore, these natural carotenoids, like Fluoxetine, induced an increasing tendency in p11 and 5HT1B in depressed rats.


Subject(s)
Crocus , Depression , Rats , Animals , Depression/drug therapy , Crocus/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Corticosterone , Fluoxetine/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Serotonin/metabolism , Carotenoids/pharmacology , Hippocampus/metabolism , Anxiety/drug therapy
9.
J Nat Med ; 77(4): 829-838, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450205

ABSTRACT

Safranal is one flavor component of saffron, which is used as a spice, food additive, and crude drug. In ISO3632, safranal is defined as the compound that contributes to the quality of saffron, and many quantitative determination methods for safranal have been reported. However, safranal is volatile and degrades easily during storage, and an analytical standard with an exact known purity is not commercially available, making it difficult to quantify accurately the content of safranal in saffron. Here, we developed a method for quantifying safranal using relative molar sensitivity (RMS), called the RMS method, using a GC-flame ionization detector (GC-FID). We determined the RMS of safranal to 1,4-bis(trimethylsilyl)benzene-d4, a certified reference material commercially available, by a combination of quantitative NMR and chromatography. Using two GC-FID instruments made by different manufacturers to evaluate inter-instrument effect, the resultant RMS was 0.770, and the inter-instrument difference was 0.6%. The test solution, with a known safranal concentration, was measured by the RMS method, with an accuracy of 99.4-101%, repeatability of 0.81%, and reproducibility of 0.81-1.3%. Given the ease of degradation, high volatility, and uncertain purity of safranal reagents, the RMS method is a more accurate quantification approach compared to the calibration curve method and methods based on absorption spectrophotometry. Moreover, our findings revealed that the GC-FID makeup gas affected the RMS and quantitative values.


Subject(s)
Crocus , Crocus/chemistry , Flame Ionization , Reproducibility of Results , Plant Extracts/chemistry , Terpenes/metabolism , Cyclohexenes/analysis , Cyclohexenes/metabolism
10.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298165

ABSTRACT

Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.


Subject(s)
Crocus , Diabetes Mellitus , Humans , Polyphenols/pharmacology , Polyphenols/metabolism , Crocus/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , Pancreatic alpha-Amylases/metabolism , Caco-2 Cells , Molecular Docking Simulation , Glucose/metabolism , Plant Extracts/chemistry
11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2241-2259, 2023 10.
Article in English | MEDLINE | ID: mdl-37103518

ABSTRACT

Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is produced by monocytes and macrophages. It is known as a 'double-edged sword' because it is responsible for advantageous and disadvantageous events in the body system. The unfavorable incident includes inflammation, which induces some diseases such as rheumatoid arthritis, obesity, cancer, and diabetes. Many medicinal plants have been found to prevent inflammation, such as saffron (Crocus sativus L.) and black seed (Nigella sativa). Therefore, the purpose of this review was to assess the pharmacological effects of saffron and black seed on TNF-α and diseases related to its imbalance. Different databases without time limitations were investigated up to 2022, including PubMed, Scopus, Medline, and Web of Science. All the original articles (in vitro, in vivo, and clinical studies) were collected on the effects of black seed and saffron on TNF-α. Black seed and saffron have therapeutic effects against many disorders, such as hepatotoxicity, cancer, ischemia, and non-alcoholic fatty liver, by decreasing TNF-α levels based on their anti-inflammatory, anticancer, and antioxidant properties. Saffron and black seed can treat a variety of diseases by suppressing TNF-α and exhibiting a variety of activities such as neuroprotective, gastroprotective, immunomodulatory, antimicrobial, analgesic, antitussive, bronchodilator, antidiabetic activity, anticancer, and antioxidant effects. To uncover the beneficial underlying mechanisms of black seed and saffron, more clinical trials and phytochemical research are required. Also, these two plants affect other inflammatory cytokines, hormones, and enzymes, implying that they could be used to treat a variety of diseases.


Subject(s)
Crocus , Nigella sativa , Humans , Tumor Necrosis Factor-alpha/metabolism , Crocus/chemistry , Crocus/metabolism , Plant Extracts/chemistry , Cytokines/analysis , Nigella sativa/chemistry , Nigella sativa/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Oxidative Stress , Inflammation/drug therapy , Seeds
12.
Chem Biodivers ; 20(4): e202201186, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36815287

ABSTRACT

In this study, Crocus ancyrensis was extracted from different parts of the plants with various solvents and their antioxidant activities and phenolic contents were investigated in detail for the first time. The highest amount of total phenolic substance in all parts of the plant was determined in the stigmaless flower. In the DPPH and FRAP methods, the highest antioxidant activity was obtained from the water extraction from the plant. Rutin is the highest detected by LC MS/MS. Stigmaless flower extract in all solvents is attributed to the component that contributes the most to antioxidant capacity. p-hydroxy benzoic acid was detected as the highest phenolic component after rutin. When the antioxidant activity results were examined, it was determined that the highest activity was in the water extract. As a result, it is evaluated that rutin and p-hydroxybenzoic acid in the plant contribute to the antioxidant capacity.


Subject(s)
Antioxidants , Crocus , Antioxidants/chemistry , Crocus/chemistry , Flavonoids/chemistry , Phenols/pharmacology , Phenols/chemistry , Plant Extracts/chemistry , Rutin , Solvents , Tandem Mass Spectrometry , Water
13.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834472

ABSTRACT

Dyslipidemia is a lipid metabolism disorder associated with the loss of the physiological homeostasis that ensures safe levels of lipids in the organism. This metabolic disorder can trigger pathological conditions such as atherosclerosis and cardiovascular diseases. In this regard, statins currently represent the main pharmacological therapy, but their contraindications and side effects limit their use. This is stimulating the search for new therapeutic strategies. In this work, we investigated in HepG2 cells the hypolipidemic potential of a picrocrocin-enriched fraction, analyzed by high-resolution 1H NMR and obtained from a saffron extract, the stigmas of Crocus sativus L., a precious spice that has already displayed interesting biological properties. Spectrophotometric assays, as well as expression level of the main enzymes involved in lipid metabolism, have highlighted the interesting hypolipidemic effects of this natural compound; they seem to be exerted through a non-statin-like mechanism. Overall, this work provides new insights into the metabolic effects of picrocrocin, thus confirming the biological potential of saffron and paving the way for in vivo studies that could validate this spice or its phytocomplexes as useful adjuvants in balancing blood lipid homeostasis.


Subject(s)
Crocus , Humans , Crocus/chemistry , Hep G2 Cells , Plant Extracts/pharmacology , Terpenes/pharmacology , Cyclohexenes/pharmacology
14.
Anat Rec (Hoboken) ; 306(2): 422-436, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35451203

ABSTRACT

Sofosbuvir is a novel drug candidate for the treatment of hepatitis C viral infection; however, vision loss is one of its growing adverse effects. Saffron is a natural biomolecule with a high antioxidant potential that has been efficiently used in some diseases caused by oxidative stress. This study evaluated Sofosbuvir's neurodegenerative effect on the retina of albino rat and examined the potential protective role of saffron aqueous extract. Twenty-one adult male albino rats were randomly divided into three groups: Control, Sofosbuvir-treated (41.1 mg/kg /day for 6 weeks), and Sofosbuvir + Saffron co-treated groups. Retinal specimens were biochemically analyzed for malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels. In addition, light and transmission electron microscopic examination, as well as immunohistochemical staining for Caspase-3, COX-2, and GFAP were performed. Sofosbuvir treatment caused a significant increase in retinal MDA, IL-6, and TNF-α levels coupling with a significant decrease in retinal total antioxidant capacity level. Histopathological findings revealed disturbed retinal architecture, detached pigment epithelium, vacuolated photoreceptors, in addition to a significant decrease in the thicknesses of both outer and inner nuclear layers, and the number of ganglionic cells. Ultrastructural examination revealed extensive degenerative changes in all retinal layers. Caspase-3, COX-2, and GFAP immunohistochemical expressions were significantly increased. Meanwhile, concomitant treatment with Saffron significantly improved retinal redox status, inflammation, histological, and ultrastructural parameters. Saffron may protect the retina from the hazardous effects of Sofosbuvir. Saffron could be used as an adjuvant therapy to protect patients receiving Sofosbuvir from retinal damage.


Subject(s)
Antioxidants , Crocus , Humans , Adult , Male , Rats , Antioxidants/pharmacology , Crocus/chemistry , Crocus/metabolism , Caspase 3/metabolism , Sofosbuvir/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Cyclooxygenase 2/metabolism , Interleukin-6/metabolism , Interleukin-6/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Retina/metabolism , Oxidative Stress , Animals
15.
J Anat ; 243(2): 265-273, 2023 08.
Article in English | MEDLINE | ID: mdl-35778985

ABSTRACT

Saffron is an ancient spice largely used in traditional medicine. It has been found to be effective in treatment of retinal neurodegenerative diseases like age-related macular degeneration and Stargardt. In the present manuscript, it is shown that saffron's neuroprotective power is strongly related to the bioactivity of all its chemical components. Nuclear magnetic resonance spectroscopy and "in vitro" experiments confirm the relevance of crocins for saffron efficacy. These results underline the importance of strictly defining the chemical composition of the natural compounds in saffron to optimize their effectiveness in the treatment of diseases.


Subject(s)
Crocus , Neurodegenerative Diseases , Crocus/chemistry , Neurodegenerative Diseases/drug therapy
16.
Food Chem ; 404(Pt B): 134649, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36288673

ABSTRACT

60 MHz proton NMR spectroscopy was used to analyse extracts from saffron spice and a range of potential adulterants and mixtures. Using a simple extraction procedure, good quality spectra were obtained which contain peaks from the characteristic metabolites picrocrocin and crocins, fatty acids and kaempferol. The spectra of samples from trusted suppliers were used to train one-class classification models by SIMCA, nearest neighbour and isolation forest methods. Applying these to spectra of saffron samples purchased from the online marketplace, it was found that 7 out of 33 samples were highly anomalous. From comparison with the spectra of known mixtures and confirmatory spectral analysis using 600 MHz NMR, it is probable that these contain considerable amounts of undisclosed foreign matter.


Subject(s)
Crocus , Crocus/chemistry , Protons , Magnetic Resonance Spectroscopy/methods , Plant Extracts/chemistry
17.
Phytother Res ; 36(12): 4604-4619, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36482025

ABSTRACT

Hyperuricemia was associated with the overproduction or inadequate excretion of uric acid, while its association with gut microbiota has emerged although few studies were focused on it. Previously, we have reported a flavonoid extract from saffron floral bio-residues lowered uric acid in potassium oxonate-induced hyperuricemic mice. In this study, the impacts of the flavonoid extract on potassium oxonate-induced hyperuricemic rats were evaluated through its effects on serum, renal, intestinal uric acid, and xanthine oxidase activity. At the same time, the microbial and metabolic features of the flavonoid extract against hyperuricemia were explored using 16S rRNA sequencing techniques and serum metabolomics, respectively. According to the results, the flavonoid extract lowered serum and intestinal uric acid levels in hyperuricemic rats without kidney damage. On the one hand, it inhibited serum and liver xanthine oxidase activities and down-regulated the expression of hepatic xanthine oxidase. On the other hand, it ameliorated the hyperuricemia-associated gut microbiota dysbiosis and alleviated the disturbance of serum metabolome, especially of lipid and amino acid metabolites. The results suggested that the flavonoid extract of saffron floral bio-residues exerts a potent antihyperuricemia effect by inhibiting xanthine oxidase to decrease uric acid production and modulating gut microbiota related to host metabolism.


Subject(s)
Crocus , Flavonoids , Hyperuricemia , Plant Extracts , Xanthine Oxidase , Animals , Rats , Crocus/chemistry , Flavonoids/pharmacology , Flowers/chemistry , Gastrointestinal Microbiome , Hyperuricemia/drug therapy , Plant Extracts/pharmacology , RNA, Ribosomal, 16S , Uric Acid , Xanthine Oxidase/antagonists & inhibitors
18.
Molecules ; 27(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36558107

ABSTRACT

Soilless cultivation of saffron (Crocus sativus) in a controlled environment represents an interesting alternative to field cultivation, in order to obtain a standardized high-quality product and to optimize yields. In particular, pharma-grade saffron is fundamental for therapeutic applications of this spice, whose efficacy has been demonstrated in the treatment of macular diseases, such as Age-related Macular Degeneration (AMD). In this work, a hydroponic cultivation system was developed, specifically designed to meet the needs of C. sativus plant. Various cultivation recipes, different in spectrum and intensity of lighting, temperature, photoperiod and irrigation, have been adopted to study their effect on saffron production. The experimentation involved the cultivation of corms from two subsequent farm years, to identify and validate the optimal conditions, both in terms of quantitative yield and as accumulation of bioactive metabolites, with particular reference to crocins and picrocrocin, which define the 'pharma-grade' quality of saffron. Through HPLC analysis and chromatography it was possible to identify the cultivation parameters suitable for the production of saffron with neuroprotective properties, evaluated by comparison with an ISO standard and the REPRON® procedure. Furthermore, the biochemical characterization was completed through NMR and high-resolution mass spectrometry analyses of saffron extracts. The whole experimental framework allowed to establish an optimized protocol to produce pharma-grade saffron, allowing up to 3.2 g/m2 harvest (i.e., more than three times higher than field production in optimal conditions), which meets the standards of composition for the therapy of AMD.


Subject(s)
Crocus , Crocus/chemistry , Farms , Hydroponics , Molecular Farming , Agriculture , Plant Extracts/chemistry
19.
Oxid Med Cell Longev ; 2022: 6480590, 2022.
Article in English | MEDLINE | ID: mdl-36193081

ABSTRACT

The present review is designed to measure the effects of saffron extract in functional foods and its pharmacological properties against various disorders. Saffron is a traditional medicinal plant used as a food additive. The stigma of saffron has bioactive compounds such as safranal, crocin, crocetin, picrocrocin, kaempferol, and flavonoid. These bioactive compounds can be extracted using conventional (maceration, solvent extraction, soxhlet extraction, and vapor or hydrodistillation) and novel techniques (emulsion liquid membrane extraction, ultrasound-assisted extraction, enzyme-associated extraction, pulsed electric field extraction, microwave-assisted extraction, and supercritical fluid extraction). Saffron is used as a functional ingredient, natural colorant, shelf-life enhancer, and fortifying agent in developing different food products. The demand for saffron has been increasing in the pharma industry due to its protection against cardiovascular and Alzheimer disease and its antioxidant, anti-inflammatory, antitumor, and antidepressant properties. Conclusively, the phytochemical compounds of saffron improve the nutrition value of products and protect humans against various disorders.


Subject(s)
Crocus , Anti-Inflammatory Agents , Antidepressive Agents , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain , Crocus/chemistry , Emulsions , Flavonoids/pharmacology , Food Additives , Functional Food , Humans , Kaempferols , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Solvents
20.
Molecules ; 27(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296396

ABSTRACT

Saffron is a very high value-added ingredient used in the food supplement market and contains a high level of safranal. Adding synthetic safranal to saffron, which is significantly cheaper, and falsifying the origin of saffron may represent recurrent fraud. Saffron from different countries was analyzed to determine the stable isotope ratios δ13C and δ2H from safranal by gas chromatography coupled with isotope-ratio mass spectrometry (GC-C/P-IRMS) and the concentration of saffron metabolites with ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD). The isotopic analysis highlighted a higher ratio of δ2H in synthetic safranal than in natural safranal; the mean values were 36‱ (+/- 40) and -210‱ (+/- 35), respectively. The δ13C between Iranian, Spanish and other saffron was significantly different and represents median values of -28.62‱, -30.12‱ and -30.70‱, respectively. Moreover, linear and quadratic discriminant analyses (LDA and QDA) were computed using the two isotope ratios of safranal and the saffron metabolites. A first QDA showed that trans-crocetin and the δ13C of safranal, picrocrocin, and crocin C3 concentrations clearly differentiated Iranian saffron from other origins. A second model identified δ13C, trans-crocetin, crocin C2, crocin C3, and picrocrocin as good predictors to discriminate saffron samples from Iran, Spain, or other origins, with a total ability score classification matrix of 100% and a prediction matrix of 82.5%. This combined approach may be a useful tool to authenticate the origin of unknown saffron.


Subject(s)
Crocus , Crocus/chemistry , Iran , Plant Extracts/chemistry , Cyclohexenes/analysis , Terpenes/analysis , Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL