Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Clin Exp Pharmacol Physiol ; 49(1): 134-144, 2022 01.
Article in English | MEDLINE | ID: mdl-34448246

ABSTRACT

At present, there are still many problems in the treatment of lung cancer, such as high cost, side effects and low quality of life. The advantages of traditional Chinese medicine (TCM) in the treatment of lung cancer are reflected. Berberine has been increasingly popular in colorectal cancer treatment, but little is known about its bioactivity against non-small cell lung cancer (NSCLC). Cell proliferation, cell apoptosis, cDNA microarray, gene and protein expression, and NSCLC transplanted tumour growth were performed. Berberine suppressed NSCLC cell proliferation and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously transplanted tumour lung tumour models, leading to prolonged survival of tumour-bearing mice. However, berberine did not induce the cleavage of Caspase 3 and PARP1, and could not induce apoptosis in all NSCLC cells. Moreover, 646 genes were differentially expressed upon berberine administration, which were involved in seven signal pathways, such as DNA replication. In cDNA microarray, berberine downregulated the expression of RRM1, RRM2, LIG1, POLE2 that involving DNA repair and replication. Our findings demonstrate that berberine inhibits NSCLC cells growth through repressing DNA repair and replication rather than through apoptosis. Berberine could be used as a promising therapeutic candidate for NSCLC patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Berberine/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Repair/drug effects , DNA Replication/drug effects , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Berberine/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis
2.
Molecules ; 26(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068164

ABSTRACT

Astragaloside IV (AS-IV) is one of the major bio-active ingredients of huang qi which is the dried root of Astragalus membranaceus (a traditional Chinese medicinal plant). The pharmacological effects of AS-IV, including anti-oxidative, anti-cancer, and anti-diabetic effects have been actively studied, however, the effects of AS-IV on liver regeneration have not yet been fully described. Thus, the aim of this study was to explore the effects of AS-IV on regenerating liver after 70% partial hepatectomy (PHx) in rats. Differentially expressed mRNAs, proliferative marker and growth factors were analyzed. AS-IV (10 mg/kg) was administrated orally 2 h before surgery. We found 20 core genes showed effects of AS-IV, many of which were involved with functions related to DNA replication during cell division. AS-IV down-regulates MAPK signaling, PI3/Akt signaling, and cell cycle pathway. Hepatocyte growth factor (HGF) and cyclin D1 expression were also decreased by AS-IV administration. Transforming growth factor ß1 (TGFß1, growth regulation signal) was slightly increased. In short, AS-IV down-regulated proliferative signals and genes related to DNA replication. In conclusion, AS-IV showed anti-proliferative activity in regenerating liver tissue after 70% PHx.


Subject(s)
Cell Cycle , DNA Replication , Down-Regulation , Hepatectomy , Liver Regeneration/drug effects , Liver/cytology , Saponins/pharmacology , Triterpenes/pharmacology , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cyclin D1/metabolism , DNA Replication/drug effects , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Hepatocyte Growth Factor/metabolism , Liver/drug effects , Liver/surgery , Male , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Saponins/chemistry , Sequence Analysis, RNA , Transforming Growth Factor beta1/metabolism , Triterpenes/chemistry
3.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34117124

ABSTRACT

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Subject(s)
Cytoplasm/physiology , Escherichia coli/physiology , Carbon/deficiency , Carbon/pharmacology , Cytoplasm/drug effects , DNA Replication/drug effects , Down-Regulation/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular/drug effects , Nitrogen/analysis , Phosphorus/analysis
4.
Sci Rep ; 11(1): 7718, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833336

ABSTRACT

DNA replication inhibitors are utilized extensively in studies of molecular biology and as chemotherapy agents in clinical settings. The inhibition of DNA replication often triggers double-stranded DNA breaks (DSBs) at stalled DNA replication sites, resulting in cytotoxicity. In East Asia, some traditional medicines are administered as anticancer drugs, although the mechanisms underlying their pharmacological effects are not entirely understood. In this study, we screened Japanese herbal medicines and identified two benzylisoquinoline alkaloids (BIAs), berberine and coptisine. These alkaloids mildly induced DSBs, and this effect was dependent on the function of topoisomerase I (Topo I) and MUS81-EME1 structure-specific endonuclease. Biochemical analysis revealed that the action of BIAs involves inhibiting the catalytic activity of Topo I rather than inducing the accumulation of the Topo I-DNA complex, which is different from the action of camptothecin (CPT). Furthermore, the results showed that BIAs can act as inhibitors of Topo I, even against CPT-resistant mutants, and that the action of these BIAs was independent of CPT. These results suggest that using a combination of BIAs and CPT might increase their efficiency in eliminating cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Berberine/analogs & derivatives , Berberine/pharmacology , Camptothecin/pharmacology , Drug Resistance, Neoplasm/drug effects , Topoisomerase I Inhibitors/pharmacology , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , DNA Replication/drug effects , DNA Topoisomerases, Type I/genetics , Herbal Medicine , Humans
5.
Antiviral Res ; 189: 105057, 2021 05.
Article in English | MEDLINE | ID: mdl-33716051

ABSTRACT

Emergence of drug resistance and adverse effects often affect the efficacy of nucleoside analogues in the therapy of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Host-targeting antivirals could therefore be considered as an alternative or complementary strategy in the management of HSV infections. To contribute to this advancement, here we report on the ability of a new generation inhibitor of a key cellular enzyme of de novo pyrimidine biosynthesis, the dihydroorotate dehydrogenase (DHODH), to inhibit HSV-1 and HSV-2 in vitro replication, with a potency comparable to that of the reference drug acyclovir. Analysis of the HSV replication cycle in MEDS433-treated cells revealed that it prevented the accumulation of viral genomes and reduced late gene expression, thus suggesting an impairment at a stage prior to viral DNA replication consistent with the ability of MEDS433 to inhibit DHODH activity. In fact, the anti-HSV activity of MEDS433 was abrogated by the addition of exogenous uridine or of the product of DHODH, the orotate, thus confirming DHODH as the MEDS433 specific target in HSV-infected cells. A combination of MEDS433 with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, was then observed to be effective in inhibiting HSV replication even in the presence of exogenous uridine, thus mimicking in vivo conditions. Finally, when combined with acyclovir and DPY in checkerboard experiments, MEDS433 exhibited highly synergistic antiviral activity. Taken together, these findings suggest that MEDS433 is a promising candidate as either single agent or in combination regimens with existing direct-acting anti-HSV drugs to develop new strategies for treatment of HSV infections.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Virus Replication/drug effects , Acyclovir/pharmacology , Animals , Cell Line, Tumor , Chlorocebus aethiops , DNA Replication/drug effects , DNA, Viral/biosynthesis , Dihydroorotate Dehydrogenase , Drug Synergism , Drug Therapy, Combination , Gene Expression Regulation, Viral/drug effects , Herpes Simplex/virology , Humans , Pyrimidines/biosynthesis , Vero Cells
6.
Biomed Pharmacother ; 133: 111090, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33378984

ABSTRACT

Cancer incidence rates are on the increase worldwide. The most common brain cancer in adults is glioblastoma. Currently available treatment modalities are limited and natural products such as mushrooms could enhance them. Apart from nutritional value, mushrooms are an excellent source of bioactive compounds and therefore could be used to treat various disorders. The aim of the study was to assess the anti-glioma potential of selected mushrooms on U87MG, LN-18 glioblastoma and SVGp12 normal human astroglial cell lines. The materials were Cantharellus cibarius, Coprinus comatus, Lycoperdon perlatum and Lactarius delicious. Aqueous, 70 % ethanol or 95 % ethanol extracts from mushrooms were used for analysis including assessment of antioxidant activity by DPPH assay, cell viability by MTT assay, DNA biosynthesis by thymidine incorporation assay, activity of metalloproteinase by gelatin zymography and cell cycle assay by flow cytometry. Mushroom extracts influenced the viability and DNA biosynthesis of cancer cells. Activity of ethanol mushroom extracts was stronger than that of aqueous extracts. Anti-glioma mechanism consisted in inhibition of cancer cell proliferation and induction of apoptosis associated with arrest of cells in subG1 or G2/M phase of cell cycle, and inhibition of metalloproteinases activity. Among investigated mushrooms, L. deliciosus and C. comatus showed the greatest anti-glioma potential.


Subject(s)
Agaricales , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Agaricales/chemistry , Antineoplastic Agents/isolation & purification , Basidiomycota/chemistry , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coprinus/chemistry , DNA Replication/drug effects , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Matrix Metalloproteinases/metabolism , Oxidative Stress/drug effects
7.
Antioxid Redox Signal ; 34(11): 856-874, 2021 04 10.
Article in English | MEDLINE | ID: mdl-33202145

ABSTRACT

Significance: Werner syndrome (WS) is a rare autosomal recessive malady typified by a pro-oxidant/proinflammatory status, genetic instability, and by the early onset of numerous age-associated illnesses. The protein malfunctioning in WS individuals (WRN) is a helicase/exonuclease implicated in transcription, DNA replication/repair, and telomere maintenance. Recent Advances: In the last two decades, a series of important biological systems were created to comprehend at the molecular level the effect of a defective WRN protein. Such biological tools include mouse and worm (Caenorhabditis elegans) with a mutation in the Wrn helicase ortholog as well as human WS-induced pluripotent stem cells that can ultimately be differentiated into most cell lineages. Such WS models have identified anomalies related to the hallmarks of aging. Most importantly, vitamin C counteracts these age-related cellular phenotypes in these systems. Critical Issues: Vitamin C is the only antioxidant agent capable of reversing the cellular aging-related phenotypes in those biological systems. Since vitamin C is a cofactor for many hydroxylases and mono- or dioxygenase, it adds another level of complexity in deciphering the exact molecular pathways affected by this vitamin. Moreover, it is still unclear whether a short- or long-term vitamin C supplementation in human WS patients who already display aging-related phenotypes will have a beneficial impact. Future Directions: The discovery of new molecular markers specific to the modified biological pathways in WS that can be used for novel imaging techniques or as blood markers will be necessary to assess the favorable effect of vitamin C supplementation in WS. Antioxid. Redox Signal. 34, 856-874.


Subject(s)
Ascorbic Acid/therapeutic use , Werner Syndrome Helicase/genetics , Werner Syndrome/diet therapy , Animals , Ascorbic Acid/genetics , Ascorbic Acid/metabolism , Caenorhabditis elegans/genetics , DNA Replication/drug effects , DNA Replication/genetics , Dietary Supplements , Disease Models, Animal , Humans , Mice , Werner Syndrome/genetics , Werner Syndrome/metabolism , Werner Syndrome/pathology
8.
Biomed Pharmacother ; 131: 110638, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32916537

ABSTRACT

This article aims to investigate the role of Simiao Qingwen Baidu Decoction (traditional Chinese medicine) in Epstein-Barr virus (EBV)-induced infectious mononucleosis. Sprague Dawley rats were given Simiao Qingwen Baidu Decoction by gavage, and the medicated serum was collected. EBV-latent infected human Burkitt lymphomas Raji and EBV-transformed marmosets B lymphoblast cell B95-8 were treated with medicated serum. CCK8 assay and flow cytometry were performed to detect cell proliferation and apoptosis. Indirect immunofluorescence assay was performed to analyze EA or VCA positive expression. The copy-number of EBV-DNA and the gene expression were detected by quantitative PCR or quantitative real-time PCR. We found that the medicated serum inhibited proliferation of Raji and B95-8 cells, especially 10 %-medicated serum. The 10 %-medicated serum significantly suppressed EA expression in Raji cells and VCA expression in B95-8 cells. The expression of BZLF1, BRLF1, BMLF1 and EBNA-1 in Raji cells was significantly inhibited by 10 %-medicated serum. 10 %-medicated serum caused a decrease in the copy-number of EBV-DNA in Raji cells. In conclusion, our data imply that Simiao Qingwen Baidu Decoction represses the expression of EA and VCA, and EBV-DNA replication. Thus, our work suggests that Simiao Qingwen Baidu Decoction may play a vital role in anti-EBV.


Subject(s)
Antigens, Viral , Capsid Proteins/antagonists & inhibitors , DNA Replication/drug effects , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation, Viral , Herpesvirus 4, Human/drug effects , Animals , Antigens, Viral/genetics , Antigens, Viral/metabolism , Callithrix , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line, Transformed , Cell Line, Tumor , DNA Replication/physiology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Male , Rats , Rats, Sprague-Dawley , Virus Replication/drug effects , Virus Replication/physiology
9.
Int J Mol Sci ; 21(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397562

ABSTRACT

Bacopa monnieri L. Wettst. (BM) is a botanical component of Ayurvedic medicines and of dietary supplements used worldwide for cognitive health and function. We previously reported that administration of BM alcoholic extract (BME) prevents trimethyltin (TMT)-induced cognitive deficits and hippocampal cell damage and promotes TMT-induced hippocampal neurogenesis. In this study, we demonstrate that administration of BME improves spatial working memory in adolescent (5-week- old) healthy mice but not adult (8-week-old) mice. Moreover, improved spatial working memory was retained even at 4 weeks after terminating 1-week treatment of adolescent mice. One-week BME treatment of adolescent mice significantly enhanced hippocampal BrdU incorporation and expression of genes involved in neurogenesis determined by RNAseq analysis. Cell death, as detected by histochemistry, appeared not to be significant. A significant increase in neurogenesis was observed in the dentate gyrus region 4 weeks after terminating 1-week treatment of adolescent mice with BME. Bacopaside I, an active component of BME, promoted the proliferation of neural progenitor cells in vitro in a concentration-dependent manner via the facilitation of the Akt and ERK1/2 signaling. These results suggest that BME enhances spatial working memory in healthy adolescent mice by promoting hippocampal neurogenesis and that the effects of BME are due, in significant amounts, to bacopaside I.


Subject(s)
Bacopa/chemistry , Dentate Gyrus/drug effects , Memory Disorders/drug therapy , Memory, Short-Term/drug effects , Neurogenesis/drug effects , Nootropic Agents/therapeutic use , Plant Extracts/therapeutic use , Spatial Memory/drug effects , Animals , Cells, Cultured , DNA Replication/drug effects , Dentate Gyrus/physiopathology , Gene Expression Regulation/drug effects , Male , Maze Learning/drug effects , Medicine, Ayurvedic , Memory Disorders/chemically induced , Memory Disorders/physiopathology , Mice , Neural Stem Cells/drug effects , Neurogenesis/genetics , Nootropic Agents/pharmacology , Plant Extracts/pharmacology , RNA-Seq , Saponins/pharmacology , Sexual Maturation , Signal Transduction/drug effects , Trimethyltin Compounds/toxicity , Triterpenes/pharmacology
10.
Plant Cell Rep ; 39(8): 1013-1028, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32328702

ABSTRACT

KEY MESSAGE: Induction of biphasic interphase-mitotic cells and PCC is connected with an increased level of metabolism in root meristem cells of Allium cepa. Previous experiments using primary roots of Allium cepa exposed to low concentrations of hydroxyurea have shown that long-term DNA replication stress (DRS) disrupts essential links of the S-M checkpoint mechanism, leading meristem cells either to premature chromosome condensation (PCC) or to a specific form of chromatin condensation, establishing biphasic organization of cell nuclei with both interphase and mitotic domains (IM cells). The present study supplements and extends these observations by describing general conditions under which both abnormal types of M-phase cells may occur. The analysis of root apical meristem (RAM) cell proliferation after prolonged mild DRS indicates that a broad spectrum of inhibitors is capable of generating PCC and IM organization of cell nuclei. These included: 5-aminouracil (5-AU, a thymine antagonist), characterized by the highest efficiency in creating cells with the IM phenotype, aphidicolin (APH), an inhibitor of DNA polymerase α, 5-fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase, methotrexate (MTX), a folic acid analog that inhibits purine and pyrimidine synthesis, and cytosine arabinoside (Ara-C), which inhibits DNA replication by forming cleavage complexes with topoisomerase I. As evidenced using fluorescence-based click chemistry assays, continuous treatment of onion RAM cells with 5-AU is associated with an accelerated dynamics of the DNA replication machinery and significantly enhanced levels of transcription and translation. Furthermore, DRS conditions bring about an intensified production of hydrogen peroxide (H2O2), depletion of reduced glutathione (GSH), and some increase in DNA fragmentation, associated with only a slight increase in apoptosis-like programmed cell death events.


Subject(s)
DNA Replication/drug effects , Interphase/drug effects , Meristem/cytology , Mitosis/drug effects , Onions/cytology , Uracil/analogs & derivatives , Apoptosis/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , DNA Damage , DNA Fragmentation/drug effects , Gene Expression Regulation, Plant/drug effects , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Onions/genetics , Protein Biosynthesis/drug effects , Reactive Oxygen Species/metabolism , Seedlings/drug effects , Seedlings/metabolism , Transcription, Genetic/drug effects , Uracil/pharmacology
11.
Cells ; 9(2)2020 02 18.
Article in English | MEDLINE | ID: mdl-32085572

ABSTRACT

Research on repurposing the old alcohol-aversion drug disulfiram (DSF) for cancer treatment has identified inhibition of NPL4, an adaptor of the p97/VCP segregase essential for turnover of proteins involved in multiple pathways, as an unsuspected cancer cell vulnerability. While we reported that NPL4 is targeted by the anticancer metabolite of DSF, the bis-diethyldithiocarbamate-copper complex (CuET), the exact, apparently multifaceted mechanism(s) through which the CuET-induced aggregation of NPL4 kills cancer cells remains to be fully elucidated. Given the pronounced sensitivity to CuET in tumor cell lines lacking the genome integrity caretaker proteins BRCA1 and BRCA2, here we investigated the impact of NPL4 targeting by CuET on DNA replication dynamics and DNA damage response pathways in human cancer cell models. Our results show that CuET treatment interferes with DNA replication, slows down replication fork progression and causes accumulation of single-stranded DNA (ssDNA). Such a replication stress (RS) scenario is associated with DNA damage, preferentially in the S phase, and activates the homologous recombination (HR) DNA repair pathway. At the same time, we find that cellular responses to the CuET-triggered RS are seriously impaired due to concomitant malfunction of the ATRIP-ATR-CHK1 signaling pathway that reflects an unorthodox checkpoint silencing mode through ATR (Ataxia telangiectasia and Rad3 related) kinase sequestration within the CuET-evoked NPL4 protein aggregates.


Subject(s)
Alcohol Deterrents/pharmacology , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA Damage/drug effects , DNA Replication/drug effects , Disulfiram/pharmacology , Neoplasms/metabolism , Nuclear Proteins/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , DNA-Binding Proteins/metabolism , Humans , Neoplasms/pathology , Nuclear Proteins/metabolism , Protein Aggregates/drug effects , Protein Aggregation, Pathological/chemically induced , Signal Transduction/drug effects , Valosin Containing Protein/metabolism
12.
Langmuir ; 35(45): 14532-14542, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31635451

ABSTRACT

We report pH-responsive liquid crystalline lipid nanoparticles, which are dual-loaded by Brucea javanica oil (BJO) and doxorubicin hydrochloride (DOX) and display a pH-induced inverted hexagonal (pH = 7.4) to cubic (pH = 6.8) to emulsified microemulsion (pH = 5.3) phase transition with a therapeutic application in cancer inhibition. BJO is a traditional herbal medicine that strongly inhibits the proliferation and metastasis of various cancers. Doxorubicin is an antitumor drug, which prevents DNA replication and hampers protein synthesis through intercalation between the base pairs of the DNA helices. Its dose-dependent cardiotoxicity imposes the need for safe delivery carriers. Here, pH-induced changes in the structural and interfacial properties of designed multicomponent drug delivery (monoolein-oleic acid-BJO-DOX) systems are determined by synchrotron small-angle X-ray scattering and the Langmuir film balance technique. The nanocarrier assemblies display good physical stability in the studied pH range and adequate particle sizes and ζ-potentials. Their interaction with model lipid membrane interfaces is enhanced under acidic pH conditions, which mimic the microenvironment around tumor cells. In vitro cytotoxicity and apoptosis studies with BJO-DOX dual-loaded pH-switchable liquid crystalline nanoparticles are performed on the human breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line and MCF-7 cells with doxorubicin resistance (MCF-7/DOX), respectively. The obtained pH-sensitive nanomedicines exhibit enhanced antitumor efficacy. The performed preliminary studies suggest a potential reversal of the resistance of the MCF-7/DOX cells to DOX. These results highlight the necessity for further understanding the link between the established pH-dependent drug release profiles of the nanocarriers and the role of their pH-switchable inverted hexagonal, bicontinuous cubic, and emulsified microemulsion inner organizations for therapeutic outcomes.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Brucea/chemistry , Doxorubicin/chemistry , Drug Delivery Systems , Lipids/chemistry , Nanoparticles/chemistry , Plant Oils/chemistry , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , DNA Replication/drug effects , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Particle Size , Seeds/chemistry , Surface Properties
13.
Cancer Res ; 79(20): 5260-5271, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31444154

ABSTRACT

Loss of expression of context-specific tumor suppressors is a critical event that facilitates the development of prostate cancer. Zinc finger and BTB domain containing transcriptional repressors, such as ZBTB7A and ZBTB16, have been recently identified as tumor suppressors that play important roles in preventing prostate cancer progression. In this study, we used combined ChIP-seq and RNA-seq analyses of prostate cancer cells to identify direct ZBTB7A-repressed genes, which are enriched for transcriptional targets of E2F, and identified that the androgen receptor (AR) played a critical role in the transcriptional suppression of these E2F targets. AR recruitment of the retinoblastoma protein (Rb) was required to strengthen the E2F-Rb transcriptional repression complex. In addition, ZBTB7A was rapidly recruited to the E2F-Rb binding sites by AR and negatively regulated the transcriptional activity of E2F1 on DNA replication genes. Finally, ZBTB7A suppressed the growth of castration-resistant prostate cancer (CRPC) in vitro and in vivo, and overexpression of ZBTB7A acted in synergy with high-dose testosterone treatment to effectively prevent the recurrence of CRPC. Overall, this study provides novel molecular insights of the role of ZBTB7A in CRPC cells and demonstrates globally its critical role in mediating the transcriptional repression activity of AR. SIGNIFICANCE: ZBTB7A is recruited to the E2F-Rb binding sites by AR and negatively regulates the transcriptional activity of E2F1 on DNA replication genes.


Subject(s)
Adenocarcinoma/genetics , DNA-Binding Proteins/physiology , Neoplasm Proteins/physiology , Prostatic Neoplasms/genetics , Receptors, Androgen/physiology , Transcription Factors/physiology , Transcription, Genetic , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Binding Sites , Cell Line, Tumor , DNA Replication/drug effects , E2F1 Transcription Factor/physiology , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Transport , RNA Interference , Recurrence , Retinoblastoma Protein/physiology , Testosterone/pharmacology
14.
Microbiol Immunol ; 63(9): 359-366, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301156

ABSTRACT

Umesu phenolics were obtained from the salt extracts of Japanese apricot (Nanko-mume cultivar of Prunus mume Sieb. et Zucc.) as purified phenolics. The antiviral activities of umesu phenolics obtained were then examined against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), enveloped DNA viruses. The phenolics inhibited the multiplication of these viruses when added to the culture media of the infected cells. This inhibition occurred at phenolic concentrations at which they showed no severe cytotoxicity. One-step growth experiments showed that the eclipse period in the HSV-1 multiplication process was extended in the presence of umesu phenolics and that the addition of phenolics after the completion of viral DNA replication did not affect their multiplication. More drastic effects were observed on virucidal activities against HSV-1 and HSV-2; the infectivity decreased to 0.0001 when infected cells were incubated with 3 mg/ml phenolics at 30°C for 5 min. These results demonstrate the antiviral and virucidal activities of umesu phenolics and suggest a potential pharmacological use for these phenolics as a sanitizing or preventive medicine against superficial HSV infections.


Subject(s)
Herpes Simplex/drug therapy , Plant Extracts/pharmacology , Prunus armeniaca/chemistry , Simplexvirus/drug effects , Animals , Antiviral Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Chlorocebus aethiops , DNA Replication/drug effects , DNA Viruses/drug effects , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/growth & development , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/growth & development , Humans , Japan , Simplexvirus/growth & development , Vero Cells , Virus Attachment/drug effects , Virus Replication/drug effects
15.
BMC Complement Altern Med ; 19(1): 112, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31151442

ABSTRACT

BACKGROUND: The plant Holarrhena floribunda (H. floribunda; G. Don) is indigenous to sub-Saharan Africa and is traditionally used to treat several ailments. The present study was carried out to isolate and characterize bioactive compounds with anti-proliferative activity present in H. floribunda extracts. METHODS: Compounds were isolated from H. floribunda using the bioassay-guided fractionation technique of repeated column chromatography and the step-wise application of the MTT reduction assay to assess antiproliferative bioactivity. The structures of the compounds were identified mainly using NMR. The effects of the isolated compounds on the viability, cell cycle and proliferation of human cancer cell lines (MCF-7, HeLa and HT-29) as well as the non-cancerous human fibroblast cell line (KMST-6) were investigated. RESULTS: Bioassay-guided fractionation yielded two steroidal alkaloids: holamine (1) and funtumine (2). The MTT reduction assay shows that both compounds exhibited selective dose-dependent cytotoxicity against the cancer cell lines studied. The isolated compounds induced cell cycle arrest at the G0/G1 and G2/M phases in the cancer cell lines with significant reduction in DNA synthesis. The results obtained show that the cancer cells (MCF-7, HeLa and HT-29) used in this study were more sensitive to the isolated compounds compared to the noncancerous fibroblast cells (KMST-6). CONCLUSION: The ability of the isolated compounds to cause cell cycle arrest and reduce DNA synthesis raises hopes for their possible development and use as potent anticancer drugs. However, more mechanistic studies need to be done for complete validation of the efficacy of the two compounds.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Cell Cycle/drug effects , Holarrhena/chemistry , Phytosterols/isolation & purification , Cell Line, Tumor , DNA Replication/drug effects , Drug Screening Assays, Antitumor , Humans , Phytosterols/pharmacology
16.
Sci Rep ; 9(1): 6114, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992481

ABSTRACT

Leishmaniasis is a neglected disease that affects more than 12 million people, with a limited therapy. Plant-derived natural products represent a useful source of anti-protozoan prototypes. In this work, four derivatives were prepared from neolignans isolated from the Brazilian plant Nectandra leucantha, and their effects against intracellular amastigotes of Leishmania (L.) infantum evaluated in vitro. IC50 values between 6 and 35 µM were observed and in silico predictions suggested good oral bioavailability, no PAINS similarities, and ADMET risks typical of lipophilic compounds. The most selective (SI > 32) compound was chosen for lethal action and immunomodulatory studies. This compound caused a transient depolarization of the plasma membrane potential and induced an imbalance of intracellular Ca2+, possibly resulting in a mitochondrial impairment and leading to a strong depolarization of the membrane potential and decrease of ATP levels. The derivative also interfered with the cell cycle of Leishmania, inducing a programmed cell death-like mechanism and affecting DNA replication. Further immunomodulatory studies demonstrated that the compound eliminates amastigotes via an independent activation of the host cell, with decrease levels of IL-10, TNF and MCP-1. Additionally, this derivative caused no hemolytic effects in murine erythrocytes and could be considered promising for future lead studies.


Subject(s)
Anisoles/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania infantum/drug effects , Leishmaniasis/drug therapy , Neglected Diseases/drug therapy , Animals , Anisoles/chemistry , Anisoles/isolation & purification , Anisoles/therapeutic use , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/therapeutic use , Brazil , Cell Division/drug effects , Cell Line , DNA Replication/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Energy Metabolism/drug effects , Erythrocytes/drug effects , Female , Hemolysis/drug effects , Humans , Inhibitory Concentration 50 , Lauraceae/chemistry , Leishmania infantum/cytology , Leishmania infantum/genetics , Leishmania infantum/metabolism , Leishmaniasis/parasitology , Male , Membrane Potential, Mitochondrial/drug effects , Mesocricetus , Mice , Neglected Diseases/parasitology , Primary Cell Culture , Reactive Oxygen Species , Toxicity Tests
17.
FASEB J ; 33(6): 7168-7179, 2019 06.
Article in English | MEDLINE | ID: mdl-30848931

ABSTRACT

Polymerase γ catalytic subunit (POLG) gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting POLG are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus erythro-9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested POLG-mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.


Subject(s)
DNA Polymerase gamma/deficiency , DNA, Mitochondrial/metabolism , Deoxyribonucleotides/pharmacology , Fibroblasts/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adult , Catalytic Domain/genetics , Cells, Cultured , DNA Polymerase gamma/genetics , DNA Replication/drug effects , DNA, Mitochondrial/genetics , Deoxyribonucleotides/metabolism , Ethidium/pharmacology , Female , Fibroblasts/drug effects , Genotype , Humans , Male , Mitochondria, Muscle/genetics , Models, Molecular , Mutation, Missense , Phenotype , Point Mutation , Protein Conformation , Real-Time Polymerase Chain Reaction , Sequence Deletion
18.
SLAS Discov ; 24(6): 669-681, 2019 07.
Article in English | MEDLINE | ID: mdl-30802412

ABSTRACT

Mcm2-7 is the molecular motor of eukaryotic replicative helicase, and the regulation of this complex is a major focus of cellular S-phase regulation. Despite its cellular importance, few small-molecule inhibitors of this complex are known. Based upon our genetic analysis of synthetic growth defects between mcm alleles and a range of other alleles, we have developed a high-throughput screening (HTS) assay using a well-characterized mcm mutant (containing the mcm2DENQ allele) to identify small molecules that replicate such synthetic growth defects. During assay development, we found that aphidicolin (inhibitor of DNA polymerase alpha) and XL413 (inhibitor of the DNA replication-dependent kinase CDC7) preferentially inhibited growth of the mcm2DENQ strain relative to the wild-type parental strain. However, as both strains demonstrated some degree of growth inhibition with these compounds, small and variable assay windows can result. To increase assay sensitivity and reproducibility, we developed a strategy combining the analysis of cell growth kinetics with linear discriminant analysis (LDA). We found that LDA greatly improved assay performance and captured a greater range of synthetic growth inhibition phenotypes, yielding a versatile analysis platform conforming to HTS requirements.


Subject(s)
DNA Replication/drug effects , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Yeasts/drug effects , Yeasts/genetics , Alleles , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Reproducibility of Results , Synthetic Lethal Mutations , Yeasts/growth & development
19.
J Biomol Struct Dyn ; 37(16): 4222-4237, 2019 10.
Article in English | MEDLINE | ID: mdl-30526389

ABSTRACT

Emerging widespread bacterial resistance to current antibiotics with traditional targets is one of the major global concerns. Therefore, so many investigations are exploring the potential of other druggable macromolecules of bacteria such as replication machinery components that are not addressed by previous antibiotics. DNA polymerase is the major part of this machine. However, a few studies have been done on it so far. In this respect, we report the discovery of four new plant-based leads against DNA polymerase (pol) IIIC (three leads) and pol IIIE (one lead) of Gram-positive and negative bacteria by combining a sequentially constrained high-throughput virtual screenings on Traditional Chinese Medicine Database with in vitro assays. The compounds displayed relatively good levels of inhibitory effect. They were active against their designated targets at micromolar concentrations. The IC50 values for them are ranged from 25 to 111 µM. In addition, they showed minimum inhibitory concentrations in the range of 8-128 µg/mL against five representatives of pathogenic bacteria species. However, they were inactive against Pseudomonas aeruginosa. Given these results, these leads hold promise for future modification and optimization to be more effective in lower concentrations and also against most of the important bacterial species. Communicated by Ramaswamy H. Sarma.


Subject(s)
DNA Polymerase III/chemistry , DNA Replication/drug effects , Lead/pharmacology , Nucleic Acid Synthesis Inhibitors/pharmacology , Anti-Bacterial Agents/adverse effects , Computer Simulation , DNA Polymerase III/antagonists & inhibitors , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Lead/chemistry , Microbial Sensitivity Tests , Nucleic Acid Synthesis Inhibitors/chemistry , Prokaryotic Cells/drug effects , Prokaryotic Cells/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity
20.
Food Chem Toxicol ; 122: 163-171, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30316841

ABSTRACT

Furocoumarins are a class of compounds produced by several plant species, including some popularly consumed by humans. Furocoumarins are known to be well absorbed from food sources, and can be rapidly distributed into several tissues including the skin. In human skin, when exposed to UV radiation, furocoumarins may become photoactivated and form interstrand crosslinks with DNA, thereby disrupting DNA transcription. Because of this property, furocoumarins have been combined as topical or oral agents with UV irradiation as a phototherapy to treat multiple skin conditions, yet these treatments have been shown to increase risk of both melanoma and non-melanoma skin cancer. Whether or not dietary furocoumarin exposure may confer the same risk is not yet known. This review summarizes the current evidence regarding the activities of ingested furocoumarins, with particular focus on how dietary furocoumarins are absorbed, metabolized, and distributed throughout the body, and their interactions with various cellular components that may underlie a potential relationship with skin cancer.


Subject(s)
Furocoumarins/pharmacokinetics , Neoplasms, Radiation-Induced/etiology , Skin Neoplasms/etiology , Animals , Carcinogens/toxicity , DNA Adducts/chemistry , DNA Replication/drug effects , Dietary Exposure , Furocoumarins/adverse effects , Humans , Neoplasms, Radiation-Induced/genetics , Photochemotherapy , Plants, Edible/chemistry , Skin Neoplasms/genetics , Tissue Distribution , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL