Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.184
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Arch Pharm (Weinheim) ; 357(7): e2400091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570869

ABSTRACT

Lantana camara is widely known as a garden plant, but its use for various medicinal purposes is widespread in traditional medicine. In the frame of this study, L. camara was subjected to several different extraction techniques, including supercritical carbon dioxide extraction, accelerated solvent extraction (ASE), homogenizer-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, maceration, and Soxhlet extraction. The investigation encompasses the analysis of the chemical composition alongside assessments of biological activities, such as antioxidant and enzyme-inhibition potential and cytotoxicity of the obtained extracts. The obtained results showed that the extract obtained by accelerated-solvent extraction was the richest in the content of total phenols and of individual compounds. Of the 17 components identified in total, hispidulin was detected in the highest concentration (5.43-475.97 mg/kg). In the antioxidant assays, the extracts obtained by accelerated-solvent and microwave extraction possessed the highest level of antioxidant and antiradical protection. All obtained extracts showed enzyme-inhibitory action on amylase, glucosidase, tyrosinase, and cholinesterase, showing a high potential for application against diseases induced by excessive activity of these enzymes. Cytotoxic analysis was performed on normal and tumor cells, whereby the obtained IC50 values were in the range of 7.685-79.26 µg/mL, showing the high cytotoxicity of the obtained extracts. Using Z score analysis, ASE resulted in an optimal combination of tested quality characteristics of the L. camara extracts.


Subject(s)
Antioxidants , Lantana , Plant Extracts , Tandem Mass Spectrometry , Lantana/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chromatography, High Pressure Liquid , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Solvents/chemistry , Microwaves , Dose-Response Relationship, Drug
2.
Fitoterapia ; 175: 105956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604261

ABSTRACT

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.


Subject(s)
ATP Citrate (pro-S)-Lyase , Eleutherococcus , Eleutherococcus/chemistry , Molecular Structure , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/isolation & purification , Quinic Acid/chemistry , Hydroxybenzoates/pharmacology , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/chemistry , Structure-Activity Relationship
3.
Chem Biodivers ; 21(5): e202400139, 2024 May.
Article in English | MEDLINE | ID: mdl-38494875

ABSTRACT

Species of Onobrychis have been used to treat skin disorders such as wounds and cuts in folk medicine and Onobrychis argyrea subsp. argyrea (OA) commonly known as 'silvery sainfoin', is a member of this genus. In this study, it was aimed to investigate the skin-related biological activities and phytochemical characterization of OA. Moreover, an emulgel formulation was developed from the main methanolic extract of the plant (OAM). Initially, to identifiy of the active fractions, aerial parts of the plant material was extracted with methanol and fractionated by n-hexane, chloroform, ethyl acetate and n-butanol, respectively. Antioxidant activity was determined by CUPRAC, TOAC, FRAP and DPPH assays. Thereafter, the inhibition potential of OAM, novel formulation and all fractions was measured against elastase, collagenase, tyrosinase and hyaluronidase enzymes. OAM was analyzed and characterized by LC/MS-MS. The major bioactive flavonoids which are rutin and isoquercetin were measured and compared as qualitative and quantitative via high performance thin layer chromatography (HPTLC) analysis in OAM and fractions. The results showed that extracts of OA can be a potential cosmeceutical agent for skin related problems.


Subject(s)
Antioxidants , Enzyme Inhibitors , Monophenol Monooxygenase , Phytochemicals , Plant Extracts , Skin , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Skin/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Collagenases/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Gels/chemistry , Humans
4.
Chem Biodivers ; 21(5): e202301330, 2024 May.
Article in English | MEDLINE | ID: mdl-38220973

ABSTRACT

It is obvious that the oxidation process is an undeniable fact and when it comes to aging, one of the first solutions that come to mind is natural products. When it comes to natural products, both plants and bee products play an important, almost combative role against oxidation. For this purpose, natural products of both plant and animal origin were considered together in our study: Linden, green tea, aronia, wild grapes, myrtle, blueberries and basil, honey, pollen and propolis. Total phenolic content values of the extracts ranged between 49.28 and 3859.06 mg gallic acid equivalent/100 g, and propolis, green tea, chestnut flower and aronia samples were found to have the highest values. When looking at the NOS inhibition potential, it was determined that propolis, pollen and aronia samples had the highest percentage inhibition values of 98.11, 92.29, 83.44, respectively. Antioxidant activities of methanolic extracts were investigated using iron(III) reducing/antioxidant capacity (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity test and NOS inhibition tests. The phenolic composition of methanolic extracts was tested using the RP-HPLC-UV (high-performance liquid chromatographic method with ultraviolet) method with 19 phenolic standards.


Subject(s)
Antioxidants , Biological Products , Nitric Oxide Synthase , Phenols , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/chemistry , Phenols/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Animals , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Bees , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Picrates/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Chromatography, High Pressure Liquid
5.
J Chromatogr A ; 1716: 464643, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38232639

ABSTRACT

Peptidyl arginine deiminase 4 (PAD4) is an important biocatalytic enzymes involved in the conversion of protein arginine to citrulline, its dysregulation has a great impact on many physiological processes. Recently, PAD4 has emerged as a potential therapeutic target for the treatment of various diseases including rheumatoid arthritis (RA). Traditional Chinese Medicines (TCMs), also known as herbal plants, have gained great attention by the scientific community due to their good therapeutic performance and far fewer side effects observed in the clinical treatment. However, limited researches have been reported to screen natural PAD4 inhibitors from herbal plants. The color developing reagent (COLDER) or fluorescence based methods have been widely used in PAD4 activity assay and inhibitor screening. However, both methods measure the overall absorbance or fluorescence in the reaction solution, which are easy to be affected by the background interference due to colorful extracts from herbal plants. In this study, a simple, and robust high-performance liquid chromatography ultraviolet-visible (HPLC-UV) based method was developed to determine PAD4 activity. The proposed strategy was established based on COLDER principle, while used hydrophilic l-arginine instead of hydrophobic N-benzoyl-l-arginine ethyl ester (BAEE) as a new substrate to determine PAD4 inhibition activity of herbal extracts. The herbal extracts and PAD4 generated hydrophobic l-citrulline were successfully separated by the HPLC, and the developed method was optimized and validated with a known PAD4 inhibitor (GSK484) in comparison with COLDER assay. The IC50 value of GSK484 measured by HPLC-UV method was 153 nM, and the detection limit of the citrulline was 0.5 nmol, respectively, with a linear range of 0.5 nmol to 20 nmol. The IC50 value of the HPLC-UV method was improved by nearly three times compared with COLDER assay (527 nM), and the results indicated the reliability of PAD4 inhibition via HPLC-UV method. The inhibitory effect against PAD4 were fast and accurately screened for the twenty-four extracts from eight herbs. Among them, Ephedra Herba extracts showed significant inhibitory activity against the PAD4 with the IC50 values of three extracts (ethanol, ethyl acetate and water) ranging from 29.11 µg/mL to 41.36 µg/mL, which may help researchers to discover novel natural compounds holding high PAD4 inhibition activity.


Subject(s)
Biological Products , Drugs, Chinese Herbal , Enzyme Inhibitors , Protein-Arginine Deiminase Type 4 , Chromatography, High Pressure Liquid , Citrulline , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Reproducibility of Results , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Drugs, Chinese Herbal/chemistry
6.
J Biol Chem ; 299(12): 105366, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863264

ABSTRACT

Hypoxic responses in plants involve Plant Cysteine Oxidases (PCOs). They catalyze the N-terminal cysteine oxidation of Ethylene Response Factors VII (ERF-VII) in an oxygen-dependent manner, leading to their degradation via the cysteine N-degron pathway (Cys-NDP) in normoxia. In hypoxia, PCO activity drops, leading to the stabilization of ERF-VIIs and subsequent hypoxic gene upregulation. Thus far, no chemicals have been described to specifically inhibit PCO enzymes. In this work, we devised an in vivo pipeline to discover Cys-NDP effector molecules. Budding yeast expressing AtPCO4 and plant-based ERF-VII reporters was deployed to screen a library of natural-like chemical scaffolds and was further combined with an Arabidopsis Cys-NDP reporter line. This strategy allowed us to identify three PCO inhibitors, two of which were shown to affect PCO activity in vitro. Application of these molecules to Arabidopsis seedlings led to an increase in ERF-VII stability, induction of anaerobic gene expression, and improvement of tolerance to anoxia. By combining a high-throughput heterologous platform and the plant model Arabidopsis, our synthetic pipeline provides a versatile system to study how the Cys-NDP is modulated. Its first application here led to the discovery of at least two hypoxia-mimicking molecules with the potential to impact plant tolerance to low oxygen stress.


Subject(s)
Arabidopsis Proteins , Cysteine Dioxygenase , Enzyme Inhibitors , Small Molecule Libraries , Humans , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cysteine/metabolism , Cysteine Dioxygenase/antagonists & inhibitors , Cysteine Dioxygenase/metabolism , Gene Expression Regulation, Plant/drug effects , Oxygen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Drug Evaluation, Preclinical/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Seedlings/drug effects , Anaerobiosis , Degrons , Enzyme Activation/drug effects , Recombinant Proteins/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology
7.
Food Funct ; 13(24): 12632-12647, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36416361

ABSTRACT

Alzheimer's disease (AD) is the leading cause of disabilities in old age and a rapidly growing condition in the elderly population. AD brings significant burden and has a devastating impact on public health, society and the global economy. Thus, developing new therapeutics to combat AD is imperative. Human glutaminyl cyclase (hQC), which catalyzes the formation of neurotoxic pyroglutamate (pE)-modified ß-amyloid (Aß) peptides, is linked to the amyloidogenic process that leads to the initiation of AD. Hence, hQC is an essential target for developing anti-AD therapeutics. Here, we systematically screened and identified hQC inhibitors from natural products by pharmacophore-driven inhibitor screening coupled with biochemical and biophysical examinations. We employed receptor-ligand pharmacophore generation to build pharmacophore models and Phar-MERGE and Phar-SEN for inhibitor screening through ligand-pharmacophore mapping. About 11 and 24 hits identified from the Natural Product and Traditional Chinese Medicine databases, respectively, showed diverse hQC inhibitory abilities. Importantly, the inhibitors TCM1 (Azaleatin; IC50 = 1.1 µM) and TCM2 (Quercetin; IC50 = 4.3 µM) found in foods and plants exhibited strong inhibitory potency against hQC. Furthermore, the binding affinity and molecular interactions were analyzed by surface plasmon resonance (SPR) and molecular modeling/simulations to explore the possible modes of action of Azaleatin and Quercetin. Our study successfully screened and characterized the foundational biochemical and biophysical properties of Azaleatin and Quercetin toward targeting hQC, unveiling their bioactive potential in the treatment of AD.


Subject(s)
Alzheimer Disease , Aminoacyltransferases , Enzyme Inhibitors , Aged , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Ligands , Molecular Docking Simulation , Pharmacophore , Quercetin/isolation & purification , Quercetin/pharmacology , Aminoacyltransferases/antagonists & inhibitors , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
8.
Molecules ; 27(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35209083

ABSTRACT

In this study, ultrasound-assisted extraction (UAE) was applied to extract bioactive substances with skin-whitening, anti-wrinkle, and antioxidant effects from safflower seeds, and the extraction conditions were optimized by a central composite design. The independent variables, including extraction time (5.0~55.0 min), extraction temperature (26.0~94.0 °C), and ethanol concentration (0.0~100%), were optimized to increase tyrosinase activity inhibitory (TAI), collagenase activity inhibitory (CAI), and radical scavenging activity (RSA), which are indicators of skin-whitening, anti-wrinkle, and antioxidant effects. An extraction time of 26.4 min, extraction temperature of 52.1 °C, and ethanol concentration of 50.7% were found to be optimum conditions of UAE, under which TAI, CAI, and RSA were 53.3%, 91.5%, and 27.7%, respectively. The extract produced by UAE was analyzed by LC-MS/MS, and maleic acid and levulinic acid were identified as the main substances. Therefore, UAE is evaluated as an effective process to extract skin-whitening, anti-wrinkle, and antioxidant substances from safflower seeds at lower temperatures and shorter extraction times compared to the conventional extraction methods. Overall, safflower seeds extract can be used as a material for value-added cosmetics, including maleic acid and levulinic acid, which have bioactive functions.


Subject(s)
Carthamus tinctorius/chemistry , Chemical Fractionation/methods , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Seeds/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Chromatography, Liquid , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Molecular Structure , Plant Extracts/chemistry , Skin/drug effects , Solvents , Tandem Mass Spectrometry , Temperature , Ultrasonic Waves
9.
Pharm Biol ; 60(1): 225-234, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35068295

ABSTRACT

CONTEXT: Cordyceps militaris and Isaria tenuipes (Cordycipitaceae) are high-value fungi that are used for health-promoting food supplements. Since laboratory cultivation has begun for these fungi, increased output has been achieved. OBJECTIVE: This study compared the chemical profiles, antioxidant, anti-tyrosinase, and skin extracellular matrix degradation inhibition between mycelium and fruiting body of C. militaris and I. tenuipes. MATERIALS AND METHODS: The antioxidative potential of 10% v/v aqueous infused extract from each fungus was separately investigated using 2,2-azinobis(3-ethylbenzo-thiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant ability, and ferric thiocyanate methods. The inhibition against MMP-1, elastase, and hyaluronidase were determined to reveal their anti-wrinkle potential. Anti-tyrosinase activities were determined. RESULTS: C. militaris and I. tenuipes extracts were found to contain a wide range of bioactive compounds, including phenolics, flavonoids, and adenosine. A correlation was discovered between the chemical compositions and their biological activities. The extract from I. tenuipes fruiting body (IF) was highlighted as an extraordinary elastase inhibitor (IC50 = 0.006 ± 0.004 mg/mL), hyaluronidase inhibitor (IC50: 30.3 ± 3.2 mg/mL), and antioxidant via radical scavenging (ABTS IC50: 0.22 ± 0.02 mg/mL; DPPH IC50: 0.05 ± 0.02 mg/mL), thereby reducing ability (EC1: 95.3 ± 4.8 mM FeSO4/g extract) and lipid peroxidation prevention (IC50: 0.40 ± 0.11 mg/mL). IF had a three-times higher EC1 value than ascorbic acid and significantly higher elastase inhibition than epigallocatechin gallate. DISCUSSION AND CONCLUSIONS: IF is proposed as a powerful natural extract with antioxidant and anti-wrinkle properties; therefore, it is suggested for further use in pharmaceutical, cosmeceutical, and nutraceutical industries.


Subject(s)
Antioxidants/pharmacology , Cordyceps/chemistry , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Animals , Antioxidants/administration & dosage , Antioxidants/isolation & purification , Ascorbic Acid/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cattle , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/isolation & purification , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/isolation & purification , Free Radical Scavengers/pharmacology , Fruiting Bodies, Fungal , Inhibitory Concentration 50 , Mycelium , Skin/drug effects , Skin/metabolism , Skin Aging/drug effects , Swine
10.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615251

ABSTRACT

Tyrosinase is a key enzyme in the melanogenesis pathway. Melanin, the product of this process, is the main pigment of the human skin and a major protection factor against harmful ultraviolet radiation (UVR). Increased melanin synthesis due to tyrosinase hyperactivity can cause hyperpigmentation disorders, which in consequence causes freckles, age spots, melasma, or postinflammatory hyperpigmentation. Tyrosinase overproduction and hyperactivity are triggered by the ageing processes and skin inflammation as a result of oxidative stress. Therefore, the control of tyrosinase activity is the main goal of the prevention and treatment of pigmentation disorders. Natural products, especially propolis, according to their phytochemical profile abundant in polyphenols, is a very rich resource of new potential tyrosinase inhibitors. Therefore, this study focused on the assessment of the tyrosinase inhibitory potential of six extracts obtained from the European propolis samples of various origins. The results showed the potent inhibitory activity of all tested propolis extracts towards commercially available mushroom tyrosinase. The four most active propolis extracts showed inhibitory activity in the range of 86.66-93.25%. Apart from the evaluation of the tyrosinase inhibition, the performed research included UHPLC-DAD-MS/MS (ultra high performance liquid chromatography coupled with diode array detection and tandem mass spectrometry) phytochemical profiling as well as antioxidant activity assessment using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfuric acid (ABTS) radical scavenging tests. Moreover, statistical analysis was used to correlate the tyrosinase inhibitory and antioxidant activities of propolis extracts with their phytochemical composition. To summarise, the results of our research showed that tested propolis extracts could be used for skin cosmeceutical and medical applications.


Subject(s)
Antioxidants , Enzyme Inhibitors , Hyperpigmentation , Monophenol Monooxygenase , Plant Extracts , Propolis , Humans , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Hyperpigmentation/enzymology , Melanins/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Phytochemicals , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Propolis/chemistry , Tandem Mass Spectrometry , Ultraviolet Rays
11.
Anticancer Agents Med Chem ; 22(2): 395-403, 2022.
Article in English | MEDLINE | ID: mdl-33719965

ABSTRACT

BACKGROUND: Previous studies have provided strong evidence for the anticancer activity of berry fruits. OBJECTIVE: In this study, we investigated the effects of blackberry juice and three berry- polyphenolic compounds on cell proliferation and telomerase activity in human hepatoma HepG2 and normal peripheral blood mononuclear cells (PBMCs). METHODS: The cell viability and telomerase activity were measured by MTT and TRAP assay, respectively. Berry effects on the expression of genes were determined by quantitative RT-PCR assay. RESULTS: Blackberry, gallic acid, and resveratrol inhibited proliferation of both HepG2 and PBMC cells in a dosedependent manner. Resveratrol was more effective than gallic acid for reducing the viability of HepG2 cells, but both showed the same level of growth inhibition in PBMC cells. Berry, resveratrol, and gallic acid significantly inhibited telomerase activity in HepG2 cells. The antiproliferative effect of berry was associated with apoptotic DNA fragmentation. Gallic acid was more effective for reducing telomerase activity than resveratrol, but anthocyanin moderately increased telomerase activity in cancer cells. Telomerase activity was induced by all three polyphenols in PBMCs. Overall, Krumanin chloride was more effective to induce telomerase than gallic acid and resveratrol in PBMC cells. There was no significant difference in hTERT, hTR, and Dnmts expressions between berry treated and the control untreated HepG2 cells. But, a significant downregulation of HDAC1 and HDAC2 and upregulation of SIRT1 were observed in berry-treated cells. CONCLUSION: These data indicate that the berry anticancer effect is associated with antitelomerase activity and changes in HDACs expression. The data also suggest that berry antitelomerase activity is mainly related to its gallic acid and resveratrol, but not anthocyanin content.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Enzyme Inhibitors/pharmacology , Leukocytes, Mononuclear/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Rubus/chemistry , Telomerase/antagonists & inhibitors , Adult , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fruit/chemistry , Gallic Acid/chemistry , Gallic Acid/pharmacology , Hep G2 Cells , Humans , Male , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification , Resveratrol/chemistry , Resveratrol/pharmacology , Structure-Activity Relationship , Telomerase/metabolism
12.
Molecules ; 26(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34946510

ABSTRACT

Methylxanthines and polyphenols from cocoa byproducts should be considered for their application in the development of functional ingredients for food, cosmetic and pharmaceutical formulations. Different cocoa byproducts were analyzed for their chemical contents, and skincare properties were measured by antioxidant assays and anti-skin aging activity. Musty cocoa beans (MC) and second-quality cocoa beans (SQ) extracts showed the highest polyphenol contents and antioxidant capacities. In the collagenase and elastase inhibition study, the highest effect was observed for the SQ extract with 86 inhibition and 36% inhibition, respectively. Among cocoa byproducts, the contents of catechin and epicatechin were higher in the SQ extract, with 18.15 mg/100 g of sample and 229.8 mg/100 g of sample, respectively. Cocoa bean shells (BS) constitute the main byproduct due to their methylxanthine content (1085 mg of theobromine and 267 mg of caffeine/100 g of sample). Using BS, various influencing factors in the extraction process were investigated by response surface methodology (RSM), before scaling up separations. The extraction process developed under optimized conditions allows us to obtain almost 2 g/min and 0.2 g/min of total methylxanthines and epicatechin, respectively. In this way, this work contributes to the sustainability and valorization of the cocoa production chain.


Subject(s)
Antioxidants/isolation & purification , Cacao/chemistry , Catechin/isolation & purification , Enzyme Inhibitors/isolation & purification , Plant Extracts/isolation & purification , Xanthines/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Catechin/chemistry , Catechin/pharmacology , Collagenases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fluorescence Recovery After Photobleaching , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Xanthines/chemistry , Xanthines/pharmacology
13.
Bioorg Chem ; 117: 105450, 2021 12.
Article in English | MEDLINE | ID: mdl-34710667

ABSTRACT

The fruit of Citrus medica L. var. sarcodactylis Swingle is not only used as a traditional medicinal plant, but also served as a delicious food. Six new (3'→7″)-biflavonoids (1-6), and twelve known biflavonoid derivatives (7-18) were isolated and characterized from the fruits of C. medica L. var. sarcodactylis Swingle for the first time. Their structures were determined by extensive and comprehensive analyzing NMR, HR-ESI-MS, UV, and IR spectral data coupled with the data described in the literature. Compounds (1-18) were evaluated for their hypolipidemic activities with Orlistat as the positive control, and assayed for their immunosuppressive activities with Dexamethasone as the positive control, respectively. Among them, compounds (1-3) exhibited moderate inhibition of pancreatic lipase activity by inhibiting 68.56 ± 1.40%, 56.18 ± 1.57%, 53.51 ± 1.59% of pancreatic lipase activities at the concentration of 100 µM, respectively. Compounds (4-6) and 8 showed potent immunosuppressive activities with the IC50 values from 16.83 ± 1.32 to 50.90 ± 1.79 µM. The plausible biogenetic pathway and preliminary structure activity relationship of the selected compounds were scientifically summarized and discussed in this study.


Subject(s)
Biflavonoids/pharmacology , Citrus/chemistry , Enzyme Inhibitors/pharmacology , Hypolipidemic Agents/pharmacology , Immunosuppressive Agents/pharmacology , Lipase/antagonists & inhibitors , Animals , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Concanavalin A/antagonists & inhibitors , Concanavalin A/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fruit/chemistry , Hep G2 Cells , Humans , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/isolation & purification , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Lipase/metabolism , Molecular Structure , Pancreas/enzymology , Spleen/drug effects , Structure-Activity Relationship , Swine
14.
Molecules ; 26(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34684810

ABSTRACT

This study investigated the in vitro inhibitory potential of different solvent extracts of leaves of Barbeya oleoides on key enzymes related to type 2 diabetes mellitus (α-glucosidase and α-amylase) in combination with an aggregation assay (using 0.01% Triton X-100 detergent) to assess the specificity of action. The methanol extract was the most active in inhibiting α-glucosidase and α-amylase, with IC50 values of 6.67 ± 0.30 and 25.62 ± 4.12 µg/mL, respectively. However, these activities were significantly attenuated in the presence of 0.01% Triton X-100. The chemical analysis of the methanol extract was conducted utilizing a dereplication approach combing LC-ESI-MS/MS and database searching. The chemical analysis detected 27 major peaks in the negative ion mode, and 24 phenolic compounds, predominantly tannins and flavonol glycosides derivatives, were tentatively identified. Our data indicate that the enzyme inhibitory activity was probably due to aggregation-based inhibition, perhaps linked to polyphenols.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Rosales/chemistry , Carbohydrate Metabolism/drug effects , Diabetes Mellitus, Type 2/drug therapy , Drug Evaluation, Preclinical , Enzyme Inhibitors/isolation & purification , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , In Vitro Techniques , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Polyphenols/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , alpha-Amylases/antagonists & inhibitors
15.
Chem Biodivers ; 18(11): e2100604, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34608744

ABSTRACT

Schistosomiasis, a neglected tropical disease caused by Schistosoma species, harms over 250 million people in several countries. The treatment is achieved with only one drug, praziquantel. Cardamonin, a natural chalcone with in vitro schistosomicidal activity, has not been in vivo evaluated against Schistosoma. In this work, we evaluated the in vivo schistosomicidal activities of cardamonin against Schistosoma mansoni worms and conducted enzymatic apyrase inhibition assay, as well as molecular docking analysis of cardamonin against potato apyrase, S. mansoni NTPDase 1 and S. mansoni NTPDase 2. In a mouse model of schistosomiasis, the oral treatment with cardamonin (400 mg/kg) showed efficacy against S. mansoni, decreasing the total worm load in 46.8 % and reducing in 54.5 % the number of eggs in mice. Cardamonin achieved a significant inhibition of the apyrase activity and the three-dimensional structure of the potato apyrase, obtained by homology modeling, showed that cardamonin may interact mainly through hydrogen bonds. Molecular docking studies corroborate with the action of cardamonin in binding and inhibiting both potato apyrase and S. mansoni NTPDases.


Subject(s)
Apyrase/antagonists & inhibitors , Chalcones/pharmacology , Enzyme Inhibitors/pharmacology , Piperaceae/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Animals , Apyrase/metabolism , Biomphalaria , Chalcones/chemistry , Chalcones/isolation & purification , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Female , Mice , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solanum tuberosum/enzymology
16.
J Enzyme Inhib Med Chem ; 36(1): 2104-2117, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34579614

ABSTRACT

Tyrosinase (TYR) inhibitors are in great demand in the food, cosmetic and medical industrials due to their important roles. Therefore, the discovery of high-quality TYR inhibitors is always pursued. Natural products as one of the most important sources of bioactive compounds discovery have been increasingly used for TYR inhibitors screening. However, due to their complex compositions, it is still a great challenge to rapid screening and identification of biologically active components from them. In recent years, with the help of separation technologies and the affinity and intrinsic activity of target enzymes, two advanced approaches including affinity screening and inhibition profiling showed great promises for a successful screening of bioactive compounds from natural sources. This review summarises the recent progress of separation-based methods for TYR inhibitors screening, with an emphasis on the principle, application, advantage, and drawback of each method along with perspectives in the future development of these screening techniques and screened hit compounds.


Subject(s)
Biological Products/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Biological Products/chemistry , Biological Products/isolation & purification , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Molecular Structure , Monophenol Monooxygenase/metabolism , Ultrafiltration
17.
Chem Biodivers ; 18(11): e2100672, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519420

ABSTRACT

Two new oleanane-triterpenoid saponins, clinograsaponins A (1) and B (2), together with twelve known ones (3-14), were isolated from the whole herb of Clinopodium gracile (Bentham) Matsumura. Their structures were determined by spectroscopic analysis and chemical method. All the isolated compounds were evaluated for their activities against ATP-citrate lyase (ACLY) and nuclear factor kappa B (NF-κB).


Subject(s)
ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Lamiaceae/chemistry , NF-kappa B/antagonists & inhibitors , Plant Extracts/pharmacology , ATP Citrate (pro-S)-Lyase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Molecular Conformation , NF-kappa B/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Stereoisomerism
18.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361759

ABSTRACT

Croton ferrugineus Kunth is an endemic species of Ecuador used in traditional medicine both for wound healing and as an antiseptic. In this study, fresh Croton ferrugineus leaves were collected and subjected to hydrodistillation for extraction of the essential oil. The chemical composition of the essential oil was determined by gas chromatography equipped with a flame ionization detector and gas chromatography coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against three Gram-positive bacteria, one Gram-negative bacterium and one dermatophyte fungus. The radical scavenging properties of the essential oil was evaluated by means of DPPH and ABTS assays. The chemical analysis allowed us to identify thirty-five compounds representing more than 99.95% of the total composition. Aliphatic sesquiterpene hydrocarbon trans-caryophyllene was the main constituent with 20.47 ± 1.25%. Other main compounds were myrcene (11.47 ± 1.56%), ß-phellandrene (10.55 ± 0.02%), germacrene D (7.60 ± 0.60%), and α-humulene (5.49 ± 0.38%). The essential oil from Croton ferrugineus presented moderate activity against Candida albicans (ATCC 10231) with an MIC of 1000 µg/mL, a scavenging capacity SC50 of 901 ± 20 µg/mL with the ABTS method, and very strong antiglucosidase activity with an IC50 of 146 ± 20 µg/mL.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Croton/chemistry , Enzyme Inhibitors/chemistry , Oils, Volatile/chemistry , Plant Leaves/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/isolation & purification , Alkenes/chemistry , Alkenes/isolation & purification , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Candida albicans/drug effects , Candida albicans/growth & development , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/isolation & purification , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Monocyclic Sesquiterpenes/chemistry , Monocyclic Sesquiterpenes/isolation & purification , Picrates/antagonists & inhibitors , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/isolation & purification , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Sulfonic Acids/antagonists & inhibitors , alpha-Glucosidases/chemistry
19.
Molecules ; 26(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361800

ABSTRACT

Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to introduce it. This review summarizes known TLC bioautography types and practical applications for determining antibacterial, antifungal, antitumor and antioxidant compounds and for inhibiting glucosidase, pancreatic lipase, tyrosinase and cholinesterase activity constitutes. Nowadays, especially during the COVID-19 pandemic, it is important to identify original, natural products with anti-COVID potential compounds from Chinese traditional medicine and natural medicinal plants. We also give an account of detection techniques, including in situ and ex situ techniques; even in situ ion sources represent a major reform. Considering the current technical innovations, we propose that the technology will make more progress in TLC plates with higher separation and detection technology with a more portable and extensive scope of application. We believe this technology will be diffusely applied in medicine, biology, agriculture, animal husbandry, garden forestry, environmental management and other fields in the future.


Subject(s)
Chromatography, Thin Layer/methods , Drug Discovery/methods , Luminescent Measurements/methods , Animals , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Antioxidants/isolation & purification , Enzyme Inhibitors/isolation & purification , Humans , Microbial Sensitivity Tests/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Sensitivity and Specificity
20.
Chem Biodivers ; 18(10): e2100356, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34398524

ABSTRACT

The aim of the present study was to quantify selected phenolic compounds, determine antioxidant activity and enzyme inhibitory effects of the aerial parts of Alkanna trichophylla Hub.-Mor. (A. trichophylla) and Convolvulus galaticus Rost.ex Choisy (C. galaticus) extracts prepared by homogenizer-assisted extraction (HAE), maceration (MAC) and infusion techniques. This is the first time such study has been designed to validate the phytochemical composition and bioactivity of these plants. Multivariate analysis was conducted on collected data. Rutin and caffeoylquinic acid derivatives were the most significant compounds in A. trichophylla and C. galaticus, respectively. The highest antioxidant activity of A. trichophylla was mostly exhibited by HAE/methanolic extracts as determined by DPPH, ABTS, FRAP (51.39, 112.70 and 145.73 mg TE/g, respectively) and phosphomolybdenum (2.05 mmol TE/g) assays. However, significant antioxidant activities varied within the extracts of C. galaticus. HAE/methanolic extract of A. trichophylla significantly depressed AChE (2.70 mg GALAE/g), BChE (5.53 mg GALAE/g) and tyrosinase (26.34 mg KAE/g) activities and that of C. galaticus inhibited AChE (2.04 mg GALAE/g), tyrosinase (31.25 mg KAE/g) and α-amylase (0.53 mmol ACAE/g) activities significantly. We concluded that HAE was the most efficient extraction technique as high yield of compounds and promising bioactivities were recorded from extracts prepared. Multivariate analysis showed that types of solvents influenced recovery of compounds and biological activities. This research study can be used as one methodological starting point for further investigation on these plants as all results are clearly promising and open the door to further research challenges such as cytotoxicity evaluation, molecular docking analysis, and more screening of pharmacological actions.


Subject(s)
Antioxidants/pharmacology , Boraginaceae/chemistry , Convolvulus/chemistry , Enzyme Inhibitors/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Acetylcholinesterase/metabolism , Agaricales/enzymology , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Saccharomyces cerevisiae/enzymology , Sulfonic Acids/antagonists & inhibitors , Turkey , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL