Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Enzyme Inhib Med Chem ; 33(1): 1545-1553, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30293461

ABSTRACT

Histamine H3 receptor (H3R), a kind of G-protein coupled receptor (GPCR), is expressed mainly in the central nervous system (CNS) and plays a vital role in homoeostatic control. This study describes the design and synthesis of a series of novel H3R antagonists based on the iso-flavone scaffold. The results of the bioactivity evaluation show that four compounds (1c, 2c, 2h, and 2o) possess significant H3R inhibitory activities. Molecular docking indicates that a salt bridge, π-π T-shape interactions, and hydrophobic interaction all contribute to the interaction between compound 2h and H3R.


Subject(s)
Drug Design , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Isoflavones/chemistry , Isoflavones/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Drug Evaluation, Preclinical , Histamine H3 Antagonists/chemical synthesis , Homeostasis , Hydrophobic and Hydrophilic Interactions , Isoflavones/chemical synthesis , Molecular Docking Simulation , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
2.
J Chem Inf Model ; 55(1): 149-64, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25531792

ABSTRACT

To determine chemical-protein interactions (CPI) is costly, time-consuming, and labor-intensive. In silico prediction of CPI can facilitate the target identification and drug discovery. Although many in silico target prediction tools have been developed, few of them could predict active molecules against multitarget for a single disease. In this investigation, naive Bayesian (NB) and recursive partitioning (RP) algorithms were applied to construct classifiers for predicting the active molecules against 25 key targets toward Alzheimer's disease (AD) using the multitarget-quantitative structure-activity relationships (mt-QSAR) method. Each molecule was initially represented with two kinds of fingerprint descriptors (ECFP6 and MACCS). One hundred classifiers were constructed, and their performance was evaluated and verified with internally 5-fold cross-validation and external test set validation. The range of the area under the receiver operating characteristic curve (ROC) for the test sets was from 0.741 to 1.0, with an average of 0.965. In addition, the important fragments for multitarget against AD given by NB classifiers were also analyzed. Finally, the validated models were employed to systematically predict the potential targets for six approved anti-AD drugs and 19 known active compounds related to AD. The prediction results were confirmed by reported bioactivity data and our in vitro experimental validation, resulting in several multitarget-directed ligands (MTDLs) against AD, including seven acetylcholinesterase (AChE) inhibitors ranging from 0.442 to 72.26 µM and four histamine receptor 3 (H3R) antagonists ranging from 0.308 to 58.6 µM. To be exciting, the best MTDL DL0410 was identified as an dual cholinesterase inhibitor with IC50 values of 0.442 µM (AChE) and 3.57 µM (BuChE) as well as a H3R antagonist with an IC50 of 0.308 µM. This investigation is the first report using mt-QASR approach to predict chemical-protein interaction for a single disease and discovering highly potent MTDLs. This protocol may be useful for in silico multitarget prediction of other diseases.


Subject(s)
Alzheimer Disease/drug therapy , Drug Discovery/methods , Quantitative Structure-Activity Relationship , Animals , Bayes Theorem , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Humans , Ligands , Molecular Targeted Therapy , ROC Curve , Rats , Reproducibility of Results
3.
Bioorg Med Chem Lett ; 23(24): 6897-901, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24161834

ABSTRACT

This Letter describes the discovery of a novel series of H3 receptor antagonists. The initial medicinal chemistry strategy focused on deconstructing and simplifying an early screening hit which rapidly led to the discovery of a novel series of H3 receptor antagonists based on the benzazepine core. Employing an H3 driven pharmacodynamic model, the series was then further optimised through to a lead compound that showed robust in vivo functional activity and possessed overall excellent developability properties.


Subject(s)
Benzazepines/chemistry , Histamine H3 Antagonists/chemistry , Receptors, Histamine H3/chemistry , Animals , Benzazepines/chemical synthesis , Benzazepines/pharmacokinetics , Cytochrome P-450 CYP2D6/chemistry , Cytochrome P-450 CYP2D6/metabolism , Drug Evaluation, Preclinical , Half-Life , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacokinetics , Humans , Microsomes, Liver/metabolism , Protein Binding , Rats , Receptors, Histamine H3/genetics , Receptors, Histamine H3/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 23(11): 3416-20, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23591110

ABSTRACT

A series of structurally novel aryl ureas was derived from optimization of the HTS lead as selective histamine H3 receptor (H3R) antagonists. The SAR was explored and the data obtained set up the starting point and foundation for further optimization. The most potent tool compounds, as exemplified by compounds 2l, 5b, 5d, and 5e, displayed antagonism potencies in the subnanomolar range in in vitro human-H3R FLIPR assays and rhesus monkey H3R binding assays.


Subject(s)
Amides/chemistry , Histamine H3 Antagonists/chemistry , Receptors, Histamine H3/chemistry , Urea/chemistry , Amides/metabolism , Amides/therapeutic use , Animals , Drug Evaluation, Preclinical , HEK293 Cells , Histamine H3 Antagonists/metabolism , Histamine H3 Antagonists/therapeutic use , Humans , Macaca mulatta , Obesity/drug therapy , Protein Binding , Rats , Receptors, Histamine H3/genetics , Receptors, Histamine H3/metabolism , Structure-Activity Relationship , Urea/metabolism , Urea/therapeutic use
5.
Bioorg Med Chem Lett ; 23(11): 3421-6, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23591112

ABSTRACT

A novel series of histamine H3 receptor (H3R) antagonists was derived from an arylurea lead series (1) via bioisosteric replacement of the urea functionality by an amide linkage. The arylamide series was optimized through SAR studies by a broad variation of substituents in the left-hand side benzoyl residue (analogs 2a-2ag) or replacement of the benzoyl moiety by heteroarylcarbonyl residues (analogs 5a-5n). Compounds 2p and 2q were identified within the series as potent and selective H3R antagonists/inverse agonists with acceptable overall profile. Compound 2q was orally active in food intake inhibition in diet-induced obese (DIO) mice. Compound 2q represents a novel H3R antagonist template with improved in vitro potency and oral efficacy and has its merits as a new lead for further optimization.


Subject(s)
Amides/chemistry , Benzamides/chemistry , Histamine H3 Antagonists/chemistry , Pyrrolidines/chemistry , Receptors, Histamine H3/chemistry , Urea/chemistry , Administration, Oral , Amides/metabolism , Amides/therapeutic use , Animals , Benzamides/metabolism , Benzamides/therapeutic use , Caco-2 Cells , Drug Evaluation, Preclinical , Drug Inverse Agonism , Histamine H3 Antagonists/metabolism , Histamine H3 Antagonists/therapeutic use , Humans , Mice , Microsomes/metabolism , Obesity/drug therapy , Protein Binding , Pyrrolidines/metabolism , Pyrrolidines/therapeutic use , Rats , Receptors, Histamine H3/genetics , Receptors, Histamine H3/metabolism , Structure-Activity Relationship , Urea/metabolism , Urea/therapeutic use
6.
Arch Pharm (Weinheim) ; 345(6): 431-43, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22415744

ABSTRACT

Novel, potent non-imidazole histamine H(3) receptor antagonists were prepared. Detailed structure-activity studies revealed that N-(4-trifluoromethylbenzyl)-N-[4-(7-phenoxyheptylpiperazin-1-yl)butyl]guanidine (pA(2) = 8.49 ± 0.05), 1h, and N-(4-nitrobenzyl)-N-[4-(7-phenoxyheptylpiperazin-1-yl)butyl]guanidine (pA(2) = 8.43 ± 0.05), 1l, exhibit high affinity for the H(3) histamine receptor. The most potent antagonists in this series, 1e, 1h, and 1l, were also in vitro tested as H(1) receptor antagonists, showing weak H(1) -antagonistic activity with pA(2) = 6.70 ± 0.09, pA(2) = 6.46 ± 0.09, and pA(2) = 6.65 ± 0.11, respectively.


Subject(s)
Guanidines/chemical synthesis , Histamine H3 Antagonists/chemical synthesis , Piperazines/chemical synthesis , Receptors, Histamine H3/metabolism , Animals , Drug Evaluation, Preclinical , Guanidines/chemistry , Guanidines/pharmacology , Guinea Pigs , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , In Vitro Techniques , Jejunum/drug effects , Jejunum/metabolism , Male , Molecular Structure , Piperazines/chemistry , Piperazines/pharmacology , Protein Binding , Receptors, Histamine H1/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 20(9): 2755-60, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20382018

ABSTRACT

Pre-clinical characterization of novel substituted pyrrolidines that are high affinity histamine H(3) receptor antagonists is described. These compounds efficiently penetrate the CNS and occupy the histamine H(3) receptor in rat brain following oral administration. One compound, (2S,4R)-1-[2-(4-cyclobutyl-[1,4]diazepane-1-carbonyl)-4-(3-fluoro-phenoxy)-pyrrolidin-1-yl]-ethanone, was extensively profiled and shows promise as a potential clinical candidate.


Subject(s)
Azepines/chemistry , Histamine H3 Antagonists/chemistry , Pyrrolidines/chemistry , Receptors, Histamine H3/chemistry , Administration, Oral , Animals , Azepines/chemical synthesis , Azepines/pharmacokinetics , Brain/metabolism , Dogs , Drug Evaluation, Preclinical , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacokinetics , Humans , Mice , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacokinetics , Rats , Receptors, Histamine H3/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 19(3): 903-7, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19119007

ABSTRACT

A novel series of imidazole containing histamine H(3) receptor ligands were investigated and found to be potent functional antagonists. After improving the stability of these molecules towards liver microsomes, these compounds were found to have no appreciable affinity for CYP P450s. Subsequent in vivo experiments showed significant brain uptake of (4-chloro-phenyl)-[2-(1-isopropyl-piperidin-4-ylmethoxy)-3-methyl-3H-imidazol-4-yl]-methanone 22.


Subject(s)
Blood-Brain Barrier/drug effects , Brain/drug effects , Chemistry, Pharmaceutical/methods , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/chemical synthesis , Imidazoles/chemistry , Animals , Brain/metabolism , Drug Design , Drug Evaluation, Preclinical , Guinea Pigs , Histamine H3 Antagonists/metabolism , Humans , Ligands , Models, Chemical , Protein Binding , Rats , Structure-Activity Relationship
9.
Bioorg Med Chem ; 16(6): 2968-73, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18249544

ABSTRACT

Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.


Subject(s)
Cholinesterase Inhibitors/chemistry , Histamine H3 Antagonists/chemistry , Models, Molecular , Alzheimer Disease/drug therapy , Drug Evaluation, Preclinical/methods , Humans , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL