Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1332381, 2024.
Article in English | MEDLINE | ID: mdl-38357442

ABSTRACT

Visceral leishmaniasis (VL) is the most severe type of leishmaniasis which is caused by infection of Leishmania donovani complex. In the BALB/c mouse model of VL, multinucleated giant cells (MGCs) with heavy parasite infection consist of the largest population of hemophagocytes in the spleen of L. donovani-infected mice, indicating that MGCs provide the parasites a circumstance beneficial for their survival. Although ATP6V0D2 is a demonstrated factor inducing the formation of hemophagocytic MGCs during L. donovani infection, functions of this protein in shaping the infection outcome in macrophages remain unclear. Here we evaluated the influence of upregulated ATP6V0D2 on intracellular survival of the parasites. L. donovani infection-induced hemophagocytosis of normal erythrocytes by macrophages was suppressed by RNAi-based knockdown of Atp6v0d2. The knockdown of Atp6v0d2 did not improve the survival of amastigotes within macrophages when the cells were cultured in the absence of erythrocytes. On the other hand, reduced intracellular survival of amastigotes in macrophages by the knockdown was observed when macrophages were supplemented with antibody-opsonized erythrocytes before infection. There, increase in cytosolic labile iron pool was observed in the L. donovani-infected knocked-down macrophages. It suggests that ATP6V0D2 plays roles not only in upregulation of hemophagocytosis but also in iron trafficking within L. donovani-infected macrophages. Superior access to iron in macrophages may be how the upregulated expression of the molecule brings benefit to Leishmania for their intracellular survival in the presence of erythrocytes.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Animals , Mice , Erythrocytes , Iron/metabolism , Leishmaniasis, Visceral/parasitology , Macrophages/metabolism , Mice, Inbred BALB C , Up-Regulation
2.
Acta Trop ; 252: 107139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307362

ABSTRACT

Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 µM, 12.75 ± 0.35 µM and 73 ± 1.41 µM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Animals , Clotrimazole/pharmacology , Clotrimazole/metabolism , Clotrimazole/therapeutic use , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Macrophages , Cell Cycle Checkpoints , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Mammals
3.
Immunobiology ; 228(5): 152725, 2023 09.
Article in English | MEDLINE | ID: mdl-37562277

ABSTRACT

Most of the existing Leishmania-related research about TLR-2 agonists was focusing on their role as adjuvants in the vaccine, few studied its therapeutic effect. This paper aims to explore the therapeutic effect of TLR-2 agonist Pam3CSK4 on Leishmania-infected mice and the underlying immune molecular mechanisms. In L. donovani-infected BALB/c mice, one group was treated with Pam3CSK4 after infection and the other group was not treated. Normal uninfected mice treated with Pam3CSK4 or untreated were used as controls. Parasite load, hepatic pathology and serum antibodies were detected to assess the severity of the infection. The expression of immune-related genes, spleen lymphocyte subsets and liver RNA-seq were employed to reveal possible molecular mechanisms. The results showed that the liver and spleen parasite load of infected mice in Pam3CSK4 treated and untreated groups had no statistical difference, indicating Pam3CSK4 might have no therapeutic effect on visceral leishmaniasis. Infected mice treated with Pam3CSK4 possessed more hepatic inflammation focus, lower IgG and IgG2a antibody titers, and a lower proportion of spleen CD3+CD4+ T cells. Transcriptome analysis revealed that Th1/Th2 differentiation, NK cells, Th17 cell, complement system and calcium signaling pathways were down-regulated post-treatment of Pam3CSK4. In this study, TLR-2 agonist Pam3CSK4 showed no therapeutic effect on visceral leishmaniasis in BALB/c mice and might enhance the pathogenesis of the disease possibly due to the down-regulation of several immune-related pathways, which can improve our understanding of the role of TLR-2 in both treatment and vaccine development.


Subject(s)
Leishmania donovani , Leishmania , Leishmaniasis, Visceral , Animals , Mice , Adjuvants, Immunologic/adverse effects , Interferon-gamma/metabolism , Leishmaniasis, Visceral/parasitology , Mice, Inbred BALB C , Toll-Like Receptor 2/genetics
4.
AAPS PharmSciTech ; 24(1): 46, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702974

ABSTRACT

The utility of andrographolide (AN) in visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL) is limited owing to poor solubility, hindered permeation, and unstable structure under physiological conditions. The present study mainly focuses on synthesizing of andrographolide-Soya-L-α-phosphatidyl choline (ANSPC) complex in ethanol and its characterization using various spectral and analytical techniques. Results from FT-IR, 1H NMR, ROSEY, and in silico docking techniques suggest ANSPC complex formation due to inter-molecular interaction between the hydrophilic head of SPC and hydroxyl group of AN present at 24th position. ANSPC complex demonstrated the solubility of 113.93 ± 6.66 µg/mL significantly (P < 0.05) greater than 6.39 ± 0.47 µg/mL of AN. The particle size of ANSPC complex was found to be 182.2 ± 2.69 nm. The IC50 value of AN suspension (PBS, pH ~ 7.4) at 24, 48, and 72 h against Leishmania donovani (L. donovani) was noticed to be 32.76 ± 4.53, 20.87 ± 2.37, and 17.71 ± 3.06 µM/mL, respectively. Moreover, augmented aqueous solubility of ANSPC complex led to significant (P < 0.05) reduction in IC50 value, i.e., 25.02 ± 4.35, 11.31 ± 0.60, and 8.33 ± 2.71 µM/mL at 24, 48, and 72 h, respectively. The IC50 values for miltefosine were noted to be 9.84 ± 2.65, 12.13 ± 7.26, and 6.56 ± 0.61 µM/mL at similar time periods. Moreover, ANSPC complex demonstrated augmented cellular uptake at 24 h as compared to 6 h in L. donovani. We suppose that submicron size and phospholipid-mediated complexation might have endorsed the permeation of ANSPC complex across the plasma membrane of L. donovani parasite by transport mechanisms such as P-type ATPase. ANSPC complex warrants further in-depth in vivo studies under a set of stringent parameters for translating the product into a clinically viable form.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Leishmania donovani/metabolism , Solubility , Spectroscopy, Fourier Transform Infrared , Lecithins/metabolism
5.
Lipids ; 58(2): 81-92, 2023 03.
Article in English | MEDLINE | ID: mdl-36544247

ABSTRACT

Leishmania parasites are the causative agents of visceral or cutaneous leishmaniasis in humans and of canine leishmaniosis. The macrophage is the predilected host cell of Leishmania in which the promastigote stage is transformed into amastigote. We previously showed changes in the fatty acid composition (FA) of lipids in two strains of Leishmania donovani upon differentiation of promastigote to amastigote, including increased proportions of arachidonic acid (AA) and to a less extent of docosahexaenoic acid (DHA). Here, we carried out supplementation with AA or DHA on two Leishmania infantum strains, a visceral (MON-1) and a cutaneous (MON-24), to evaluate the role of these FA in parasite/macrophage interactions. The proportions of AA or DHA in total lipids were significantly increased in promastigotes cultured in AA- or DHA-supplemented media compared to controls. The content of FA-derived oxygenated metabolites was enhanced in supplemented strains, generating especially epoxyeicosatrienoic acids (11,12- and 14,15-EET) and hydroxyeicosatetraenoic acids (5- and 8- HETE) from AA, and hydroxydocosahexaenoic acids (14- and 17-HDoHE) from DHA. For both MON-1 and MON-24, AA-supplemented promastigotes showed higher infectivity towards J774 macrophages as evidenced by higher intracellular amastigote numbers. Higher infectivity was observed after DHA supplementation for MON-24 but not MON-1 strain. ROS production by macrophages increased upon parasite infection, but only minor change was observed between control and supplemented parasites. We propose that under high AA or DHA environment that is associated with AA or DHA enrichment of promastigote lipids, FA derivatives can accumulate in the parasite, thereby modulating parasite infectivity towards host macrophages.


Subject(s)
Leishmania infantum , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Parasites , Humans , Mice , Animals , Dogs , Leishmania infantum/metabolism , Macrophages/parasitology , Leishmaniasis, Cutaneous/parasitology , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Leishmaniasis, Visceral/parasitology , Mice, Inbred BALB C
6.
J Biomol Struct Dyn ; 40(21): 10812-10820, 2022.
Article in English | MEDLINE | ID: mdl-36529188

ABSTRACT

Visceral leishmaniasis is a neglected tropical disease and is mainly caused by L. donovani in the Indian subcontinent. The mitochondria genome replication in Leishmania spp. is having a very specific mechanism, and it is initiated by a key enzyme called mitochondrial primase. This enzyme is essential for the onset of the replication process and growth of the parasite. Therefore, we focused on the primase protein as a potential therapeutic target for combating leishmaniasis diseases. We started our studies molecular modeling and followed by docking of the FDA-approved drug library into the binding site of the primase protein. The top 30 selected compounds were subjected for molecular dynamics studies. Also, the target protein was cloned, purified, and tested experimentally (primase activity assays and inhibition assays). Some compounds were very effective against the Leishmania cell culture. All these approaches helped us to identify few possible novel anti-leishmanial drugs such as Pioglitazone and Mupirocin. These drugs are effectively involved in inhibiting the promastigote of L. donovani, and it can be utilized in the next level of clinical trials. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmania , Leishmaniasis, Visceral , Humans , Drug Repositioning , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Drug Evaluation, Preclinical , DNA Primase/metabolism , DNA Primase/pharmacology , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Molecular Dynamics Simulation
7.
Microbiol Spectr ; 10(6): e0269922, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36264252

ABSTRACT

Infection with Leishmania donovani reduces cellular cholesterol and thus deprives the host cells by inhibiting its synthesis and uptake. Changes in cholesterol levels increase the chance of attachment and internalization of L. donovani in macrophages (Mϕ). Retinoic acid (RA), an important micronutrient, restores the lysosomal uptake of cholesterol in L. donovani-infected Mϕ. Importantly, mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1) increases the cellular cholesterol level by increasing expression of sterol regulatory element-binding protein 2 (SREBP2). Whether the efficacy of RA in L. donovani-infected Mϕ is mediated by mTOR is not yet established. Moreover, there are contradicting reports suggesting potential activation and inhibition of mTOR in L. donovani-infected Mϕ. Intrigued by this, we attempted to understand the RA-mediated restoration of cholesterol as well as the possible roles of mTORC1, if any. Our findings suggest that L. donovani infection impairs the synthesis of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), uptake of low-density lipoprotein receptor (LDLR), and secretion of ATP-binding cassette transporter (ABCA1) in Mϕ. L. donovani infection possibly impairs mTORC1 formation, as it inhibits the expression of regulatory-associated protein of mammalian target of rapamycin (RAPTOR). Importantly, all these are restored upon RA supplementation. RA also restores the levels of SREBP2 in L. donovani-infected Mϕ, resulting in increased cellular cholesterol and thus reducing the parasite burden. When mTORC1 was inhibited, RA exerted a similar response in L. donovani-infected Mϕ; i.e., it restored cholesterol levels and reduced the parasite burden. In summary, RA restores cholesterol levels in L. donovani-infected Mϕ and reduces the parasite burden in an mTOR-independent manner. IMPORTANCE People who reside in regions where leishmaniasis is endemic and who lack proteins, iron, zinc, and vitamin A in their diet are more prone to develop visceral leishmaniasis (VL) as a full-blown disease. Vitamin A deficiency favors the development of a parasitic infection in the human host, and the WHO recommends administering 200,000-IU doses to VL patients on admission. Additionally, Leishmania entry and its survival inside the host are achieved by utilizing host cholesterol, as all trypanosomatids lack de novo synthesis of sterol. We have already shown that RA regulates cellular cholesterol levels associated with an efficient immune response. A deficiency of retinoic acid (RA) favors the parasite in Leishmania donovani-infected macrophages by downregulating the immune response. In the present work, we observed that RA restores cellular cholesterol levels in Leishmania donovani-infected macrophages. This study proposes using RA as an immune potentiator along with standard therapy.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Humans , Leishmania donovani/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Macrophages , TOR Serine-Threonine Kinases/metabolism , Cholesterol/metabolism , Sterols/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
8.
Mol Pharm ; 19(9): 3367-3384, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35980291

ABSTRACT

Visceral leishmaniasis (VL) is one of the most fatal and neglected tropical diseases caused by Leishmania donovani (L. donovani). The applications of currently available chemotherapy (amphotericin B, miltefosine, and others) in VL treatment have been limited due to their poor bioavailability, unfavorable toxicity profile, and prolonged parenteral dosing. Quercetin (QT), a potent natural antioxidant, is a prominent target when conducting investigations on alternative therapies against L. donovani infections. However, the therapeutic applications of QT have been restricted due to its low solubility and bioavailability. In the present study, we developed and evaluated the antileishmanial activity (ALA) of quercetin-loaded nanoemulsion (QTNE) against L. donovani clinical strains. In vitro anti-promastigote assay results demonstrated that QTNE (IC50 6.6 µM, 48 h) significantly inhibited the growth of parasites more efficiently than the pure QT suspension in a dose- and time-dependent manner. Results of the anti-amastigote assay revealed that the infected macrophages (%) of QTNE were significantly more than those of the pure QT suspension at all concentrations (6.6, 26.4, and 52.8 µM; p < 0.05, p < 0.01 compared to the control). Moreover, the results of in vitro and ex vivo studies assisted in determining the mechanistic insights associated with the ALA of QTNE. The overall findings suggested that QTNE exhibited potential ALA by enhancing the intracellular ROS and nitric oxide levels, inducing distortion of membrane integrity and phosphatidylserine release (AV/PI), rupturing the parasite DNA (late apoptosis/necrosis process), and upregulating the immunomodulatory effects (IFN-γ and IL-10 levels). Additionally, QTNE showed superior biocompatibility against all of the treated healthy cells (PBMCs, PECs, and BMCs) as compared to the control. In conclusion, QTNE acts as a potential antileishmanial agent targeting both promastigote and intracellular amastigote forms of L. donovani, which thus opens a new avenue for the use of QTNE in VL therapy.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Humans , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Quercetin/pharmacology , Quercetin/therapeutic use
9.
Biomed Pharmacother ; 143: 112156, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649333

ABSTRACT

Visceral leishmaniasis (VL) is caused by a protozoan parasite, Leishmania donovani (L. donovani). It affects around 1-2 million people around the world annually. There is an urgent need to investigate new medicament of it due to difficult method of drug administration, long period of treatment, high cost of the drug, adverse side-effects, low efficacy and development of parasite resistance to the available drugs. Medicinal plants have also been used for the treatment of different diseases in traditional system of medicines due to their holistic effects. The Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland has already started the program for identification of potential medicinal plant and plant products having antileishmanial potential. Keeping all these in consideration, we planned to study the antileishmanial activity of one of the medicinal plant, Embilica officinalis L. (EO) fruit extract. EO fruit extract inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes in dose-dependent manner. EO fruit extract induced morphological and ultrastructural changes in parasites as observed under Electron Microscope. It also induced the oxidative stress, mitochondrial dysfunction, DNA laddering and apotosis-like cell death in parasites. Here, we for the first time reported such a detailed mechanism of action of antileishmanial activity of EO fruit extract. Our results suggested that EO fruit extract could be used for the development of new phytomedicine against leishmaniasis.


Subject(s)
Apoptosis/drug effects , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Mitochondria/drug effects , Oxidative Stress/drug effects , Phyllanthus emblica , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Fruit , Humans , Leishmania donovani/growth & development , Leishmania donovani/metabolism , Leishmania donovani/ultrastructure , Leishmaniasis, Visceral/parasitology , Mitochondria/metabolism , Mitochondria/ultrastructure , Phyllanthus emblica/chemistry , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , THP-1 Cells , Trypanocidal Agents/isolation & purification
10.
Med Microbiol Immunol ; 210(2-3): 133-147, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33870453

ABSTRACT

Treatment against visceral leishmaniasis (VL) is mainly hampered by drug toxicity, long treatment regimens and/or high costs. Thus, the identification of novel and low-cost antileishmanial agents is urgent. Acarbose (ACA) is a specific inhibitor of glucosidase-like proteins, which has been used for treating diabetes. In the present study, we show that this molecule also presents in vitro and in vivo specific antileishmanial activity against Leishmania infantum. Results showed an in vitro direct action against L. infantum promastigotes and amastigotes, and low toxicity to mammalian cells. In addition, in vivo experiments performed using free ACA or incorporated in a Pluronic® F127-based polymeric micelle system called ACA/Mic proved effective for the treatment of L. infantum-infected BALB/c mice. Treated animals presented significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes when compared to the controls, as well as the development of antileishmanial Th1-type humoral and cellular responses based on high levels of IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibodies. In addition, ACA or ACA-treated animals suffered from low organ toxicity. Treatment with ACA/Mic outperformed treatments using either Miltefosine or free ACA based on parasitological and immunological evaluations performed one and 15 days post-therapy. In conclusion, data suggest that the ACA/Mic is a potential therapeutic agent against L. infantum and merits further consideration for VL treatment.


Subject(s)
Acarbose/pharmacology , Acarbose/therapeutic use , Immunity , Leishmania infantum/drug effects , Leishmania infantum/immunology , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/immunology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Repositioning , Female , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Micelles , Parasite Load , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/therapeutic use , Reactive Oxygen Species/metabolism , Treatment Outcome
11.
J Med Chem ; 64(9): 5905-5930, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33904304

ABSTRACT

There is an urgent need for new treatments for visceral leishmaniasis (VL), a parasitic infection which impacts heavily large areas of East Africa, Asia, and South America. We previously reported on the discovery of GSK3494245/DDD01305143 (1) as a preclinical candidate for VL and, herein, we report on the medicinal chemistry program that led to its identification. A hit from a phenotypic screen was optimized to give a compound with in vivo efficacy, which was hampered by poor solubility and genotoxicity. The work on the original scaffold failed to lead to developable compounds, so an extensive scaffold-hopping exercise involving medicinal chemistry design, in silico profiling, and subsequent synthesis was utilized, leading to the preclinical candidate. The compound was shown to act via proteasome inhibition, and we report on the modeling of different scaffolds into a cryo-EM structure and the impact this has on our understanding of the series' structure-activity relationships.


Subject(s)
Drug Design , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Protozoan Proteins/metabolism , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/metabolism , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Binding Sites , Cell Line , Drug Evaluation, Preclinical , Half-Life , Humans , Leishmania donovani/drug effects , Leishmania donovani/metabolism , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Mice , Molecular Dynamics Simulation , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Protein Subunits/chemistry , Protein Subunits/metabolism , Protozoan Proteins/chemistry , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Solubility , Structure-Activity Relationship
12.
Molecules ; 25(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204358

ABSTRACT

Leishmaniasis affects around 12 million people worldwide and is estimated to cause the ninth-largest disease burden. There are three main forms of the disease, visceral (VL), cutaneous (CL), and mucocutaneous (MCL), leading to more than one million new cases every year and several thousand deaths. Current treatments based on chemically synthesized molecules are far from ideal. In this study, we have tested the in vitro and in vivo efficacy of ursolic acid (UA), a multifunctional triterpenoid with well-known antitumoral, antioxidant, and antimicrobial effects on different Leishmania strains. The in vitro antileishmanial activity against the intracellular forms was six and three-fold higher compared to extracellular forms of L. amazonensis and L. infantum, respectively. UA also showed to be a potent antileishmanial drug against both VL and CL manifestations of the disease in experimental models. UA parenterally administered at 5 mg/kg for seven days significantly reduced the parasite burden in liver and spleen not only in murine acute infection but also in a chronic-infection model against L. infantum. In addition, UA ointment (0.2%) topically administered for four weeks diminished (50%) lesion size progression in a chronic infection model of CL caused by L. amazonensis, which was much greater than the effect of UA formulated as an O/W emulsion. UA played a key role in the immunological response modulating the Th1 response. The exposure of Leishmania-infected macrophages to UA led to a significant different production in the cytokine levels depending on the Leishmania strain causing the infection. In conclusion, UA can be a promising therapy against both CL and VL.


Subject(s)
Antiprotozoal Agents/administration & dosage , Leishmania infantum/drug effects , Leishmania mexicana/drug effects , Leishmaniasis, Visceral/drug therapy , Triterpenes/administration & dosage , Administration, Topical , Animals , Antiprotozoal Agents/pharmacology , Cell Line , Disease Models, Animal , Humans , Infusions, Parenteral , Leishmaniasis, Visceral/parasitology , Liver/drug effects , Liver/parasitology , Male , Mesocricetus , Mice , Phytolaccaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spleen/drug effects , Spleen/parasitology , Triterpenes/pharmacology , Ursolic Acid
13.
Parasit Vectors ; 13(1): 94, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32085719

ABSTRACT

BACKGROUND: New therapeutic drugs are urgently needed against visceral leishmaniasis because current drugs, such as pentavalent antimonials and miltefosine, produce severe side effects and development of resistance. Whether cyclosporine A (CsA) and its derivatives can be used as therapeutic drugs for visceral leishmaniasis has been controversial for many years. METHODS: In this study, we evaluated the efficacy of CsA and its derivative, dihydrocyclosporin A (DHCsA-d), against promastigotes and intracellular amastigotes of Leishmania donovani. Sodium stibogluconate (SSG) was used as a positive control. RESULTS: Our results showed that DHCsA-d was able to inhibit the proliferation of L. donovani promastigotes (IC50: 21.24 µM and 12.14 µM at 24 h and 48 h, respectively) and intracellular amastigotes (IC50: 5.23 µM and 4.84 µM at 24 and 48 h, respectively) in vitro, but CsA treatment increased the number of amastigotes in host cells. Both DHCsA-d and CsA caused several alterations in the morphology and ultrastructure of L. donovani, especially in the mitochondria. However, DHCsA-d showed high cytotoxicity towards cells of the mouse macrophage cell line RAW264.7, with CC50 values of 7.98 µM (24 h) and 6.65 µM (48 h). Moreover, DHCsA-d could increase IL-12, TNF-α and IFN-γ production and decrease the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. On the contrary, CsA decreased IL-12, TNF-α, and IFN-γ production and increased the levels of IL-10, IL-4, NO and H2O2 in infected macrophages. The expression of L. donovani cyclophilin A (LdCyPA) in promastigotes and intracellular amastigotes and the expression of cyclophilin A (CyPA) in RAW 264.7 cells were found to be significantly downregulated in the CsA-treated group compared to those in the untreated group. However, no significant changes in LdCyPA and CyPA levels were found after DHCsA-d or SSG treatment. CONCLUSIONS: Our findings initially resolved the dispute regarding the efficacy of CsA and DHCsA-d for visceral leishmaniasis treatment. CsA showed no significant inhibitory effect on intracellular amastigotes. DHCsA-d significantly inhibited promastigotes and intracellular amastigotes, but it was highly cytotoxic. Therefore, CsA and DHCsA-d are not recommended as antileishmanial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Cyclosporine/pharmacology , Cyclosporins/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/parasitology , Animals , Drug Evaluation, Preclinical , Humans , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-2/immunology , Leishmania donovani/growth & development , Leishmania donovani/physiology , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/immunology , Macrophages/immunology , Macrophages/parasitology , Mice , RAW 264.7 Cells
14.
Parasitol Res ; 118(9): 2705-2713, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31359134

ABSTRACT

Artemisinin, extracted from a medicinal herb Artemisia annua, is widely used to treat malaria and has shown potent anticancer activity. Artemisinin has been found to be effective against experimental visceral and cutaneous leishmaniasis. Despite extensive research to understand the complex mechanism of resistance to artemisinin, several questions remain unanswered. The artesunate (ART)-resistant line of Leishmania donovani was selected and cellular mechanisms associated with resistance to artemisinin were investigated. ART-resistant (AS-R) parasites showed reduced susceptibility towards ART both at promastigote and amastigote stage compared with ART sensitive (WT) parasites. WT and AS-R parasites were both more susceptible to ART at the early log phase of growth compared with late log phase. AS-R parasites were more infective to the host macrophages (p < 0.05). Evaluation of parasites' tolerance towards host microbicidal mechanisms revealed that AS-R parasites were more tolerant to complement-mediated lysis and nitrosative stress. ROS levels were modulated in presence of ART in AS-R parasites infected macrophages. Interestingly, infection of macrophages by AS-R parasites led to modulated levels of host interleukins, IL-2 and IL-10, in addition to nitric oxide. Additionally, AS-R parasites showed upregulated expression of genes of unfolded protein response pathway including methyltransferase domain-containing protein (HSP40) and flagellar attachment zone protein (prefoldin), that are reported to be associated with ART resistance in Plasmodium falciparum malaria. This study presents in vitro model of artemisinin-resistant Leishmania parasite and cellular mechanisms associated with ART resistance in Leishmania.


Subject(s)
Antiprotozoal Agents/administration & dosage , Artemisinins/administration & dosage , Leishmania donovani/drug effects , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/immunology , Plant Extracts/administration & dosage , Unfolded Protein Response/drug effects , Animals , Artemisia annua/chemistry , Artesunate/administration & dosage , Female , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/immunology , Host-Parasite Interactions , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Leishmania donovani/growth & development , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/physiopathology , Macrophages/immunology , Mice, Inbred BALB C
15.
PLoS Negl Trop Dis ; 13(5): e0007227, 2019 05.
Article in English | MEDLINE | ID: mdl-31071090

ABSTRACT

BACKGROUND: There is a pressing need for drug discovery against visceral leishmaniasis, a life-threatening protozoal infection, as the available chemotherapy is antiquated and not bereft of side effects. Plants as alternate drug resources has rewarded mankind in the past and aimed in this direction, we investigated the antileishmanial potential of Cinnamomum cassia. METHODOLOGY: Dichloromethane, ethanolic and aqueous fractions of C. cassia bark, prepared by sequential extraction, were appraised for their anti-promastigote activity along with apoptosis-inducing potential. The most potent, C. cassia dichloromethane fraction (CBD) was evaluated for anti-amastigote efficacy in infected macrophages and nitric oxide (NO) production studied. The in vivo antileishmanial efficacy was assessed in L. donovani infected BALB/c mice and hamsters and various correlates of host protective immunity ascertained. Toxicity profile of CBD was investigated in vitro against peritoneal macrophages and in vivo via alterations in liver and kidney functions. The plant secondary metabolites present in CBD were identified by gas chromatography-mass spectroscopy (GC-MS). PRINCIPAL FINDINGS: CBD displayed significant anti-promastigote activity with 50% inhibitory concentration (IC50) of 33.6 µg ml-1 that was mediated via apoptosis. This was evidenced by mitochondrial membrane depolarization, increased proportion of cells in sub-G0-G1 phase, ROS production, PS externalization and DNA fragmentation (TUNEL assay). CBD also inhibited intracellular amastigote proliferation (IC50 14.06 µg ml-1) independent of NO production. The in vivo protection achieved was 80.91% (liver) and 82.92% (spleen) in mice and 75.61% (liver) and 78.93% (spleen) in hamsters indicating its profound therapeutic efficacy. CBD exhibited direct antileishmanial activity, as it did not specifically induce a T helper type (Th)-1-polarized mileu in cured hosts. This was evidenced by insignificant modulation of NO production, lymphoproliferation, DTH (delayed type hypersensitivity), serum IgG2a and IgG1 levels and production of Th2 cytokines (IL-4 and IL-10) along with restoration of pro-inflammatory Th1 cytokines (INF-γ, IL-12p70) to the normal range. CBD was devoid of any toxicity in vitro as well as in vivo. The chemical constituents, cinnamaldehyde and its derivatives present in CBD may have imparted the observed antileishmanial effect. CONCLUSIONS: Our study highlights the profound antileishmanial efficacy of C. cassia bark DCM fraction and merits its further exploration as a source of safe and effective antieishmanial compounds.


Subject(s)
Antiprotozoal Agents/administration & dosage , Cinnamomum aromaticum/chemistry , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Plant Extracts/administration & dosage , Animals , Antiprotozoal Agents/isolation & purification , Cricetinae , Cytokines/genetics , Cytokines/immunology , Female , Gas Chromatography-Mass Spectrometry , Humans , Leishmania donovani/physiology , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Macrophages, Peritoneal/drug effects , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Plant Bark/chemistry , Plant Extracts/isolation & purification
16.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30962368

ABSTRACT

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Subject(s)
Antiprotozoal Agents/administration & dosage , Leishmania donovani/drug effects , Leishmania infantum/drug effects , Leishmaniasis, Visceral/diagnostic imaging , Proteasome Inhibitors/administration & dosage , Protozoan Proteins/antagonists & inhibitors , Animals , Antiprotozoal Agents/chemistry , Binding Sites , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Leishmania donovani/chemistry , Leishmania donovani/enzymology , Leishmania infantum/chemistry , Leishmania infantum/enzymology , Leishmaniasis, Visceral/parasitology , Male , Mice , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Protein Conformation , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
17.
Parasitol Res ; 118(5): 1609-1623, 2019 May.
Article in English | MEDLINE | ID: mdl-30903348

ABSTRACT

The protozoan parasite, Leishmania donovani, undergoes several molecular adaptations and secretes many effector molecules for host cell manipulation and successful parasitism. The current study identifies an albumin-like secretory protein, expressed in its extracellular promastigote forms. A leishmanial complementary DNA sequence of a partial gene has been cloned, and the encoded peptide (14 kD) is used for the production of polyclonal antibody. This targeted antibody identifies a large native protein (66.421 kD), expressed stage-specifically in promastigotes. Through electron microscopic studies, the native protein is found to be localized in the flagellar pocket and flagella and at the surface of the promastigotes. This native protein is purified with the same customized antibody for future characterization and sequencing. The sequence analysis reveals its homology with the mammalian serum albumin. It is evidenced from in silico studies that this albumin-like protein remains associated with long-chain fatty acids while in vitro studies indicate its close association with membrane cholesterol. Since antibody-mediated blocking compromises the parasite infectivity, these leishmanial albumin-like molecules are hereby proposed to play an instrumental role in the infectivity of L. donovani to peripheral blood monocyte cells. Thus, identification and characterization of an albumin-like protein in L. donovani promastigotes may be interpreted as a molecular adaptation candidate. It may be hypothesized that the parasite mimics the mammalian system for importing fatty acids into the intracellular amastigotes, facilitating its host cell infectivity.


Subject(s)
Albumins/analysis , Flagella/metabolism , Leishmania donovani/genetics , Leishmania donovani/metabolism , Leishmaniasis, Visceral/parasitology , Protozoan Proteins/genetics , Albumins/immunology , Animals , Antibodies, Protozoan/immunology , Cholesterol/metabolism , Fatty Acids/metabolism , Flagella/immunology , Leishmania donovani/growth & development , Protozoan Proteins/immunology
18.
J Glob Antimicrob Resist ; 18: 187-194, 2019 09.
Article in English | MEDLINE | ID: mdl-30797085

ABSTRACT

OBJECTIVES: Green tea contains a predominant set of polyphenolic compounds with biological activities. The aim of this study was to investigate the antileishmanial activities of the main components of green tea, including catechin, (-)-epicatechin, epicatechin gallate (ECG) and (-)-epigallocatechin 3-O-gallate (EGCG), against Leishmania infantum promastigotes. METHODS: Green tea ligands and the control drug pentamidine were docked using AutoDock 4.3 software into the active sites of trypanothione synthetase and arginase, which were modelled using homology modelling programs. The colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was used to measure L. infantum promastigotes at different concentrations of green tea compounds in a concentration- and time-dependent manner. Results were expressed as 50% and 90% inhibitory concentrations (IC50 and IC90, respectively). RESULTS: In silico and in vitro assays showed that all of the green tea compounds have antileishmanial activity. EGCG and ECG were the most active compounds against L. infantum promastigotes, with IC50 values of 27.7µM and 75µM and IC90 values of 88.4µM and 188.7µM, respectively. Pentamidine displayed greater growth inhibition than all of the other tested compounds in a concentration- and time-dependent manner. CONCLUSION: In this study, in silico and docking results were in accordance with the in vitro activity of the compounds. Moreover, EGCG and ECG showed reasonable levels of selectivity for Leishmania.


Subject(s)
Leishmania infantum/drug effects , Plant Exudates/pharmacology , Tea/chemistry , Amide Synthases/chemistry , Amide Synthases/drug effects , Antioxidants/pharmacology , Arginase/chemistry , Arginase/drug effects , Catechin/analogs & derivatives , Cell Proliferation/drug effects , Computer Simulation , Iran , Leishmaniasis, Visceral/parasitology , Microbial Sensitivity Tests , Molecular Docking Simulation , Pentamidine/chemistry , Pentamidine/pharmacology , Protease Inhibitors/pharmacology
19.
Sci Rep ; 9(1): 438, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679614

ABSTRACT

The limited success of recent phenotypic anti-leishmanial drug screening campaigns calls for new screening strategies for the discovery of clinically relevant hits. Here we present such a novel strategy based on physiologically relevant, ex vivo biology. We established high content phenotypic assays that combine primary murine macrophages and lesion-derived, virulent L. donovani and L. amazonensis amastigotes, which we applied to validate previously identified, anti-leishmanial hit compounds referred to as 'GSK Leish-Box'. Together with secondary screens using cultured promastigotes, our pipeline distinguished stage- and/or species-specific compounds, including 20 hits with broad activity at 10 µM against intracellular amastigotes of both viscerotropic and dermotropic Leishmania. Even though the GSK Leish-Box hits were identified by phenotypic screening using THP-1 macrophage-like cells hosting culture-derived L. donovani LdBob parasites, our ex vivo assays only validated anti-leishmanial activity at 10 µM on intra-macrophagic L. donovani for 23 out of the 188 GSK Leish-Box hits. In conclusion, our comparative approach allowed the identification of hits with broad anti-leishmanial activity that represent interesting novel candidates to be tested in animal models. Physiologically more relevant screening approaches such as described here may reduce the very high attrition rate observed during pre-clinical and clinical phases of the drug development process.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Leishmania donovani/drug effects , Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/prevention & control , Leishmaniasis, Visceral/prevention & control , Animals , Antiprotozoal Agents/chemistry , Cells, Cultured , Humans , Leishmania donovani/pathogenicity , Leishmania mexicana/pathogenicity , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Macrophages/drug effects , Macrophages/parasitology , Mice, Inbred BALB C , Molecular Structure , Phenotype , Species Specificity , THP-1 Cells , Virulence/drug effects
20.
PLoS One ; 13(9): e0203407, 2018.
Article in English | MEDLINE | ID: mdl-30192805

ABSTRACT

BACKGROUND: Lesishmaniasis is a neglected tropical disease endemic in Bihar, India. Inappropriate health seeking behaviour of post kala-azar dermal leishmaniasis (PKDL) patients may increase the disease duration, severity and transmissibility. Simultaneously, lack of knowledge and perceived stigma may also increase the length of delay in receiving treatment. This ultimately effects the kala-azar elimination program. METHODS: A cross sectional study was conducted in 120 confirmed PKDL patients, aged 18 years and older. Data related to knowledge and health seeking behaviour was collected by a pre-tested questionnaire. EMIC stigma scale was used for assessing the perceived stigma. Patients were personally interviewed after taking informed consent. Data analysis was done by using SPSS 16 software. RESULTS: The time between appearance of symptoms and first medical consultation (patient delay) ranged from 15 days to 5475 days (15 years) with a median of 285 days. The time between first medical consultations to onset of specific treatment (system delay) ranged from 2 to 5475 days with a median of 365 days. Many patients approached first to quacks (8.4%), homeopathic and ayurvedic practitioners (25.8%) upon recognition of symptoms. Majority of the patients (68.3%) had poor knowledge about PKDL and its vector. Type of skin lesions and gender had significant association with patient delay and system delay respectively (p<0.05). Distance to primary health centre (PHC) had significant association with patients delay as well as system delay (p<0.05). Patients with younger age, unmarried and polymorphic lesions had higher stigma (p<0.05). Patients with PKDL feel stigmatized in different areas. CONCLUSION: PKDL treatment delays were unacceptably high and patients had poor knowledge compounded with feelings of stigmatization. To reduce the delay, a system may be evolved to establish some sort of public-private collaboration, besides awareness programs should be tailored, and implemented for improving the patient education regarding the disease and its linkage with VL.


Subject(s)
Antiprotozoal Agents/therapeutic use , Health Behavior , Health Knowledge, Attitudes, Practice , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Visceral/drug therapy , Adolescent , Adult , Aged , Cross-Sectional Studies , Female , Humans , India/epidemiology , Leishmania donovani/drug effects , Leishmania donovani/physiology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Male , Middle Aged , Patient Acceptance of Health Care/statistics & numerical data , Social Stigma , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL