Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Int J Pharm ; 655: 124015, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38527565

ABSTRACT

Sonodynamic therapy (SDT) utilizes ultrasonic excitation of a sensitizer to generate reactive oxygen species (ROS) to destroy tumor. Two dimensional (2D) black phosphorus (BP) is an emerging sonosensitizer that can promote ROS production to be used in SDT but it alone lacks active targeting effect and showed low therapy efficiency. In this study, a stable dispersion of integrated micro-nanoplatform consisting of BP nanosheets loaded and Fe3O4 nanoparticles (NPs) connected microbubbles was introduced for ultrasound imaging guided and magnetic field directed precision SDT of breast cancer. The targeted ultrasound imaging at 18 MHz and efficient SDT effects at 1 MHz were demonstrated both in-vitro and in-vivo on the breast cancer. The magnetic microbubbles targeted deliver BP nanosheets to the tumor site under magnetic navigation and increased the uptake of BP nanosheets by inducing cavitation effect for increased cell membrane permeability via ultrasound targeted microbubble destruction (UTMD). The mechanism of SDT by magnetic black phosphorus microbubbles was proposed to be originated from the ROS triggered mitochondria mediated apoptosis by up-regulating the pro-apoptotic proteins while down-regulating the anti-apoptotic proteins. In conclusion, the ultrasound theranostic was realized via the magnetic black phosphorus microbubbles, which could realize targeting and catalytic sonodynamic therapy.


Subject(s)
Breast Neoplasms , Ultrasonic Therapy , Humans , Female , Microbubbles , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Ultrasonography , Ultrasonic Therapy/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Phosphorus , Magnetic Phenomena
2.
J Surg Res ; 296: 603-611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350299

ABSTRACT

INTRODUCTION: Ischemic gut injury is common in the intensive care unit, impairs gut barrier function, and contributes to multiorgan dysfunction. One novel intervention to mitigate ischemic gut injury is the direct luminal delivery of oxygen microbubbles (OMB). Formulations of OMB can be modified to control the rate of oxygen delivery. This project examined whether luminal delivery of pectin-modified OMB (OMBp5) can reduce ischemic gut injury in a rodent model. METHODS: The OMBp5 formulation was adapted to improve delivery of oxygen along the length of small intestine. Adult Sprague-Dawley rats (n = 24) were randomly allocated to three groups: sham-surgery (SS), intestinal ischemia (II), and intestinal ischemia plus luminal delivery of OMBp5 (II + O). Ischemia-reperfusion injury was induced by superior mesenteric artery occlusion for 45 min followed by reperfusion for 30 min. Outcome data included macroscopic score of mucosal injury, the histological score of gut injury, and plasma biomarkers of intestinal injury. RESULTS: Macroscopic, microscopic data, and intestinal injury biomarker results demonstrated minimal intestinal damage in the SS group and constant damage in the II group. II + O group had a significantly improved macroscopic score throughout the gut mucosa (P = 0.04) than the II. The mean histological score of gut injury for the II + O group was significantly improved on the II group (P ≤ 0.01) in the proximal intestine only, within 30 cm of delivery. No differences were observed in plasma biomarkers of intestinal injury following OMBp5 treatment. CONCLUSIONS: This proof-of-concept study has demonstrated that luminal OMBp5 decreases ischemic injury to the proximal small intestine. There is a need to improve oxygen delivery over the full length of the intestine. These findings support further studies with clinically relevant end points, such as systemic inflammation and vital organ dysfunction.


Subject(s)
Mesenteric Ischemia , Reperfusion Injury , Rats , Animals , Rats, Sprague-Dawley , Rodentia , Pectins , Microbubbles , Ischemia/etiology , Ischemia/therapy , Ischemia/pathology , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control , Mesenteric Ischemia/etiology , Mesenteric Ischemia/therapy , Mesenteric Ischemia/pathology , Biomarkers , Intestinal Mucosa/pathology , Intestines/pathology
3.
J Ultrasound Med ; 43(1): 137-150, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873733

ABSTRACT

OBJECTIVES: Quantitative ultrasound (QUS) is a noninvasive imaging technique that can be used for assessing response to anticancer treatment. In the present study, tumor cell death response to the ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment was monitored in vivo using QUS. METHODS: Human breast cancer cell lines (MDA-MB-231) were grown in mice and were treated with HT (10, 30, 50, and 60 minutes) alone, or in combination with USMB. Treatment effects were examined using QUS with a center frequency of 25 MHz (bandwidth range: 16 to 32 MHz). Backscattered radiofrequency (RF) data were acquired from tumors subjected to treatment. Ultrasound parameters such as average acoustic concentration (AAC) and average scatterer diameter (ASD), were estimated 24 hours prior and posttreatment. Additionally, texture features: contrast (CON), correlation (COR), energy (ENE), and homogeneity (HOM) were extracted from QUS parametric maps. All estimated parameters were compared with histopathological findings. RESULTS: The findings of our study demonstrated a significant increase in QUS parameters in both treatment conditions: HT alone (starting from 30 minutes of heat exposure) and combined treatment of HT plus USMB finally reaching a maximum at 50 minutes of heat exposure. Increase in AAC for 50 minutes HT alone and USMB +50 minutes was found to be 5.19 ± 0.417% and 5.91 ± 1.11%, respectively, compared to the control group with AAC value of 1.00 ± 0.44%. Furthermore, between the treatment groups, ΔASD-ENE values for USMB +30 minutes HT significantly reduced, depicting 0.00062 ± 0.00096% compared to 30 minutes HT only group, showing 0.0058 ± 0.0013%. Further, results obtained from the histological analysis indicated greater cell death and reduced nucleus size in both HT alone and HT combined with USMB. CONCLUSION: The texture-based QUS parameters indicated a correlation with microstructural changes obtained from histological data. This work demonstrated the use of QUS to detect HT treatment effects in breast cancer tumors in vivo.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Mammary Neoplasms, Animal , Humans , Animals , Mice , Female , Microbubbles , Ultrasonography/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Combined Modality Therapy
4.
Eur J Pharm Biopharm ; 192: 196-205, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37858804

ABSTRACT

Docetaxel (DTX) chemotherapy is commonly used in the treatment of patients with advanced prostate cancer demonstrating modest improvements in survival. As these patients are often elderly and the chemotherapy treatment is not targeted, it is often poorly tolerated. More targeted approaches that increase therapeutic efficacy yet reduce the amount of toxic chemotherapy administered are needed. In this manuscript, we investigate the potential of ultrasound targeted microbubble destruction (UTMD) to deliver a combination of docetaxel chemotherapy and Rose Bengal mediated sonodynamic therapy (SDT) in pre-clinical prostate cancer models. A Rose Bengal modified phospholipid was synthesized and used as a component lipid to prepare a microbubble (MB) formulation that was also loaded with DTX. The DTX-MB-RB formulation was used in the UTMD mediated treatment of androgen sensitive and androgen resistant 3D spheroid and murine models of prostate cancer. Results from the 3D spheroid experiments showed UTMD mediated DTX-MB-RB chemo-sonodynamic therapy to be significantly more effective at reducing cell viability than UTMD mediated DTX or SDT treatment alone. In an androgen sensitive murine model of prostate cancer, UTMD mediated DTX-MB-RB chemo-sonodynamic therapy was as effective as androgen deprivation therapy (ADT) at controlling tumour growth. However, when both treatments were combined, a significant improvement in tumour growth delay was observed. In an androgen resistant murine model, UTMD mediated DTX-MB-RB chemo-sonodynamic therapy was significantly more effective than standard DTX monotherapy. Indeed, the DTX dose administered using the DTX-MB-RB formulation was 91% less than standard DTX monotherapy. As a result, UTMD mediated DTX-MB-RB treatment was well tolerated while animals treated with DTX monotherapy displayed significant weight loss which was attributed to acute toxic effects. These results highlight the potential of UTMD mediated DTX-MB-RB chemo-sonodynamic therapy as a targeted, well tolerated alternative treatment for advanced prostate cancer.


Subject(s)
Prostatic Neoplasms , Rose Bengal , Humans , Male , Animals , Mice , Aged , Docetaxel , Microbubbles , Androgen Antagonists , Androgens , Disease Models, Animal , Prostatic Neoplasms/drug therapy
5.
Technol Cancer Res Treat ; 22: 15330338231200993, 2023.
Article in English | MEDLINE | ID: mdl-37750232

ABSTRACT

Objectives: Prior study has demonstrated the implementation of quantitative ultrasound (QUS) for determining the therapy response in breast tumour patients. Several QUS parameters quantified from the tumour region showed a significant correlation with the patient's clinical and pathological response. In this study, we aim to identify if there exists such a link between QUS parameters and changes in tumour morphology due to combined ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) using the breast xenograft model (MDA-MB-231). Method: Tumours grown in the hind leg of severe combined immuno-deficient mice were treated with permutations of USMB and HT. Ultrasound radiofrequency data were collected using a 25 MHz array transducer, from breast tumour-bearing mice prior and post-24-hour treatment. Result: Our result demonstrated an increase in the QUS parameters the mid-band fit and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be reflective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain. A significant decrease in QUS spectral parameters was observed at an HT duration of 60 minutes, which is possibly due to loss of nuclei by the majority of cells as confirmed using histology analysis. Morphological alterations within the tumour might have contributed to the decrease in backscatter parameters. Conclusion: The work here uses the QUS technique to assess the efficacy of cancer therapy and demonstrates that the changes in ultrasound backscatters mirrored changes in tissue morphology.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Humans , Animals , Mice , Female , Microbubbles , Ultrasonography/methods , Cell Death , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy
6.
Ultrasound Med Biol ; 49(8): 1852-1860, 2023 08.
Article in English | MEDLINE | ID: mdl-37246049

ABSTRACT

OBJECTIVE: The objective of this work was to study microbubble-enhanced temperature elevation with high-intensity focused ultrasound (HIFU) at different acoustic pressures and under image guidance. The microbubbles were administered with either local or vascular injections (that mimic systemic injections) in perfused and non-perfused ex vivo porcine liver under ultrasound image guidance. METHODS: Porcine liver was insonified for 30 s with a single-element HIFU transducer (0.9 MHz, 0.413 ms, 82% duty cycle, focal pressures of 0.6-3.5 MPa). Contrast microbubbles were injected either locally or through the vasculature. A needle thermocouple at the focus measured temperature elevation. Diagnostic ultrasound (Philips iU22, C5-1 probe) guided placement of the thermocouple and delivery of microbubbles and monitored the procedure in real time. RESULTS: At lower acoustic pressures (0.6 and 1.2 MPa) in non-perfused liver, inertial cavitation of the injected microbubbles led to greater temperatures at the focus compared with HIFU-only treatments. At higher pressures (2.4 and 3.5 MPa) native inertial cavitation in the tissue (without injecting microbubbles) resulted in temperature elevations similar to those after injecting microbubbles. The heated area was larger when using microbubbles at all pressures. In the presence of perfusion, only local injections provided a sufficiently high concentration of microbubbles necessary for significant temperature enhancement. CONCLUSION: Local injections of microbubbles provide a higher concentration of microbubbles in a smaller area, avoiding acoustic shadowing, and can lead to higher temperature elevation at lower pressures and increase the size of the heated area at all pressures.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Hyperthermia, Induced , Animals , Swine , Microbubbles , Contrast Media , Ultrasonography , Liver/diagnostic imaging , Liver/surgery , Hyperthermia, Induced/methods , High-Intensity Focused Ultrasound Ablation/methods
7.
ACS Biomater Sci Eng ; 9(6): 3670-3679, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37184981

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects joints, and it can lead to disability and damage to vital organs if not diagnosed and treated in time. However, all current therapeutic agents for RA have limitations such as high dose, severe side effects, long-term use, and unsatisfactory therapeutic effects. The long-term use and dose escalation of methotrexate (MTX) may cause mild and severe side effects. To overcome the limitations, it is critical to target drug delivery to the inflamed joints. In this work, we constructed a folic acid-targeted and cell-mimetic nanodrug, MTX-loaded mesoporous silica composite nanoplatform (MMPRF), which can regulate drug release under ultrasound (US) and microbubble (MB) mediation. The targeted delivery and drug therapy were investigated through in vitro RAW264.7 cell experiments and in vivo collagen-induced arthritis animal experiments. The result showed that the targeting ability to the joints of MMPRF was strong and was more significant after US and MB mediation, which can potently reduce joint swelling, bone erosion, and inflammation in joints. This work indicated that the US- and MB-mediated MMPRF not only would be a promising method for synergistic targeted treatment of RA but also may show high potential for serving as a nanomedicine for many other biomedical fields.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Animals , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/chemically induced , Drug Delivery Systems , Methotrexate/adverse effects , Microbubbles , Nanoparticles/therapeutic use
8.
J Phys Chem B ; 127(11): 2466-2474, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36917458

ABSTRACT

Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin-streptavidin and maleimide-PDP chemistries. Comparatively, the use of DNA-lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol-DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.


Subject(s)
Liposomes , Microbubbles , DNA, Complementary , Polyethylene Glycols , Lipid Bilayers , Cholesterol
9.
J Ultrasound Med ; 41(11): 2659-2671, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35142383

ABSTRACT

OBJECTIVE: The objective of the present study was to investigate the treatment effects of ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) on breast tumor vasculature. METHODS: Tumor-bearing mice with breast cancer xenografts (MDA-MB-231), were exposed to different treatment conditions consisting of control (no treatment), USMB alone, HT alone, USMB with HT exposures of 10 and 50 minutes. Quantitative 3D Doppler ultrasound and photoacoustic imaging were used to detect tumor blood flow and oxygen saturation, respectively. In addition, histopathological analysis including TUNEL staining for cell death, and CD31 staining for the vessel count, was performed to complement the results of power Doppler and photoacoustic imaging. RESULTS: Results demonstrated a decrease in tumor blood flow as well as oxygenation level following 50 minutes HT treatment either alone or combined with USMB. In contrast, 10 minutes HT alone or combined with USMB had minimal effects on blood flow and tumor oxygenation level. Treatment with HT for 50 minutes caused drops in tumor oxygenation, which were not evident with USMB treatment alone. Additionally, results revealed an increase in cell death after 10 minutes HT with or without USMB and a decrease in vessel count compared to control. Unlike previous studies which demonstrated synergistic treatment effects combining USMB with other modalities such as radiation or chemotherapy, USMB and HT effects were not synergistic in the present study. CONCLUSION: The results here demonstrated HT and USMB both alone or together resulted in a significant reduction in tumor blood flow, tumor oxygenation, and vessel count with observed increases in cell death response.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Humans , Mice , Animals , Female , Microbubbles , Heterografts , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Ultrasonography , Cell Line, Tumor
10.
IEEE Trans Biomed Eng ; 69(6): 1880-1888, 2022 06.
Article in English | MEDLINE | ID: mdl-34813464

ABSTRACT

OBJECTIVE: Non-invasive methods to enhance drug delivery and efficacy in the brain have been pursued for decades. Focused ultrasound hyperthermia (HT) combined with thermosensitive therapeutics have been demonstrated promising in enhancing local drug delivery to solid tumors. We hypothesized that the presence of microbubbles (MBs) combined with transcranial MR-guided focused ultrasound (MRgFUS) could be used to reduce the ultrasound power required for HT while simultaneously increasing drug delivery by locally opening the blood-brain barrier (BBB). METHODS: Transcranial HT (42 °C, 10 min) was performed in wild-type mice using a small animal MRgFUS system incorporated into a 9.4T Bruker MR scanner, with infusions of saline or Definity MBs with doses of 20 or 100 µl/kg/min (denoted as MB-20 and MB-100). MR thermometry data was continuously acquired as feedback for the ultrasound controller during the procedure. RESULTS: Spatiotemporally precise transcranial HT was achieved in both saline and MB groups. A significant ultrasound power reduction (-45.7%, p = 0.006) was observed in the MB-20 group compared to saline. Localized BBB opening was achieved in MB groups confirmed by CE-T1w MR images. There were no structural abnormalities, edema, hemorrhage, or acutemicroglial activation in all groups, confirmed by T2w MR imaging and histology. CONCLUSION: Our investigations showed that it is feasible and safe to achieve spatiotemporally precise brain HT at significantly reduced power and simultaneous localized BBB opening via transcranial MRgFUS and MBs. SIGNIFICANCE: This study provides a new synergistic brain drug delivery method with clinical translation potential.


Subject(s)
Blood-Brain Barrier , Hyperthermia, Induced , Animals , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Drug Delivery Systems/methods , Feedback , Magnetic Resonance Imaging/methods , Mice , Microbubbles
11.
Exp Biol Med (Maywood) ; 246(24): 2671-2678, 2021 12.
Article in English | MEDLINE | ID: mdl-34525859

ABSTRACT

Dietary cholesterol supplements cause hypercholesterolemia and atherosclerosis along with a reduction of copper concentrations in the atherosclerotic wall in animal models. This study was to determine if target-specific copper delivery to the copper-deficient atherosclerotic wall can block the pathogenesis of atherosclerosis. Male New Zealand white rabbits, 10-weeks-old and averaged 2.0 kg, were fed a diet containing 1% (w/w) cholesterol or the same diet without cholesterol as control. Twelve weeks after the feeding, the animals were injected with copper-albumin microbubbles and subjected to ultrasound sonication specifically directed at the atherosclerotic lesions (Cu-MB-US) for target-specific copper delivery, twice a week for four weeks. This regiment was repeated 3 times with a gap of two weeks in between. Two weeks after the last treatment, the animals were harvested for analyses of serum and aortic pathological changes. Compared to controls, rabbits fed cholesterol-rich diet developed atherosclerotic lesion with a reduction in copper concentrations in the lesion tissue. Cu-MB-US treatment significantly increased copper concentrations in the lesion, and reduced the size of the lesion. Furthermore, copper repletion reduced the number of apoptotic cells as well as the content of cholesterol and phospholipids in the atherosclerotic lesion without a disturbance of the stability of the lesion. The results thus demonstrate that target-specific copper supplementation suppresses the progression of atherosclerosis at least in part through preventing endothelial cell death, thus reducing lipid infiltration in the atherosclerotic lesion.


Subject(s)
Atherosclerosis/pathology , Copper/administration & dosage , Microbubbles , Ultrasonics , Animals , Aorta, Abdominal/pathology , Cholesterol, Dietary/toxicity , Diet, High-Fat/adverse effects , Drug Delivery Systems , Male , Rabbits , Ultrasonics/methods
12.
BMC Cancer ; 21(1): 991, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479484

ABSTRACT

BACKGROUND: The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. RESULTS: The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. CONCLUSION: Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


Subject(s)
Hyperthermia, Induced/methods , Prostatic Neoplasms/therapy , Ultrasonics/methods , Animals , Apoptosis , Cell Proliferation , Combined Modality Therapy , Humans , Male , Mice , Mice, SCID , Microbubbles , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Sci Rep ; 11(1): 12654, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135427

ABSTRACT

Focused ultrasound with microbubbles (FUS-MBs) has shown that it can lead to an efficient drug delivery system (DDS) involving the oscillation and destruction of the MB but is limited in drug delivery due to its narrow pressure field. However, unfocused ultrasound with MBs (UUS-MBs) and an interchangeable acoustic lens can tune and enhance the pressure field for MB destruction to overcome the disadvantages of FUS-MB DDSs. We designed a lens suitable for an ultrasound-phased array probe and studied the optimal treatment conditions for MB destruction in vitro through an optical imaging setup. The DDS effects were evaluated in a rat hepatoma model using doxorubicin (DOX) treatment. A concave lens with a radius of curvature of 2.6 mm and a thickness of 4 mm was selected and fabricated. UUS-MBs with the acoustic lens at 60 Vpp for 32 cycles and a PRF of 1 kHz could induce MB destruction, promoting the DDS even under fluidic conditions. In the animal experiment, the UUS-MBs in the acoustic lens treatment group had a higher concentration of DOX in the tumor than the control group. Our system suggests uses an acoustic lens to increase DDS effectiveness by providing sufficient ultrasound irradiation to the MBs.


Subject(s)
Drug Delivery Systems/methods , Microbubbles/therapeutic use , Neoplasms/drug therapy , Ultrasonic Therapy/methods , Animals , Carcinoma, Hepatocellular/drug therapy , Disease Models, Animal , Doxorubicin/therapeutic use , Drug Evaluation, Preclinical , Liver Neoplasms, Experimental/drug therapy , Pharmaceutical Preparations , Rats , Ultrasonic Waves
14.
Eur J Pharm Biopharm ; 163: 49-59, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33798727

ABSTRACT

Sonodynamic therapy (SDT) is an emerging stimulus-responsive approach for the targeted treatment of solid tumours. However, its ability to generate stimulus-responsive cytotoxic reactive oxygen species (ROS), is compromised by tumour hypoxia. Here we describe a robust means of preparing a pH-sensitive polymethacrylate-coated CaO2 nanoparticle that is capable of transiently alleviating tumour hypoxia. Systemic administration of particles to animals bearing human xenograft BxPC3 pancreatic tumours increases oxygen partial pressures (PO2) to 20-50 mmHg for over 40 min. RT-qPCR analysis of expression of selected tumour marker genes in treated animals suggests that the transient production of oxygen is sufficient to elicit effects at a molecular genetic level. Using particles labelled with the near infra-red (nIR) fluorescent dye, indocyanine green, selective uptake of particles by tumours was observed. Systemic administration of particles containing Rose Bengal (RB) at concentrations of 0.1 mg/mg of particles are capable of eliciting nanoparticle-induced, SDT-mediated antitumour effects using the BxPC3 human pancreatic tumour model in immuno-compromised mice. Additionally, a potent abscopal effect was observed in off-target tumours in a syngeneic murine bilateral tumour model for pancreatic cancer and an increase in tumour cytotoxic T cells (CD8+) and a decrease in immunosuppressive tumour regulatory T cells [Treg (CD4+, FoxP3+)] was observed in both target and off-target tumours in SDT treated animals. We suggest that this approach offers significant potential in the treatment of both focal and disseminated (metastatic) pancreatic cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/chemistry , Pancreatic Neoplasms/drug therapy , Photochemotherapy/methods , Ultrasonic Therapy/methods , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Hydrogen-Ion Concentration , Male , Mice , Microbubbles , Nanoparticles/chemistry , Oxygen/pharmacokinetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Rose Bengal/administration & dosage , Rose Bengal/pharmacokinetics , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Tissue Distribution , Xenograft Model Antitumor Assays
15.
Commun Biol ; 4(1): 361, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742114

ABSTRACT

Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.


Subject(s)
Acinar Cells/drug effects , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Radiation Injuries/prevention & control , Salivary Glands/drug effects , Tissue Array Analysis , Xerostomia/prevention & control , Acinar Cells/metabolism , Acinar Cells/radiation effects , Animals , Calcium Signaling/drug effects , Cells, Cultured , Female , Humans , Hydrogels , Male , Mice, Inbred C57BL , Microbubbles , Middle Aged , Parotid Gland/drug effects , Parotid Gland/metabolism , Parotid Gland/radiation effects , Phenotype , Polyethylene Glycols/chemistry , Radiation Injuries/etiology , Radiation Injuries/metabolism , Salivary Glands/metabolism , Salivary Glands/radiation effects , Xerostomia/etiology , Xerostomia/metabolism
16.
Ultrason Sonochem ; 73: 105494, 2021 May.
Article in English | MEDLINE | ID: mdl-33640571

ABSTRACT

Neuromodulation by ultrasound (US) has recently drawn considerable attention due to its great advantages in noninvasiveness, high penetrability across the skull and highly focusable acoustic energy. However, the mechanisms and safety from US irradiation still remain less understood. Recently, documents revealed Piezo1, a mechanosensitive cation channel, plays key role in converting mechanical stimuli from US through its trimeric propeller-like structure. Here, we developed a Piezo1-targeted microbubble (PTMB) which can bind to the extracellular domains of Piezo1 channel. Due to the higher responsiveness of bubbles to mechanical stimuli from US, significantly lower US energy for these PTMB-binding cells may be needed to open these mechanosensitive channels. Our results showed US energy at 0.03 MPa of peak negative pressure can achieve an equivalent level of cytoplasmic Ca2+ transients which generally needs 0.17 MPa US intensity for the control cells. Cytoplasmic Ca2+ elevations were greatly reduced by chelating extracellular calcium ions or using the cationic ion channel inhibitors, confirming that US-mediated calcium influx are dependent on the Piezo1 channels. No bubble destruction and obvious temperature increase were observed during the US exposure, indicating cavitation and heating effects hardly participate in the process of Ca2+ transients. In conclusion, our study provides a novel strategy to sensitize the response of nerve cells to US stimulation, which makes it safer application for US-mediated neuromodulation in the future.


Subject(s)
Ion Channels/metabolism , Microbubbles , Neurons/metabolism , Ultrasonic Waves , Animals , Calcium/metabolism , Cell Line , Female , Hippocampus/cytology , Hippocampus/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Transcutaneous Electric Nerve Stimulation
17.
Theranostics ; 11(1): 79-92, 2021.
Article in English | MEDLINE | ID: mdl-33391462

ABSTRACT

Transarterial chemoembolization (TACE) is an image-guided locoregional therapy used for the treatment of patients with primary or secondary liver cancer. However, conventional TACE formulations are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in the target tumor. Methods: To overcome these limitations, a doxorubicin-loaded albumin nanoparticle-conjugated microbubble complex in an iodized oil emulsion (DOX-NPs-MB complex in Lipiodol) has been developed as a new ultrasound-triggered TACE formulation. Results: (1) Microbubbles enhanced therapeutic efficacy by effectively delivering doxorubicin- loaded nanoparticles into liver tumors via sonoporation under ultrasound irradiation (US+). (2) Microbubbles constituting the complex retained their function as an ultrasound contrast agent in Lipiodol. In a rabbit VX2 liver cancer model, the in vivo study of DOX-NPs-MB complex in Lipiodol (US+) decreased the viability of tumor more than the conventional TACE formulation, and in particular, effectively killed cancer cells in the tumor periphery. Conclusion: Incorporation of doxorubicin-loaded microbubble in the TACE formulation facilitated drug delivery to the tumor with real-time monitoring and enhanced the therapeutic efficacy of TACE. Thus, the enhanced TACE formulation may represent a new treatment strategy against liver cancer.


Subject(s)
Albumins , Antibiotics, Antineoplastic/administration & dosage , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Doxorubicin/administration & dosage , Liver Neoplasms/therapy , Microbubbles , Nanoparticles , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Drug Compounding , Drug Delivery Systems , Ethiodized Oil , Infusions, Intra-Arterial , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Magnetic Resonance Imaging , Male , Rabbits , Ultrasonography
18.
Colloids Surf B Biointerfaces ; 197: 111358, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33068823

ABSTRACT

More effective strategies are needed to improve the treatment of liver cancer. Sono-photodynamic therapy (SPDT) has a more obvious antitumor effect than sonodynamic therapy (SDT) or photodynamic therapy (PDT). We aimed to investigate Glypican-3-targeted, curcumin-loaded microbubbles (GPC3-CUR-MBs)-mediated SPDT in liver cancer cells in vitro and in vivo. GPC3-CUR-MBs were prepared by streptavidin-biotin interactions and the immune ligation method. The characterization and toxicity of GPC3-CUR-MBs and the anti-liver cancer effects of GPC3-CUR-MB-mediated SPDT in vitro and in vivo were studied. We synthetized GPC3-CUR-MBs and found that GPC3-CUR-MBs had no significant toxicity to HepG2 liver cancer cells. In terms of the anti-liver cancer effects in vitro and in vivo, when we used CUR, CUR-MBs or GPC3-CUR-MBs as the sono/photosensitizers, the outcome of SPDT was superior to that of SDT or PDT alone. The outcomes with GPC3-CUR-MBs were better than those with CUR or CUR-MBs in the SDT, PDT or SPDT groups. During the treatment period, the weight of the HepG2 tumor-bearing mice did not decrease significantly, and no significant evidence of lung, heart, liver, spleen and kidney damage was found with H&E staining. Our results indicated that the anti-liver tumor effect of SPDT was better than that of SDT and PDT and that GPC3-CUR-MBs were promising sono/photosensitizers.


Subject(s)
Curcumin , Liver Neoplasms , Photochemotherapy , Animals , Cell Line, Tumor , Curcumin/pharmacology , Glypicans , Liver Neoplasms/drug therapy , Mice , Microbubbles , Phospholipids
19.
PLoS One ; 15(12): e0243815, 2020.
Article in English | MEDLINE | ID: mdl-33306731

ABSTRACT

PURPOSE: To assess the feasibility of the combined sorafenib (SOR) and doxorubicin-loaded microbubble-albumin nanoparticle complex (DOX-MAC) treatment effect in an orthotopic rat model of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Sixty-two rats with N1-S1 hepatoma were divided into four groups according to the treatment methods, i.e. G1 (SOR and DOX-MAC; n = 12), G2 (SOR; n = 15), G3 (DOX-MAC; n = 12), G4 (DOX; n = 11), and G5 (normal saline; n = 12). We performed the theragnostic, contrast-enhanced ultrasound examination and treatment at the baseline, one-week, and two-weeks. Tumor volume and perfusion parameters were compared at each time point and the differences between all of the groups over time were analyzed using repeated measures ANOVA. We also analyzed the apoptotic index and microvessel density (MVD) per each tumor specimen in all of the groups. RESULTS: The tumors increased from the beginning in all of the groups to the final follow-up, whereas the tumor growth in the G1 group and the G2 group was inhibited during the treatment period compared to the baseline tumor volume (P = 0.016 and P = 0.031). The G1 group resulted in tumor growth inhibition compared to the control group (P = 0.008). The G1 group showed that the peak enhancement and wash-in area under the curve were lower than that of the G4 group (P = 0.010 and 0.022). However, there was no difference in perfusion parameters in the other treated group compared to control group. The MVD of the G1 group tumor was lower than that of the G4 group (P = .016). CONCLUSION: Our results suggest that the combination therapy of SOR and DOX-MAC can cause inhibition of tumor growth after treatment and that this therapy can be adequately monitored using the theragnostic DOX-MAC agent.


Subject(s)
Albumins/chemistry , Carcinoma, Hepatocellular/pathology , Doxorubicin/pharmacology , Liver Neoplasms/pathology , Microbubbles , Nanoparticles/chemistry , Sorafenib/pharmacology , Animals , Body Weight/drug effects , Cell Line, Tumor , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Interactions , Feasibility Studies , Humans , Rats , Sorafenib/chemistry , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
20.
Sci Rep ; 10(1): 16144, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32999351

ABSTRACT

Drainage of parenchymal waste through the lymphatic system maintains brain homeostasis. Age-related changes of glymphatic-lymphatic clearance lead to the accumulation beta-amyloid (Aß) in dementia models. In this study, focused ultrasound treatment in combination with microbubbles (FUS-MB) improved Aß drainage in early dementia model mice, 5XFAD. FUS-MB enhanced solute Aß clearance from brain, but not plaques, to cerebrospinal fluid (CSF) space and then deep cervical lymph node (dCLN). dCLN ligation exaggerated memory impairment and progress of plaque formation and also the beneficial effects of FUS-MB upon Aß removal through CSF-lymphatic routes. In this ligation model, FUS-MB improved memory despite accumulation of Aß in CSF. In conclusion, FUS-MB enhances glymphatic-lymphatic clearance of Aß mainly by increasing brain-to-CSF Aß drainage. We suggest that FUS-MB can delay dementia progress in early period and benefits of FUS-MB depend on the effect of Aß disposal through CSF-lymphatics.


Subject(s)
Alzheimer Disease/therapy , Glymphatic System/drug effects , Microbubbles/therapeutic use , Alzheimer Disease/immunology , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Glymphatic System/metabolism , Humans , Lymphatic System/metabolism , Male , Mice , Mice, Transgenic , Parenchymal Tissue , Plaque, Amyloid/pathology , Ultrasonic Therapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL