Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
J Ethnopharmacol ; 267: 113537, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33137430

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acid nephropathy (AAN) is a kidney disease caused by the administration of plants containing aristolochic acids (AAs). Aristolochic acid I (AAI) is the main toxic component in AAs. Organic anion transporters (OATs) 1 and 3 mediate the renal uptake of AAI, which is related to AAN. In our previous study, we found that anthraquinones derived from the herbal medicine Rheum palmatum L. (RP) inhibited both OAT1 and OAT3, with rhein exhibiting the greatest potency among the components. AIM OF THE STUDY: This study aimed to investigate the effects of rhein and RP extract on the pharmacokinetics and tissue distribution of AAI and its demethylated metabolite (8-hydroxy-aristolochic acid I [AAIa]) in rats. MATERIALS AND METHODS: Rhein and RP extract were used as OAT inhibitors, and AAI was used as the toxic substrate. The pharmacokinetics and tissue distribution of AAI and AAIa in rats following the intravenous injection of AAI (10 mg/kg) in the presence and absence of rhein (100 mg/kg) or RP extract (5 g crude drug/kg) were investigated. RESULTS: Co-administration with rhein increased AUC0-∞ of AAI and AAIa by 39 and 44%, respectively. However, the renal level of AAI was decreased to 50, 42, and 58% of those in rats treated with AAI alone at 5, 10, and 20 min after treatment, respectively, and the renal level of AAIa was decreased to 58, 57, and 61% of the level in rats treated with AAI alone, respectively, at these time points. In the RP extract co-administration group, AAI and AAIa plasma exposure was not significantly increased, but renal accumulation of AAI was decreased to 63, 58, and 68% of that in rats treated with AAI alone at 5, 10, and 20 min after treatment, respectively. In addition, renal accumulation of AAIa was decreased to 74, 70, and 70% of that in rats treated with AAI alone at 5, 10, and 20 min after treatment, respectively. CONCLUSIONS: This study indicated that co-administration with rhein significantly increased the plasma exposure of AAI and AAIa while decreased their renal accumulation in rats. RP extract reduced the renal accumulation of AAI and AAIa, but have no significant effect on their plasma exposure levels in rats.


Subject(s)
Anthraquinones/pharmacology , Aristolochic Acids/pharmacokinetics , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Plant Extracts/pharmacology , Rheum , Animals , Anthraquinones/isolation & purification , Aristolochic Acids/administration & dosage , Aristolochic Acids/blood , Aristolochic Acids/toxicity , Biotransformation , Demethylation , Injections, Intravenous , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Male , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Rheum/chemistry , Tissue Distribution
2.
J Pharmacol Exp Ther ; 371(1): 162-170, 2019 10.
Article in English | MEDLINE | ID: mdl-31371478

ABSTRACT

The effect of dotinurad [(3,5-dichloro-4-hydroxyphenyl)(1,1-dioxo-1,2-dihydro-3H-1λ 6-1,3-benzothiazol-3-yl)methanone] was compared with that of commercially available uricosuric agents-namely, benzbromarone, lesinurad, and probenecid. Its effect on urate secretion transporters was evaluated using probe substrates for respective transporters. Dotinurad, benzbromarone, lesinurad, and probenecid inhibited urate transporter 1 (URAT1) with IC50 values of 0.0372, 0.190, 30.0, and 165 µM, respectively. Dotinurad weakly inhibited ATP-binding cassette subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), and OAT3, with IC50 values of 4.16, 4.08, and 1.32 µM, respectively, indicating higher selectivity for URAT1. The hypouricemic effects of dotinurad and benzbromarone were evaluated in Cebus monkeys. Dotinurad, at doses of 1-30 mg/kg, concomitantly decreased plasma urate levels and increased fractional excretion of urate (FEUA) in a dose-dependent manner. On the contrary, benzbromarone, at a dose of 30 mg/kg, showed a modest effect on plasma urate levels. The inhibitory effect of dotinurad on urate secretion transporters was evaluated in Sprague-Dawley rats, with sulfasalazine and adefovir as probe substrates of ABCG2 and OAT1, respectively. Drugs, including febuxostat as a reference ABCG2 inhibitor, were administered orally before sulfasalazine or adefovir administration. Dotinurad had no effect on urate secretion transporters in vivo, whereas benzbromarone, lesinurad, probenecid, and febuxostat increased the plasma concentrations of probe substrates. These results suggested dotinurad is characterized as a selective urate reabsorption inhibitor (SURI), which is defined as a potent URAT1 inhibitor with minimal effect on urate secretion transporters, including ABCG2 and OAT1/3, because of its high efficacy in decreasing plasma urate levels compared with that of other uricosuric agents. SIGNIFICANCE STATEMENT: Our study on the inhibitory effects on urate transport showed that dotinurad had higher selectivity for urate transporter 1 (URAT1) versus ATP-binding cassette subfamily G member 2 (ABCG2) and organic anion transporter (OAT) 1/3 compared to other uricosuric agents. In Cebus monkeys, dotinurad decreased plasma urate levels and increased fractional excretion of urate in a dose-dependent manner. To determine the inhibitory effect of dotinurad on urate secretion transporters, we studied the movement of substrates of ABCG2 and OAT1 in rats. Dotinurad had no effect on these transporters, whereas the other uricosuric agents increased the plasma concentrations of the substrates. These results suggested dotinurad as a potent and selective urate reabsorption inhibitor is characterized by increased efficacy with decreasing plasma urate levels.


Subject(s)
Benzothiazoles/pharmacology , Uricosuric Agents/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Benzothiazoles/adverse effects , Benzothiazoles/pharmacokinetics , Drug Evaluation, Preclinical , HEK293 Cells , Haplorhini , Humans , Male , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Uric Acid/blood , Uric Acid/urine , Uricosuric Agents/adverse effects
3.
Article in English | MEDLINE | ID: mdl-31255699

ABSTRACT

Organic anion transporters (OATs) are membrane proteins within the Solute carrier family 22 (SLC22). They play important roles in cellular uptake of various organic compounds, and due to their expression in barrier tissues of major excretory and non-excretory organs are considered as crucial elements in absorption and distribution of a wide range of endobiotic and xenobiotic compounds. Based on our previous work and initial insights on SLC22 members in zebrafish (Danio rerio), in this study we aimed at in vitro characterization of Oat1 and Oat3 transporters and understanding of their interaction with potential physiological substrates. We first performed synteny analysis to describe in more detail orthological relationship of zebrafish oat1 and oat3 genes. We then developed stable cell lines overexpressing Oat1 and Oat3, and identified Lucifer yellow as Oat1 model fluorescent substrate (Km = 11.4 µM) and 6-carboxyfluorescein as Oat3 model substrate (Km = 5.8 µM). Initial identification performed using the developed assays revealed Kreb's cycle intermediates, bilirubin, bile salts and steroid hormones as the most potent of Oat1 and Oat3 interactors, with IC50 values in micromolar range. Finally, we showed that bilirubin, deoxycholic acid, α-ketoglutarate, pregnenolone, estrone-3-sulfate and corticosterone are in vitro substrates of zebrafish Oat1, and bilirubin and deoxycholic acid are Oat3 substrates. In conclusion, using the approach described, structural and functional similarities of both transporters to human and mammalian orthologs are revealed, their broad ligand selectivity confirmed, potent interactors among endobiotic compounds identified, and first indications of their potential physiological role(s) in zebrafish obtained.


Subject(s)
Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Drug Evaluation, Preclinical , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Protein Binding , Protein Transport , Zebrafish Proteins/antagonists & inhibitors
4.
J Nat Prod ; 82(4): 832-839, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30892891

ABSTRACT

Organic anion transporters 1 (OAT1) and 3 (OAT3) play important roles in the renal elimination of a range of substrate molecules. Little is known about natural products that can modulate OAT1 and OAT3 activities. The medullae of Juncus effusus is often used for the treatment of dysuria in traditional Chinese medicine. To study the interactions of phytochemicals in J. effusus with human OAT1 and OAT3, a bioactivity guided phytochemical investigation led to seven new phenanthrenoids along with nine known compounds, including eight phenanthrenoids and a benzophenone from the dichloromethane soluble fraction of a methanol extract of the medullae of J. effusus. The structures were established by physical data analysis, including high-resolution electrospray ionization mass spectrometry and 1D and 2D NMR. The compounds were evaluated for inhibition of OAT1 and OAT3 in vitro. Compounds 10 and 16 were inhibitors for OAT1, and compounds 1-3, 10, and 16 were inhibitors for OAT3 with IC50 values less than 5.0 µM. Dihydrophenanthrene 1 markedly altered the pharmacokinetic parameters of the diuretic drug furosemide, a known substrate of both OAT1 and OAT3, in vivo.


Subject(s)
Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Phenanthrenes/pharmacology , Animals , HEK293 Cells , Humans , Male , Phenanthrenes/chemistry , Proton Magnetic Resonance Spectroscopy , Rats , Rats, Wistar , Spectrum Analysis/methods , Structure-Activity Relationship
5.
Biochem Biophys Res Commun ; 509(4): 931-936, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30648554

ABSTRACT

Organic anion transporters (OATs in humans, Oats in rodents) play an important role in the distribution and excretion of numerous endogenous metabolic products and exogenous organic anions, including a host of widely prescribed drugs. Their ligand recognition is also important for drug therapy and development. In this study, the n-butanol and dichloromethane soluble fractions of Juniperus oblonga were found to inhibit OAT3 in vitro and three biflavonoids were found to be responsible for this activity. One of these compounds, amentoflavone exhibited stronger inhibition than probenecid, a known strong inhibitor of OAT3. Biological characterization of amentoflavone in vivo also showed inhibition of Oat3. Preliminary observations of structure-activity relationships suggest that the biflavonoids are more potent inhibitors of this transporter than their corresponding monomer, and that methylation of even a single hydroxyl group results in a substantial decrease in activity. This greater potency of the biflavonoids may indicate the need for a more in-depth investigation of the distribution of biflavonoids in plants used as foodstuffs and herbal medicines, due to their potential for causing interactions with OAT3 substrate drugs.


Subject(s)
Biflavonoids/pharmacology , Juniperus/chemistry , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Animals , Biflavonoids/isolation & purification , Dimerization , Drug Interactions , Humans , Plant Extracts/pharmacology , Probenecid/pharmacology
6.
Planta Med ; 85(3): 225-230, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30248705

ABSTRACT

Phytochemical investigation of Camphorosma lessingii has resulted in the isolation of four previously unreported isoflavones (1: -4: ) and eight known compounds (5: -12: ). Nine of these compounds (1: -6, 8: -10: ) are reported for the first time from members of the family Amaranthaceae. The structures of all isolated compounds were determined by spectroscopic methods, primarily one-dimensional and two-dimensional nuclear magnetic resonance and mass spectrometry. The absolute configuration of 6: was confirmed by circular dichroism. Inhibition of the organic anion transporters, OAT1 and OAT3, by the isolated compounds was evaluated. Among them, 7, 2'-dihydroxy- 6,8-dimethoxyisoflavone (1: ), 2'-hydroxy-6,7,8-trimethoxyisoflavone (2: ), 6,2'-dihydroxy-7,8-dimethoxyisoflavone (3: ), and 7-methoxyflavone (5: ) showed a significant inhibitory effect on 6-carboxyfluorescein uptake mediated by OAT1 and OAT3.


Subject(s)
Chenopodiaceae/chemistry , Isoflavones/pharmacology , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Circular Dichroism , HEK293 Cells , Humans , Isoflavones/chemistry , Isoflavones/isolation & purification , Magnetic Resonance Spectroscopy , Mass Spectrometry
7.
Toxicol Sci ; 161(2): 321-334, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29045746

ABSTRACT

Mercury accumulates in kidneys and produces acute kidney injury. Semen cassiae (SC), a widely consumed tea and herbal medicine in Eastern Asia, has been reported to have protective effects on kidneys. In this study, SC extract was shown to almost abolish the histological alterations induced by mercuric chloride in rat kidneys. A total of 22 compounds were isolated from SC, and 1,7,8-methoxyl-2-hydroxyl-3-methyl-anthraquinone was detected in SC for the first time. Among the eight compounds identified in the blood of rats after SC treatment, six were strong inhibitors of human organic anion transporter 1 and 3 (OAT1 and OAT3). Inhibitory studies revealed that OAT1 and OAT3 were inhibited by SC constituents, in both a competitive and noncompetitive manner. Both OAT1- and OAT3-overexpressing cells were susceptible to the cytotoxicity of the cysteine-mercury conjugate, but only OAT1-overexpressing cells could be protected by 200 µM probenecid or 10 µM of the eight inhibitors in SC, suggesting that OAT1 is the major determinant in the cellular uptake of mercury. To facilitate the identification of inhibitors of OAT1 and OAT3, models of OAT1 and OAT3 were constructed using recently determined protein templates. By combining in silico and in vitro methods, inhibitors of OAT1 and OAT3 were predicted and validated from SC constituents. Collectively, the present study suggests that additional inhibitors of OAT1 and OAT3 can be predicted and validated from natural products by combining docking and in vitro screening, and could be a source of pharmaceutical compounds for developing treatments for mercury-induced kidney injury.


Subject(s)
Acute Kidney Injury/prevention & control , Drugs, Chinese Herbal/therapeutic use , Mercuric Chloride/toxicity , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Protective Agents/therapeutic use , Senna Plant/chemistry , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Amino Acid Sequence , Animals , Cell Survival/drug effects , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacokinetics , HEK293 Cells , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Function Tests , Male , Molecular Docking Simulation , Organic Anion Transport Protein 1/chemistry , Organic Anion Transport Protein 1/genetics , Organic Anion Transporters, Sodium-Independent/chemistry , Organic Anion Transporters, Sodium-Independent/genetics , Protective Agents/isolation & purification , Protective Agents/pharmacokinetics , Rats, Sprague-Dawley , Structural Homology, Protein
8.
Chem Biol Interact ; 277: 79-84, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28890383

ABSTRACT

Rhein, a major bioactive compound of many medicinal herbs and the prodrug of diacerein, is often used with low dose of methotrexate as drug combination to treat rheumatoid arthritis. In this study, potential drug-drug interaction between methotrexate and rhein was investigated based on organic anion transporters (OAT). Our study demonstrated that rhein acyl glucuronide (RAG), the major metabolite of rhein in the human blood circulation, significantly inhibited the uptake of p-aminohippurate in hOAT1 transfected cells with IC50 value of 691 nM and estrone sulfate uptake in hOAT3 transfected cells with IC50 value of 78.5 nM. As the substrate of both hOAT1 and hOAT3, the methotrexate transport was significantly inhibited by RAG in hOAT1 transfected cells at 50 µM and hOAT3 transfected cells at 1 µM by 69% and 87%, respectively. Further in vivo study showed that after co-administrated with RAG in rats the AUC0-24 values of methotrexate increased from 3109 to 5370 ng/mL*hr and the t1/2 was prolonged by 40.5% (from 7.4 to 10.4 h), demonstrating the inhibitory effect of RAG on methotrexate excretion. In conclusion, rhein acyl glucuronide could significantly decrease the transport of methotrexate by both hOAT1 and hOAT3. The combination use of rhein, diacerein or other rhein-containing herbs with methotrexate may cause obvious drug-drug interaction and require close monitoring for potential drug interaction in clinical practice.


Subject(s)
Anthraquinones/pharmacology , Antirheumatic Agents/pharmacokinetics , Enzyme Inhibitors/pharmacology , Glucuronides/pharmacology , Methotrexate/pharmacokinetics , Organic Anion Transporters/antagonists & inhibitors , Animals , Anthraquinones/metabolism , Drug Interactions , Enzyme Inhibitors/metabolism , Glucuronides/metabolism , HEK293 Cells , Humans , Male , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/metabolism , Rats, Sprague-Dawley
9.
Drug Des Devel Ther ; 9: 643-53, 2015.
Article in English | MEDLINE | ID: mdl-25653502

ABSTRACT

We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1), OAT3, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 1 (OCT1), OCT2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3) and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3). The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (K m) =41.5 µM, maximum uptake rate (V max) =46.2 pmol/minute, and intrinsic clearance (CL int) =1.11 µL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CL int values of 0.035 and 0.034 µL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 µM, respectively. However, catalposide did not significantly inhibit the transport activities of OCT1, OCT2, OAT1, P-gp, or BCRP. In conclusion, OAT3, OATP1B1, and OATP1B3 are major transporters that may regulate the pharmacokinetic properties and may cause herb-drug interactions of catalposide, although their clinical relevance awaits further evaluation.


Subject(s)
Glucosides/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Anion Transporters/metabolism , Plant Extracts/metabolism , Animals , Biological Transport , Dose-Response Relationship, Drug , Glucosides/pharmacology , HEK293 Cells , Herb-Drug Interactions , Humans , Kinetics , LLC-PK1 Cells , Models, Biological , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/genetics , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/genetics , Plant Extracts/pharmacology , Swine
10.
Food Funct ; 6(3): 772-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25578040

ABSTRACT

Anthocyans (anthocyanins and their aglycones anthocyanidins) are colorful pigments, naturally occurring in fruits. They exhibit many biological effects and have potent health benefits. Anthocyans are widely used as dietary supplements and the safety of products containing them is of great importance. To investigate whether anthocyans influence the expression of hepatic uptake transporters from the organic anion transporting polypeptide (SLCO gene/OATP protein) family, we carried out studies on primary cultures of human hepatocytes. The hepato-cellular accumulation of widely used drugs such as statins and some anticancer drugs is mediated by the liver-specific OATP1B1 and OATP1B3, thus any interference with expression of these particular transporters might influence therapeutic outcomes. We evaluated the effects of 21 anthocyanins and their corresponding 6 anthocyanidins on the expression levels of SLCO1B1/SLCO1B3 by RT-qPCR. Changes in OATP protein levels were confirmed by western blotting. Our data show that OATP1B1 responds differently to anthocyans compared with OATP1B3. We observed the induction of SLCO1B1 gene and OATP1B1 protein in four hepatocyte samples by the anthocyanins malvin chloride, malvidin-3-O-galactoside chloride and cyanidin-3-O-sophoroside chloride. For SLCO1B3, a reduction in the expression levels was seen with delphin chloride and the anthocyanidin pelargonidin. Although the values varied considerably between primary hepatocyte isolates from different individuals, a mean induction of SLCO1B1 (up to 60%) and reduction of SLCO1B3 (by less than 25%) were detected. We propose that the effects of anthocyans derived from high dose dietary supplements may have to be taken into account in patients undergoing a therapy with drugs transported by OATP1B1 and OATP1B3.


Subject(s)
Anthocyanins/metabolism , Anticarcinogenic Agents/metabolism , Dietary Supplements , Gene Expression Regulation , Hepatocytes/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters/agonists , Adult , Anthocyanins/chemistry , Anticarcinogenic Agents/chemistry , Cells, Cultured , Fruit/chemistry , Galactosides/chemistry , Galactosides/metabolism , Glucosides/chemistry , Glucosides/metabolism , Hepatocytes/cytology , Humans , Liver-Specific Organic Anion Transporter 1 , Male , Middle Aged , Molecular Structure , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3
11.
Biomed Res Int ; 2015: 863971, 2015.
Article in English | MEDLINE | ID: mdl-26788513

ABSTRACT

Toxic heavy metals, including mercury (Hg) and arsenic (As), accumulate preferentially in kidneys and always cause acute renal failure. The aim of this study was to investigate whether these samples affect organic anion transporters, Oat1 and Oat3, in vivo in mice kidney. Mice (n = 10) were orally treated with investigational samples. After last administration, all mice were i.v. p-aminohippuric acid (PAH), and the blood and kidneys samples were collected. The concentrations of PAH were quantified by spectrophotometry. mRNA expressions of Oat1 and Oat3 were assayed by real-time PCR. In comparison with corresponding control, major pharmacokinetic parameters of PAH in sera were significantly changed by investigational samples (p < 0.05), PAH accumulations in the kidney tissues were significantly higher (p < 0.05), PAH uptake by renal slices was greatly reduced, Oat1 and Oat3 mRNA expression were significantly inhibited in investigational sample groups. Arsenic and mercury containing traditional Chinese medicine (Realgar and Cinnabar) probably induce kidney damage through inhibiting several members of the organic anion transporters (such as OAT1 and OAT3).


Subject(s)
Arsenic/adverse effects , Medicine, Chinese Traditional/adverse effects , Mercury/adverse effects , Organic Anion Transport Protein 1/biosynthesis , Organic Anion Transporters, Sodium-Independent/biosynthesis , Animals , Arsenic/administration & dosage , Gene Expression/drug effects , Humans , Kidney/drug effects , Kidney/injuries , Kidney/metabolism , Mercury/administration & dosage , Mice , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors
12.
Xenobiotica ; 44(7): 657-65, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24417751

ABSTRACT

1. Optimization of renal clearance is a complex balance between passive and active processes mediated by renal transporters. This work aimed to characterize the interaction of a series of compounds with rat and human organic anion transporters (OATs) and develop quantitative structure-activity relationships (QSARs) to optimize renal clearance. 2. In vitro inhibition assays were established for human OAT1 and rat Oat3 and rat in vivo renal clearance was obtained. Statistically significant quantitative relationships were explored between the compounds' physical properties, their affinity for OAT1 and oat3 and the inter-relationship with unbound renal clearance (URC) in rat. 3. Many of the compounds were actively secreted and in vitro analysis demonstrated that these were ligands for rat and human OAT transporters (IC50 values ranging from <1 to >100 µM). Application of resultant QSAR models reduced renal clearance in the rat from 24 to <0.1 ml/min/kg. Data analysis indicated that the properties associated with increasing affinity at OATs are the same as those associated with reducing URC but orthogonal in nature. 4. This study has demonstrated that OAT inhibition data and QSAR models can be successfully used to optimize rat renal clearance in vivo and provide confidence of translation to humans.


Subject(s)
Drug Evaluation, Preclinical/methods , Kidney/drug effects , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Renal Elimination/drug effects , Animals , Drug Design , HEK293 Cells/drug effects , Humans , Inhibitory Concentration 50 , Kidney/metabolism , Male , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Pharmacokinetics , Quantitative Structure-Activity Relationship , Rats
13.
J Pharm Sci ; 102(11): 4205-11, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24018852

ABSTRACT

Solute carrier transporters (SLCs), in particular the organic anion transporters (OATs), OAT polypeptides (OATPs), and organic cation transporters (OCTs/OCTNs), are the important membrane proteins responsible for the cellular influx of various drugs. Baicalein (BA), baicalin (BG), and wogonin (WG) are the three major bioactive components of Scutellaria baicalensis. In this study, we evaluated the inhibitory effects of BA, BG, and WG on the cellular uptake of specific substrates mediated by the essential SLCs in human embryonic kidney-293 cells. Our data demonstrated that BA and WG significantly inhibit the OAT1-, OAT3-, and OATP1B3-mediated uptake; BG effectively reduces the influx of substrates of OAT3, OAT4, OATP1B3, and OATP2B1; WG is a potent inhibitor of OCT3. Our further kinetic analysis derived the IC50 values of these compounds with pronounced inhibitory effects on SLCs, particularly the inhibitions of WG on OAT1 and OCT3 and that of BA and WG on OAT3. Our study comprehensively evaluated the inhibitory effects of three bioactive components of Scutellaria baicalensis on the uptake of specific substrates mediated by the essential SLC transporters, which suggested that precautions will be needed when coadministrating drugs with Scutellaria baicalensis so as to prevent the unfavorable drug-drug/herb interactions in human.


Subject(s)
Biological Transport, Active/drug effects , Flavanones/pharmacology , Flavonoids/pharmacology , Plant Extracts/chemistry , Scutellaria baicalensis/chemistry , Cell Line , Flavanones/isolation & purification , Flavonoids/isolation & purification , Humans , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3
14.
Biochem Pharmacol ; 86(7): 991-6, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23973525

ABSTRACT

Rhein, a major metabolite of the prodrug diacerein and a major component of the medicinal herb Rheum sp., is used for its beneficial effects in a variety of clinical applications including the treatment of osteoarthritis and diabetic nephropathy. The physicochemical properties of rhein are consistent with those of known organic anion transporter (OAT) substrates and inhibitors. Therefore, the inhibitory effect of rhein on human (h) OAT1, hOAT3, hOAT4, and murine (m) Oat1 and mOat3 was examined in heterologous cell lines stably expressing each transporter in isolation. Rhein was shown to potently inhibit hOAT1 and hOAT3, with IC50 estimates in the low nanomolar range (IC50=77.1±5.5 nM and 8.4±2.5 nM, respectively), while poor affinity was observed for hOAT4 (IC50>100 µM). Marked species differences were observed with hOAT1 and hOAT3 exhibiting 3- and 28-fold higher affinity for rhein as compared to their murine orthologs. The estimated drug-drug interaction (DDI) indices (>>0.1) indicated a very strong potential for clinically relevant, rhein perpetrated DDIs mediated by inhibition of hOAT1 (DDI index=5.0; 83% inhibition) and/or hOAT3 (DDI index=46; 98% inhibition) transport activity. These results suggested that rhein, from herbal medicines and/or prodrug conversion, may significantly impact the dosing, efficacy and toxicity (i.e., pharmacokinetics and pharmacodynamics) of co-administered hOAT1 and/or hOAT3 drug substrates.


Subject(s)
Anthraquinones/pharmacokinetics , Organic Anion Transport Protein 1/metabolism , Animals , CHO Cells , Cell Line , Cricetulus , Drug Interactions , Humans , Inhibitory Concentration 50 , Mice , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/metabolism , Species Specificity , p-Aminohippuric Acid/pharmacokinetics
15.
Drug Metab Dispos ; 41(2): 488-97, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23209194

ABSTRACT

In Africa, Sutherlandia frutescens is a popular medicinal herb widely consumed by people living with human immunodeficiency virus/AIDS. Concomitant use with antiretroviral drugs has generated concerns of herb-drug interaction (HDI). This study investigated the inhibitory effects of the crude extracts of S. frutescens on the major cytochrome P450 isozymes with the use of pooled human liver microsomes. Its effect on the metabolic clearance of midazolam using cryopreserved hepatocytes was also monitored. The potential of S. frutescens to inhibit human ATP-binding cassette transporters (P-gp and BCRP) and the human organic anion transporting polypeptide (OATP1B1 and OATP1B3) activity was assessed using cell lines overexpressing the transporter proteins. S. frutescens showed inhibitory potency for CYP1A2 (IC(50) = 41.0 µg/ml), CYP2A6 (IC(50) = 160 µg/ml), CYP2B6 (IC(50) = 20.0 µg/ml), CYP2C8 (IC(50) = 22.4 µg/ml), CYP2C9 (IC(50) = 23.0 µg/ml), CYP2C19 (IC(50) = 35.9 µg/ml), and CYP3A4/5 (IC(50) = 17.5 µg/ml [with midazolam1'-hydroxylation]; IC(50) = 28.3 µg/ml [with testosterone 6ß-hydroxylation]). Time-dependent (irreversible) inhibition by S. frutescens was observed for CYP3A4/5 (K(I) = 296 µg/ml, k(inact) = 0.063 min(-1)) under the conditions of this study. S. frutescens also delays the production of midazolam metabolites in the hepatocytes, decreasing its clearance by 40%. Furthermore, S. frutescens inhibited P-gp (IC(50) = 324.8 µg/ml), OATP1B1 (IC(50) = 10.4 µg/ml), and OATP1B3 (IC(50) = 6.6 µg/ml). The result indicates the potential for HDI between S. frutescens and the substrates of the affected enzymes, if sufficient in vivo concentration of the extract is attained.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Fabaceae/chemistry , Hepatocytes/drug effects , Herb-Drug Interactions , Membrane Transport Modulators/pharmacology , Membrane Transport Proteins/drug effects , Plant Preparations/pharmacology , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/metabolism , Animals , Biological Transport , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/isolation & purification , Female , HEK293 Cells , Hepatocytes/enzymology , Humans , Hydroxylation , Isoenzymes , Kinetics , LLC-PK1 Cells , Liver-Specific Organic Anion Transporter 1 , Madin Darby Canine Kidney Cells , Male , Membrane Transport Modulators/isolation & purification , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Midazolam/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/metabolism , Plant Leaves , Plant Preparations/isolation & purification , Plants, Medicinal , Solute Carrier Organic Anion Transporter Family Member 1B3 , Substrate Specificity , Swine , Testosterone/metabolism , Transfection
16.
Drug Metab Pharmacokinet ; 28(3): 220-8, 2013.
Article in English | MEDLINE | ID: mdl-23229784

ABSTRACT

When herbal products are used in combination therapy with drugs, alterations in pharmacokinetics, pharmacodynamics, and toxicity can result. Many active components of herbal products are organic anions, and human organic anion transporter 1 (hOAT1, SLC22A6), hOAT3 (SLC22A8), and hOAT4 (SLC22A11) have been identified as potential sites of drug-drug interactions. Therefore, we assessed the effects of lithospermic acid (LSA), rosmarinic acid (RMA), salvianolic acid A (SAA), salvianolic acid B (SAB), and tanshinol (TSL), components of the herbal medicine Danshen, on the function of these transporters. Kinetic analysis demonstrated a competitive mechanism of inhibition for all five. K(i) values (µM) were estimated as 20.8 ± 2.1 (LSA), 0.35 ± 0.06 (RMA), 5.6 ± 0.3 (SAA), 22.2 ± 1.9 (SAB), and 40.4 ± 12.9 (TSL) on hOAT1 and as 0.59 ± 0.26 (LSA), 0.55 ± 0.25 (RMA), 0.16 ± 0.03 (SAA), 19.8 ± 8.4 (SAB), and 8.6 ± 3.3 (TSL) on hOAT3. No significant inhibition of hOAT4 activity by TSL was observed. Using published human pharmacokinetic values, unbound C(max)/K(i) ratios were calculated as an indicator of in vivo drug-drug interaction potential. Analysis indicated a strong interaction potential for RMA and TSL on both hOAT1 and hOAT3 and for LSA on hOAT3. Thus, herb-drug interactions may occur in vivo in situations of co-administration of Danshen and clinical therapeutics known to be hOAT1/hOAT3 substrates.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Herb-Drug Interactions , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Phenanthrolines/pharmacology , Salvia miltiorrhiza/chemistry , Animals , Benzofurans/pharmacology , CHO Cells , Caffeic Acids/pharmacology , Cinnamates/pharmacology , Cricetulus , Depsides/pharmacology , HEK293 Cells , Humans , Lactates/pharmacology , Rosmarinic Acid
17.
J Pharmacol Exp Ther ; 339(2): 624-32, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21846839

ABSTRACT

Organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) are liver-specific transporters that mediate the uptake of a broad range of drugs into hepatocytes, including statins, antibiotics, and many anticancer drugs. Compounds that alter transport by one or both of these OATPs could potentially be used to target drugs to hepatocytes or improve the bioavailability of drugs that are cleared by the liver. In this study, we applied a bioassay-guided isolation approach to identify such compounds from the organic extract of Rollinia emarginata Schlecht (Annonaceae). Fractions of the plant extract were screened for effects on OATP1B1- and OATP1B3-mediated transport of the model substrates estradiol-17ß-glucuronide and estrone-3-sulfate. We isolated three compounds, ursolic acid, oleanolic acid, and 8-trans-p-coumaroyloxy-α-terpineol, which inhibited estradiol-17ß-glucuronide uptake by OATP1B1 but not OATP1B3. In addition, a rare compound, quercetin 3-O-α-l-arabinopyranosyl(1→2) α-L-rhamnopyranoside, was identified that had distinct effects on each OATP. OATP1B1 was strongly inhibited, as was OATP1B3-mediated transport of estradiol-17ß-glucuronide. However, OATP1B3-mediated uptake of estrone-3-sulfate was stimulated 4- to 5-fold. Kinetic analysis of this stimulation revealed that the apparent affinity for estrone-3-sulfate was increased (decreased K(m)), whereas the maximal rate of transport (V(max)) was significantly reduced. These results demonstrate a mechanism through which the hepatic uptake of drug OATP substrates could be stimulated.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters/antagonists & inhibitors , Rollinia , Terpenes/isolation & purification , Terpenes/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Discovery , Estradiol/analogs & derivatives , Estradiol/metabolism , Estrone/analogs & derivatives , Estrone/metabolism , Kinetics , Liver/drug effects , Liver-Specific Organic Anion Transporter 1 , Molecular Targeted Therapy , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Plant Bark , Plant Extracts/chemistry , Solute Carrier Organic Anion Transporter Family Member 1B3 , Terpenes/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Ursolic Acid
18.
Drug Metab Pharmacokinet ; 26(5): 486-93, 2011.
Article in English | MEDLINE | ID: mdl-21697612

ABSTRACT

Several kinds of food have been shown to influence the absorption and metabolism of drugs, although there is little information about their effect on the renal excretion of drugs. In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effects of chlorogenic acid, caffeic acid and quinic acid, which are contained in coffee, fruits and vegetables, on human organic anion transporters hOAT1 and hOAT3; these transporters mediate renal tubular uptake of anionic drugs from blood. Injection of hOAT1 and hOAT3 cRNA into oocytes stimulated uptake of typical substrates of hOAT1 and hOAT3 (p-aminohippurate and estrone sulfate, respectively); among the three compounds tested, caffeic acid most strongly inhibited these transporters. The apparent 50% inhibitory concentrations of caffeic acid were estimated to be 16.6 µM for hOAT1 and 5.4 µM for hOAT3. Eadie-Hofstee plot analysis showed that caffeic acid inhibited both transporters in a competitive manner. In addition to the transport of p-aminohippurate and estrone sulfate, that of antifolates and antivirals was inhibited by caffeic acid. These findings show that caffeic acid has inhibitory potential against hOAT1 and hOAT3, suggesting that renal excretion of their substrates could be affected in patients consuming a diet including caffeic acid.


Subject(s)
Caffeic Acids/pharmacology , Food-Drug Interactions , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Acyclovir/analogs & derivatives , Acyclovir/metabolism , Animals , Chlorogenic Acid/pharmacology , Coffee/chemistry , Estrone/analogs & derivatives , Estrone/metabolism , Fruit/chemistry , Guanine , Humans , Inhibitory Concentration 50 , Methotrexate/metabolism , Oocytes/drug effects , Oocytes/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Quinic Acid/pharmacology , RNA, Complementary/pharmacology , Vegetables/chemistry , Xenopus laevis , p-Aminohippuric Acid/metabolism
19.
Drug Metab Pharmacokinet ; 25(5): 450-5, 2010.
Article in English | MEDLINE | ID: mdl-20877132

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Diclofenac/analogs & derivatives , Organic Anion Transport Protein 1/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Animals , Binding, Competitive , Celecoxib , Diclofenac/pharmacology , Dose-Response Relationship, Drug , Estrone/analogs & derivatives , Estrone/metabolism , Etoricoxib , Humans , Inhibitory Concentration 50 , Isoxazoles/pharmacology , Kinetics , Lactones/pharmacology , Methotrexate/metabolism , Oocytes/drug effects , Oocytes/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , RNA, Complementary/genetics , Sulfonamides/pharmacology , Sulfones/pharmacology , Xenopus laevis , p-Aminohippuric Acid/metabolism
20.
Eur J Pharm Sci ; 40(4): 282-8, 2010 Jul 11.
Article in English | MEDLINE | ID: mdl-20381614

ABSTRACT

Drug-drug interactions involving hepatic drug transporters may have clinical consequences and jeopardize development of promising drug candidates. Organic anion transporting polypeptides (OATP/Oatp) and the organic cation transporters (OCT/Oct) are among the most important transporters involved in xenobiotic uptake in the liver. In the present study, 179 molecules have been tested as inhibitors of the uptake of estradiol-17betaD-glucuronide (E(2)17betaG), substrate of OATP1B1/3 (rOatp), or 1-methyl-4-phenylpyridinium (MPP+), substrate of OCT1 (rOct1), into suspended cryopreserved hepatocytes from humans and rats. Uptake was assessed in 96-well plates by measuring intracellular accumulation of radioactive substrate in hepatocytes in presence or absence of inhibitor. In rat hepatocytes 140 compounds were identified as inhibitors (inhibition at 20 microM > or = 30%) of E(2)17betaG uptake and 77 compounds inhibitors of MPP+ uptake. The most potent inhibitors of rOatp and rOct1 were dantrolene sodium (K(i)=2 +/- 9 microM) and bepridil (K(i)=14 +/- 2 microM), respectively. In human hepatocytes, the most potent inhibitors of E(2)17betaG and MPP+ uptake were capsazepine (K(i)=14 +/- 5 microM) and cyproheptadine (K(i)=19+/-3 microM), respectively. Structure-activity relationship (SAR) analysis of all tested compounds suggested that lipophilicity, polarity, pK(a) and the number of hydrogen bond donors and acceptors play a role in their interaction with the transporters investigated. The method used here is a simple tool to screen large number of compounds as inhibitors of the uptake of substrates into suspended hepatocytes.


Subject(s)
1-Methyl-4-phenylpyridinium/pharmacokinetics , Enzyme Inhibitors/pharmacology , Estradiol/analogs & derivatives , Hepatocytes/drug effects , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Anion Transporters/antagonists & inhibitors , Animals , Bepridil/pharmacology , Biological Transport/drug effects , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cryopreservation , Cyproheptadine/pharmacology , Dantrolene/pharmacology , Drug Evaluation, Preclinical , Drug Interactions , Estradiol/pharmacokinetics , Hepatocytes/enzymology , Hepatocytes/metabolism , Humans , Isoenzymes/antagonists & inhibitors , Liver-Specific Organic Anion Transporter 1 , Rats , Solute Carrier Organic Anion Transporter Family Member 1B3 , Species Specificity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL