Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Steroid Biochem Mol Biol ; 241: 106513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38521362

ABSTRACT

In this study, we applied AcmB2, sourced from Sterolibacterium denitrificans, to catalyze the oxidative dehydrogenation of 3-ketolupeol (lupenone), a derivative of lupeol, triterpene obtained from birch bark. This enzymatic Δ1-dehydrogenation catalyzed by AcmB2 yielded glochidone, a bioactive compound frequently obtained from medicinal plants like Salvia trichoclada and Maytenus boria. Glochidone is known for its broad biological activities, including antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic as well as acetylcholinesterase inhibition. Our research demonstrates >99% conversion efficiency with 100% regioselectivity of the reaction. The effective conversion to glochidone employed an electron acceptor e.g., potassium hexacyanoferrate III, in mild, environmentally friendly conditions: 8-16% 2-hydroxypropyl-ß-cyclodextrin, and 2-3% 2-methoxyethanol. AcmB2 reaction optimum was determined at pH 8.0 and 30 °C. Enzyme's biochemical attributes such as electron acceptor type, concentration and steroid substrate specificity were investigated. Among 4-, 5- and 6-ring steroid derivatives androst-4-en-3,17-dione and testosterone propionate were determined as the best substrates of AcmB2. Δ1-Dehydrogenation of substrates such as lupenone, diosgenone and 3-ketopetromyzonol was confirmed. We have assessed the antioxidant and rejuvenating characteristics of glochidone as an active component in formulations, considering its precursors, lupeol, and lupenone as well. Glochidone exhibited limited antioxidant and chelating capabilities compared to lupeol and reference compounds. However, it demonstrated robust rejuvenating properties, with a sirtuin induction level of 61.5 ± 1.87%, notably surpassing that of the reference substance, E-resveratrol (45.15 ± 0.09%). Additionally, glochidone displayed 26.5±0.67 and 19.41±0.76% inhibition of elastase and collagenase, respectively. The safety of all studied triterpenes was confirmed on skin reconstructed human Epidermis model. These findings provide valuable insights into the potential applications of glochidone in formulations aimed at addressing skin health concerns. This research presents the first example of an enzyme in the 3-ketosteroid dehydrogenase (KstD) family catalyzing the Δ1-dehydrogenation of a pentacyclic triterpene. We also explored structural differences between AcmB, AcmB2, and related KstDs pointing to G52 and P532 as potentially responsible for the unique substrate specificity of AcmB2. Our findings not only highlight the enzyme's capabilities but also present novel enzymatic pathways for bioactive compound synthesis.


Subject(s)
Propionibacteriaceae , Propionibacteriaceae/enzymology , Humans , Skin/drug effects , Skin/metabolism , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Substrate Specificity , Oxidoreductases/metabolism , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors
2.
Biosens Bioelectron ; 236: 115419, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37269753

ABSTRACT

Designing nanozymes with excellent catalytic activity through valence state engineering and defect engineering is a widely applicable strategy. However, their development is hindered by the complexity of the design strategies. In this work, we employed a simple calcination method to regulate the valence of manganese and crystalline states in manganese oxide nanozymes. The oxidase-like activity of the nanozymes was found to benefit from a mixed valence state dominated by Mn (III). And the amorphous structure with more active defect sites significantly enhanced the catalytic efficiency. Moreover, we demonstrated that amorphous mixed-valent Mn-containing (amvMn) nanozymes with unique cocklebur-like biomimetic morphology achieved specific binding to cancer cells through the Velcro effects. Subsequently, the nanozymes mediated TMB coloration through their oxidase-like activity, enabling the colorimetric detection of cancer cells. This work not only provides guidance for optimizing nanozyme performance, but also inspire the development of equipment-free visual detection methods for cancer cells.


Subject(s)
Biosensing Techniques , Neoplasms , Xanthium , Xanthium/metabolism , Colorimetry/methods , Biosensing Techniques/methods , Oxidoreductases/chemistry , Manganese/chemistry , Neoplasms/diagnosis
3.
Planta Med ; 89(8): 833-847, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37187191

ABSTRACT

3ß-hydroxy-Δ5-steroid dehydrogenases (3ßHSDs) are supposed to be involved in 5ß-cardenolide biosynthesis. Here, a novel 3ßHSD (Dl3ßHSD2) was isolated from Digitalis lanata shoot cultures and expressed in E. coli. Recombinant Dl3ßHSD1 and Dl3ßHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only rDl3ßHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of Salvia rosmarinus (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to Dl3ßHSD1, Dl3ßHSD2 is weakly expressed in D. lanata shoots. High constitutive expression of Dl3ßHSDs was realised by Agrobacterium-mediated transfer of Dl3ßHSD genes fused to the CaMV-35S promotor into the genome of D. lanata wild type shoot cultures. Transformed shoots (35S:Dl3ßHSD1 and 35S:Dl3ßHSD2) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S:Dl3ßHSD1 lines than in the controls. In the 35S:Dl3ßHSD1 lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the Dl3ßHSD1 yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3ß-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the Dl3ßHSD1 knockdown. These results can be taken as the first direct proof that Dl3ßHSD1 is indeed involved in 5ß-cardenolide biosynthesis.


Subject(s)
Digitalis , Digitalis/genetics , Digitalis/metabolism , Cardenolides/metabolism , Escherichia coli/genetics , RNA Interference , Oxidoreductases/genetics , Oxidoreductases/chemistry , Oxidoreductases/metabolism
4.
Chembiochem ; 23(2): e202100578, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34726829

ABSTRACT

Fatty amines represent an important class of commodity chemicals which have broad applicability in different industries. The synthesis of fatty amines starts from renewable sources such as vegetable oils or animal fats, but the process has multiple drawbacks that compromise the overall effectiveness and efficiency of the synthesis. Herein, we report a proof-of-concept biocatalytic alternative towards the synthesis of primary fatty amines from renewable triglycerides and oils. By coupling a lipase with a carboxylic acid reductase (CAR) and a transaminase (TA), we have accomplished the direct synthesis of multiple medium and long chain primary fatty amines in one pot with analytical yields as high as 97 %. We have also performed a 75 mL preparative scale reaction for the synthesis of laurylamine from trilaurin, obtaining 73 % isolated yield.


Subject(s)
Amines/chemical synthesis , Fats/chemistry , Plant Oils/chemistry , Triglycerides/chemistry , Lipase/chemistry , Oxidoreductases/chemistry , Transaminases/chemistry
5.
Pak J Biol Sci ; 24(8): 840-846, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34486351

ABSTRACT

<b>Background and Objective:</b> Inflammation occurs <i>via</i> several mechanisms, one of which includes the production of Nitric Oxide (NO) catalyzed by inducible nitric oxide synthase (iNOS), which is inhibited selectively by isothioureas. <i>Ageratum conyzoides</i> L. has shown activity in reducing pain and inflammation, although the molecular mechanism had not been undertaken. The objectives of this work were (1) to study the mechanism of anti-inflammatory activity of <i>A. conyzoides</i> through inhibition of iNOS, (2) to correlate the iNOS inhibitory activity of the plant with the total flavonoid content of the plants and (3) to identify the flavonol synthase (FLS), an enzyme that catalyzes the production of quercetin. <b>Materials and Methods:</b> The inhibitory activity against iNOS was assayed by <i>in vitro</i> method. The total flavonoids (calculated as quercetin) of <i>A. conyzoides</i> were determined by fluorometry. The protein extraction of the leaves was carried out by employing Laing and Christeller's (2004) method, followed with SDS-PAGE. <b>Results:</b> The inhibitory activity (IC<sub>50</sub>) of ethanol extract and ethyl acetate fraction of <i>A. conyzoides</i> against iNOS was 92.05 and 4.78 µg mL<sup></sup><sup>1</sup>, respectively. Pearson correlation analysis resulted in 0.548 (ethanol extract) and 0.696 (ethyl acetate fraction). The total flavonoids (calculated as quercetin) contained in the ethanol extract and ethyl acetate fraction of <i>A. conyzoides</i> were 0.71 and 7.65%, respectively. The FLS in <i>A. conyzoides</i> leaves was identified at 31 kDa. <b>Conclusion:</b> <i>A. </i>c<i>onyzoides</i> L. is potential in inhibiting iNOS due to quercetin contained in the leaves. This report will add a scientific insight of <i>A. conyzoides</i> for biological sciences.


Subject(s)
Ageratum/growth & development , Ageratum/metabolism , Nitric Oxide Synthase/metabolism , Anti-Inflammatory Agents , Ethanol/chemistry , Flavonoids/chemistry , Indonesia , Inhibitory Concentration 50 , Nitric Oxide/chemistry , Nitric Oxide Synthase Type II/chemistry , Oxidoreductases/chemistry , Phenol/chemistry , Plant Extracts , Plant Leaves/drug effects , Plant Proteins/chemistry , Quercetin/pharmacology , Ultraviolet Rays
6.
Neurochem Res ; 46(3): 535-549, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33548035

ABSTRACT

Extensive data have reported the involvement of oxidative stress in the pathogenesis of neuropsychiatric disorders, prompting the pursuit of antioxidant molecules that could become adjuvant pharmacological agents for the management of oxidative stress-associated disorders. The 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) has been reported as an antioxidant and immunomodulatory compound that improves depression-like behavior and cognitive impairment in mice. However, the exact effect of CMI on specific brain cells is yet to be studied. In this context, the present study aimed to evaluate the antioxidant activity of CMI in H2O2-induced oxidative stress on human dopaminergic neuroblastoma cells (SH-SY5Y) and to shed some light into its possible mechanism of action. Our results demonstrated that the treatment of SH-SY5Y cells with 4 µM CMI protected them against H2O2 (343 µM)-induced oxidative stress. Specifically, CMI prevented the increased number of reactive oxygen species (ROS)-positive cells induced by H2O2 exposure. Furthermore, CMI treatment increased the levels of reduced glutathione in SH-SY5Y cells. Molecular docking studies demonstrated that CMI might interact with enzymes involved in glutathione metabolism (i.e., glutathione peroxidase and glutathione reductase) and H2O2 scavenging (i.e., catalase). In silico pharmacokinetics analysis predicted that CMI might be well absorbed, metabolized, and excreted, and able to cross the blood-brain barrier. Also, CMI was not considered toxic overall. Taken together, our results suggest that CMI protects dopaminergic neurons from H2O2-induced stress by lowering ROS levels and boosting the glutathione system. These results will facilitate the clinical application of CMI to treat nervous system diseases associated with oxidative stress.


Subject(s)
Hydrogen Peroxide/toxicity , Indoles/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Selenium Compounds/pharmacology , Catalytic Domain , Cell Line, Tumor , Glutathione/metabolism , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Humans , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacokinetics , Molecular Docking Simulation , Neuroprotective Agents/chemistry , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacokinetics , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Protein Binding , Reactive Oxygen Species/metabolism , Selenium Compounds/chemistry , Selenium Compounds/metabolism , Selenium Compounds/pharmacokinetics
7.
ACS Appl Mater Interfaces ; 13(4): 5111-5124, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33472360

ABSTRACT

Artificial enzymes with modulated enzyme-mimicking activities of natural systems represent a challenge in catalytic applications. Here, we show the creation of artificial Cu metalloenzymes based on the generation of Cu nanoparticles in an enzyme matrix. Different enzymes were used, and the structural differences between the enzymes especially influenced the controlled the size of the nanoparticles and the environment that surrounds them. Herein, we demonstrated that the oxidase-like catalytic activity of these copper nanozymes was rationally modulated by enzyme used as a scaffold, with a special role in the nanoparticle size and their environment. In this sense, these nanocopper hybrids have confirmed the ability to mimic a unique enzymatic activity completely different from the natural activity of the enzyme used as a scaffold, such as tyrosinase-like activity or as Fenton catalyst, which has extremely higher stability than natural mushroom tyrosinase. More interestingly, the oxidoreductase-like activity of nanocopper hybrids was cooperatively modulated with the synergistic effect between the enzyme and the nanoparticles improving the catalase activity (no peroxidase activity). Additionally, a novel dual (metallic and enzymatic activity) of the nanozyme made the highly improved catechol-like activity interesting for the design of 3,4-dihydroxy-l-phenylalanine (l-DOPA) biosensor for detection of tyrosinase. These hybrids also showed cytotoxic activity against different tumor cells, interesting in biocatalytic tumor therapy.


Subject(s)
Biomimetic Materials/therapeutic use , Biosensing Techniques , Copper/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/therapy , Bacteria/enzymology , Biocatalysis , Biomimetic Materials/chemistry , Biosensing Techniques/methods , Copper/chemistry , Enzyme Therapy/methods , Fungi/enzymology , Humans , Models, Molecular , Monophenol Monooxygenase/analysis , Nanoparticles/chemistry , Oxidoreductases/chemistry , Oxidoreductases/therapeutic use , Protein Conformation
8.
Chembiochem ; 22(2): 298-307, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32735057

ABSTRACT

Sulfoxides are a class of organic compounds that find wide application in medicinal and organic chemistry. Several biocatalytic approaches have been developed to synthesise enantioenriched sulfoxides, mainly by exploiting oxidative enzymes. Recently, the use of reductive enzymes such as Msr and Dms has emerged as a new, alternative method to obtain enantiopure sulfoxides from racemic mixtures. In parallel, novel oxidative approaches, employing nonclassical solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs), have been developed as greener and more sustainable biocatalytic synthetic pathways. This minireview aims highlights the recent advances made in the biocatalytic synthesis of enantioenriched sulfoxides by employing such unconventional approaches.


Subject(s)
Ferredoxin-NADP Reductase/metabolism , Iron-Sulfur Proteins/metabolism , Oxidoreductases/metabolism , Sulfoxides/metabolism , Biocatalysis , Ferredoxin-NADP Reductase/chemistry , Humans , Iron-Sulfur Proteins/chemistry , Molecular Structure , Oxidoreductases/chemistry , Sulfoxides/chemistry
9.
Biotechnol Appl Biochem ; 68(4): 889-895, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32835428

ABSTRACT

Copper oxide nanoparticles (CuONPs) were phytosynthesized by Laurus nobilis leaf extract, which was used as a reducing and capping agent. UV-vis spectroscopy was applied, and the spectrum of CuONPs gave a peak around 300 and 325 nm. An intense Fourier transform infrared spectroscopy between 4000 and 500 cm-1 wavelengths exhibited exterior functional groups of CuONPs. The results of scanning electron microscopy and transmission electron microscopy revealed that the green synthesized CuONPs were spherical in shape with sizes between 90 and 250 nm. Antibacterial activity of CuONPs was evaluated against both Gram-positive and Gram-negative bacteria. Brilliant Blue R-250 was employed in the dye decolorization studies, and CuONPs achieved 69% decolorization in 60 Min. The antioxidant activity of CuONPs was calculated by analyzing total phenolic compounds and flavonoid content. Furthermore, the reducing power of extract and nanoparticles was determined. Total phenolic compounds of CuONPs were determined as 6.7 µg of pyrocatechol equivalent/mg, while total flavonoids were measured as 236.62 µg catechin/mg sample. Results indicated that the method of CuONP formation is simple and low cost and the phytosynthesized CuONPs had antibacterial, antioxidant, and dye decolorization activity.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Laurus/chemistry , Oxidoreductases/chemistry , Photochemical Processes , Plant Extracts/chemistry , Plant Leaves/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology
10.
Prep Biochem Biotechnol ; 51(2): 105-111, 2021.
Article in English | MEDLINE | ID: mdl-32720840

ABSTRACT

Taro (Colocasia esculenta) starch is known to possess unique physical and functional properties such as low amylose content, A-crystalline form, small granules, higher swelling power, etc. Due to the presence of significant amount of calcium oxalate crystals, the food industry is reluctant to explore this unique and cheap starch source for various food applications. Traditional processes utilizing various physical and chemical methods to remove oxalate content of starch inevitably change its physical and functional properties. However, using oxalate oxidase can effectively remove oxalates without altering the unique properties of starch. Hence, an attempt was made to optimize oxalate oxidase assisted starch extraction process from taro flour using response surface methodology. A central composite design comprising 20 experimental trials with 10 cube points augmented with six axial points and four replicates at the center point was applied. A mathematical model was developed to show the effect of taro flour concentration, enzyme load and incubation time on the oxalate removal. Validity of the model was experimentally verified and found that 98.3% of total oxalates can be removed under optimal conditions. This is the first report of optimization of the production of starch from taro flour using microbial oxalate oxidase.


Subject(s)
Biotechnology/methods , Colocasia/metabolism , Oxalates/chemistry , Oxidoreductases/chemistry , Starch/chemistry , Flour , Food Technology/methods , Hydrogen-Ion Concentration , Models, Theoretical , Plant Extracts , Solubility
11.
Biochimie ; 183: 108-125, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33190793

ABSTRACT

Thiolatocobalamins are a class of cobalamins comprised of naturally occurring and synthetic ligands. Glutathionylcobalamin (GSCbl) occurs naturally in mammalian cells, and also as an intermediate in the glutathione-dependent dealkylation of methylcobalamin (MeCbl) to form cob(I)alamin by pure recombinant CblC from C. elegans. Glutathione-driven deglutathionylation of GSCbl was demonstrated both in mammalian as well as in C. elegans CblC. Dethiolation is orders of magnitude faster than dealkylation of Co-C bonded cobalamins, which motivated us to investigate two synthetic thiolatocobalamins as substrates to repair the enzymatic activity of pathogenic CblC variants in humans. We report the synthesis and kinetic characterization of cysteaminylcobalamin (CyaCbl) and 2-mercaptopropionylglycinocobalamin (MpgCbl). Both CyaCbl and MpgCbl were obtained in high purity (90-95%) and yield (78-85%). UV-visible spectral properties agreed with those reported for other thiolatocobalamins with absorbance maxima observed at 372 nm and 532 nm. Both CyaCbl and MpgCbl bound to wild type human recombinant CblC inducing spectral blue-shifts characteristic of the respective base-on to base-off transitions. Addition of excess glutathione (GSH) resulted in rapid elimination of the ß-ligand to give aquacobalamin (H2OCbl) as the reaction product under aerobic conditions. Further, CyaCbl and MpgCbl underwent spontaneous dethiolation thereby repairing the loss of activity of pathogenic variants of human CblC, namely R161G and R161Q. We posit that thiolatocobalamins could be exploited therapeutically for the treatment of inborn errors of metabolism that impair processing of dietary and supplemental cobalamin forms. While these disorders are targets for newborn screening in some countries, there is currently no effective treatment available to patients.


Subject(s)
Mutation, Missense , Oxidoreductases/chemistry , Vitamin B 12/chemistry , Amino Acid Substitution , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Humans , Oxidoreductases/genetics
12.
J Agric Food Chem ; 69(1): 345-353, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33350305

ABSTRACT

Lipid extracts of the fungus Flammulina velutipes were found to contain various scarce fatty acids including dodec-11-enoic acid and di- and tri-unsaturated C16 isomers. A biotechnological approach using a heterologously expressed carboxylic acid reductase was developed to transform the fatty acids into the respective aldehydes, yielding inter alia dodec-11-enal. Supplementation studies gave insights into the fungal biosynthesis of this rarely occurring acid and suggested a terminal desaturation of lauric acid being responsible for its formation. A systematic structure-odor relationship assessment of terminally unsaturated aldehydes (C7-C13) revealed odor thresholds in the range of 0.24-22 µg/L in aqueous solution and 0.039-29 ng/L in air. In both cases, non-8-enal was identified as the most potent compound. All aldehydes exhibited green odor qualities. Short-chained substances were additionally associated with grassy, melon-, and cucumber-like notes, while longer-chained homologs smelled soapy and coriander leaf-like with partly herbaceous nuances. Dodec-11-enal turned out to be of highly pleasant scent without off-notes.


Subject(s)
Aldehydes/chemistry , Biotechnology/methods , Adult , Biocatalysis , Fatty Acids/chemistry , Female , Flammulina/chemistry , Humans , Male , Oxidoreductases/chemistry , Smell , Young Adult
13.
Int J Mol Sci ; 21(19)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993084

ABSTRACT

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17ß-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.


Subject(s)
Biological Products/chemistry , Computer Simulation , Drug Discovery , Enzyme Inhibitors/chemistry , Oxidoreductases , Drug Evaluation, Preclinical , Humans , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry
14.
Microbiologyopen ; 9(10): e1110, 2020 10.
Article in English | MEDLINE | ID: mdl-32979040

ABSTRACT

Directed enzyme prodrug therapy (DEPT) is a cancer chemotherapy strategy in which bacterial enzymes are delivered to a cancer site before prodrug administration, resulting in prodrug activation at the cancer site and more localized treatment. A major limitation to DEPT is the poor effectiveness of the most studied enzyme for the CB1954 prodrug, NfnB from Escherichia coli, at concentrations suitable for human use. Much research into finding alternative enzymes to NfnB has resulted in the identification of the Xenobiotic reductases, XenA and XenB, which have been shown in the literature to reduce environmentally polluting nitro-compounds. In this study, they were assessed for their potential use in cancer prodrug therapy strategies. Both proteins were cloned into the pET28a+ expression vector to give the genetically modified proteins XenA-his and XenB-his, of which only XenB-his was active when tested with CB1954. XenB-his was further modified to include a cysteine-tag to facilitate direct immobilization on to a gold surface for future magnetic nanoparticle DEPT (MNDEPT) treatments and was named XenB-cys. When tested using high-performance liquid chromatography (HPLC), XenB-his and XenB-cys both demonstrated a preference for reducing CB1954 at the 4-nitro position. Furthermore, XenB-his and XenB-cys successfully induced cell death in SK-OV-3 cells when combined with CB1954. This led to XenB-cys being identified as a promising candidate for use in future MNDEPT treatments.


Subject(s)
Antineoplastic Agents/chemistry , Bacterial Proteins/chemistry , Flavoproteins/chemistry , Magnetite Nanoparticles/chemistry , Oxidoreductases/chemistry , Pseudomonas putida/enzymology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Cell Survival/drug effects , Drug Evaluation, Preclinical , Flavoproteins/genetics , Flavoproteins/metabolism , Flavoproteins/pharmacology , Humans , Neoplasms/drug therapy , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidoreductases/pharmacology , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacology , Pseudomonas putida/chemistry , Pseudomonas putida/genetics
15.
Int J Mycobacteriol ; 9(1): 12-17, 2020.
Article in English | MEDLINE | ID: mdl-32474482

ABSTRACT

Background: Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (mtInhA) is involved in the biosynthesis of mycolic acids, a major component of mycobacterial cell walls, and has been targeted in the development of anti-tuberculosis (TB) drugs. In our previous in silico structure-based drug screening study, we identified KES4, a novel class of mtInhA inhibitor. KES4 is composed of four ring structures (A-D-rings) and molecular dynamic simulation predicted that the D-ring is essential for the interaction with mtInhA. Methods: The structure-activity relationship study of the D-ring was attempted and aided by in silico docking simulations to improve the mtInhA inhibitory activity of KES4. A virtual chemical library of the D-ring-modified KES4 was then constructed and subjected to in silico docking simulation against mtInhA using the GOLD program. The candidate compound showing the highest GOLD score, referred to as KEN1, was synthesized, and its biological properties were compared with those of the lead compound KES4. Results: We achieved the synthesis of KEN1 and evaluated its effects on InhA activity, mycobacterial growth, and cytotoxicity. The antimycobacterial activity of KEN1 was comparable to that of the lead compound (KES4), although it exhibited superior activity in mtInhA inhibition. \. Conclusions: We obtained a KES4 derivative with high mtInhA inhibitory activity by in silico docking simulation with a chemical library consisting of a series of D-ring-modified KES4.


Subject(s)
Acyl Carrier Protein/antagonists & inhibitors , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Acyl Carrier Protein/chemistry , Animals , Antitubercular Agents/chemistry , Cell Line, Tumor , Dogs , Drug Evaluation, Preclinical/methods , Humans , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Oxidoreductases/chemistry , Small Molecule Libraries , Structure-Activity Relationship
16.
ACS Chem Biol ; 15(7): 1987-1995, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32568515

ABSTRACT

A selenium nanoparticle binding peptide was isolated from a phage display library and genetically fused to a metalloid reductase that reduces selenite (SeO32-) to a Se0 nanoparticle (SeNP) form. The fusion of the Se binding peptide to the metalloid reductase regulates the size of the resulting SeNP to ∼35 nm average diameter, where without the peptide, SeNPs grow to micron sized polydisperse precipitates. The SeNP product remains associated with the enzyme/peptide fusion. The Se binding peptide fusion to the enzyme increases the enzyme's SeO32- reductase activity. Size control of particles was diminished if the Se binding peptide was only added exogenously to the reaction mixture. The enzyme-peptide construct shows preference for binding smaller SeNPs. The peptide-SeNP interaction is attributed to His based ligation that results in a peptide conformational change on the basis of Raman spectroscopy.


Subject(s)
Carrier Proteins/metabolism , Nanoparticles/metabolism , Oxidoreductases/metabolism , Selenious Acid/chemistry , Selenium/metabolism , Carrier Proteins/chemistry , Nanoparticles/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Oxidation-Reduction , Oxidoreductases/chemistry , Particle Size , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Selenium/chemistry
17.
Biotechnol Bioeng ; 117(7): 1979-1989, 2020 07.
Article in English | MEDLINE | ID: mdl-32255509

ABSTRACT

Immobilization of enzymes provides many benefits, including facile separation and recovery of enzymes from reaction mixtures, enhanced stability, and co-localization of multiple enzymes. Calcium-phosphate-protein supraparticles imbued with a leucine zipper binding domain (ZR ) serve as a modular immobilization platform for enzymes fused to the complementary leucine zipper domain (ZE ). The zippers provide high-affinity, specific binding, separating enzymatic activity from the binding event. Using fluorescent model proteins (mCherryZE and eGFPZE ), an amine dehydrogenase (AmDHZE ), and a formate dehydrogenase (FDHZE ), the efficacy of supraparticles as a biocatalytic solid support was assessed. Supraparticles demonstrated several benefits as an immobilization support, including predictable loading of multiple proteins, structural integrity in a panel of solvents, and the ability to elute and reload proteins without damaging the support. The dual-enzyme reaction successfully converted ketone to amine on supraparticles, highlighting the efficacy of this system.


Subject(s)
Calcium Phosphates/chemistry , Enzymes, Immobilized/chemistry , Binding Sites , Enzyme Stability , Formate Dehydrogenases/chemistry , Green Fluorescent Proteins/chemistry , Leucine Zippers , Luminescent Proteins/chemistry , Oxidoreductases/chemistry , Red Fluorescent Protein
18.
Mikrochim Acta ; 187(4): 229, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170465

ABSTRACT

Black phosphorus quantum dots (BP QDs) with small size are synthesized using an easy to operate thermal method. It was found that BP QDs possess oxidase-mimicking activity. They can catalyze the oxidation of the substrate 3,3',5,5'-tetramethylbenzidine to produce a blue-colored product even in the absence of hydrogen peroxide. Active oxygen species are proved to be involved in the reaction through the experiments of radical scavenging and electron spin resonance. Biothiols including reduced glutathione and cysteine inactivate the oxidase-mimicking activity of BP QDs, concomitant to the fading of the blue solution. This provides the  base for a colorimetric method for the determination of glutathione and cysteine. The decreased absorbance at 652 nm displays linear response to the concentrations of glutathione ranging from 0.1 to 5.0 µmol L-1, and cysteine from 0.1 to 10.0 µmol L-1. The detection limits are 0.02 µmol L-1 and 0.03 µmol L-1 for glutathione and cysteine, respectively. Successive determinations of 1.0 µmol L-1 glutathione and 5.0 µmol L-1 cysteine solution give relative standard deviations of 0.8% and 1.7% (n = 11), respectively. As a preliminary application, the practicability of the method was evaluated by the determination of glutathione in pharmaceutical preparations. This work not only discovers a useful oxidase mimics but also sets up a reliable platform based on BP QDs in colorimetric detection. Graphical abstract Schematic representation of colorimetric determination for biothiols through inactivating oxidase mimetic-like catalytic activity of black phosphorus quantum dots (BP QDs) on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with dissolved oxygen to produce its blue oxidized product (oxTMB).


Subject(s)
Biosensing Techniques , Colorimetry , Cysteine/analysis , Glutathione/analysis , Oxidoreductases/chemistry , Phosphorus/chemistry , Quantum Dots/chemistry , Cysteine/metabolism , Glutathione/metabolism , Molecular Structure , Oxidoreductases/metabolism , Phosphorus/metabolism
19.
Pak J Biol Sci ; 23(3): 264-270, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31944087

ABSTRACT

BACKGROUND AND OBJECTIVE: Flavonols in plants are catalyzed by flavonol synthase (FLS) enzyme. FLS was reported expressed in flowers and fruits, i.e., Dianthus caryophyllus L. (Caryophyllaceae), Petunia hybrida Hort. (Solanaceae), Arabidopsis thaliana L. (Brassicaceae), Citrus unshiu Marc. (Rutaceae). However, none reported about FLS in medicinal plants, particularly those which possess anti-inflammatory activity. This study was aimed to extract and identify FLS in the rhizome of Boesenbergia rotunda (Zingiberaceae) and to determine quercetin in the ethanol extract of the rhizome. MATERIALS AND METHODS: The protein extraction of the rhizome was carried out by employing Laing and Christeller's (2004) and Wang's (2014) methods. The extracted-proteins were separated by using SDS-PAGE, followed by the measurement of FLS intensity by using Gel Analyzer. The FLS-1 of recombinant A. thaliana was employed as the standard. The determination of quercetin in the rhizome was carried out using LC-MS. RESULTS: The FLS occurred as a thick band at 38 kDa with intensity 116-158. The LC chromatogram of the extract indicated a small peak at 7.94 min similar to that of quercetin standard. The MS spectra at 7.94 min indicated that quercetin is present in the B. rotunda rhizome (m/z = 303.0549). The concentration of quercetin in the extract is 0.022% w/v. CONCLUSION: The FLS, an enzyme which plays an important role in producing quercetin, was detected in B. rotunda rhizome planted in Indonesia. As a consequence, quercetin in a small amount, was also quantified in the rhizome of this plant. This report will add a scientific insight of B. rotunda for biological sciences.


Subject(s)
Flowers/enzymology , Fruit/enzymology , Oxidoreductases/chemistry , Plant Proteins/chemistry , Quercetin/biosynthesis , Zingiberaceae/enzymology , Arabidopsis/enzymology , Citrus/enzymology , Dianthus/enzymology , Ethanol , Flavonols/chemistry , Indonesia , Petunia/enzymology , Plant Extracts , Plants, Medicinal/enzymology , Rhizome/enzymology
20.
Angew Chem Int Ed Engl ; 59(9): 3618-3623, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31828919

ABSTRACT

While dehydrogenases play crucial roles in tricarboxylic acid (TCA) cycle of cell metabolism, which are extensively explored for biomedical and chemical engineering uses, it is a big challenge to overcome the shortcomings (low stability and high costs) of recombinant dehydrogenases. Herein, it is shown that two-dimensional (2D) SnSe is capable of mimicking native dehydrogenases to efficiently catalyze hydrogen transfer from 1-(R)-2-(R')-ethanol groups. In contrary to susceptible native dehydrogenases, lactic dehydrogenase (LDH) for instance, SnSe is extremely tolerant to reaction condition changes (pH, temperature, and organic solvents) and displays extraordinary reusable capability. Structure-activity analysis indicates that the single-atom structure, Sn vacancy, and hydrogen binding affinity of SnSe may be responsible for their catalytic activity. Overall, this is the first report of a 2D SnSe nanozyme to mimic key dehydrogenases in cell metabolism.


Subject(s)
Biomimetic Materials/chemistry , Nanostructures/chemistry , Selenium/chemistry , Tin/chemistry , Biomimetic Materials/metabolism , Catalysis , Hydrogen-Ion Concentration , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL