Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Commun ; 12(1): 697, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514733

ABSTRACT

Mutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1-/- mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner's membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/administration & dosage , Jervell-Lange Nielsen Syndrome/therapy , Potassium Channels, Voltage-Gated/genetics , Semicircular Canals/surgery , Animals , Animals, Newborn , Dependovirus , Disease Models, Animal , Female , Genetic Vectors/genetics , Hearing/genetics , Humans , Injections/methods , Jervell-Lange Nielsen Syndrome/genetics , Male , Mice , Mice, Knockout , Parvovirinae/genetics , Proprioception/genetics
2.
FASEB J ; 34(9): 12379-12391, 2020 09.
Article in English | MEDLINE | ID: mdl-32960474

ABSTRACT

Hematopoietic gene delivery, such as hematopoietic stem/progenitor cells (HSPCs), is a promising treatment for both inherited and acquired diseases, such as hemophilia. Recently, a combined strategy to achieve more than 90% transduction efficiency was documented using recombinant adeno-associated virus serotype 6 (rAAV6) vectors. However, the mechanisms of enhanced vector transduction efficiency in hematopoietic cells are largely unknown. In this manuscript, we first reported that proteasome inhibitors, which are well-known to facilitate rAAV intracellular trafficking in various cell types, are not effective in hematopoietic cells. From the screening of small molecules derived from traditional Chinese medicine, we demonstrated that shikonin, a potential reactive oxygen species (ROS) generator, significantly increased the in vitro and ex vivo transgene expression mediated by rAAV6 vectors in hematopoietic cells, including human cord blood-derived CD34 + HSPCs. Shikonin mainly targeted vector intracellular trafficking, instead of host cell entry or endonuclear single to double strand vector DNA transition, in a vector serotype-dependent manner. Moreover, a ROS scavenger completely prevented the capability of shikonin to enhance rAAV6 vector-mediated transgene expression. Taken together, these studies expand our understanding of rAAV6-mediated transduction in hematopoietic cells and are informative for improving rAAV6-based treatment of blood diseases.


Subject(s)
Hematopoietic Stem Cells/metabolism , Parvovirinae/genetics , Transduction, Genetic/methods , Cells, Cultured , Dependovirus , Genetic Vectors , Humans , Leupeptins/pharmacology , Medicine, Chinese Traditional , Naphthoquinones/pharmacology , Proteasome Endopeptidase Complex/physiology , Reactive Oxygen Species/metabolism
3.
Mol Ther ; 26(10): 2418-2430, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30057240

ABSTRACT

The present study was designed to characterize transduction of non-human primate brain and spinal cord with a modified adeno-associated virus serotype 2, incapable of binding to the heparan sulfate proteoglycan receptor, referred to as AAV2-HBKO. AAV2-HBKO was infused into the thalamus, intracerebroventricularly or via a combination of both intracerebroventricular and thalamic delivery. Thalamic injection of this modified vector encoding GFP resulted in widespread CNS transduction that included neurons in deep cortical layers, deep cerebellar nuclei, several subcortical regions, and motor neuron transduction in the spinal cord indicative of robust bidirectional axonal transport. Intracerebroventricular delivery similarly resulted in widespread cortical transduction, with one striking distinction that oligodendrocytes within superficial layers of the cortex were the primary cell type transduced. Robust motor neuron transduction was also observed in all levels of the spinal cord. The combination of thalamic and intracerebroventricular delivery resulted in transduction of oligodendrocytes in superficial cortical layers and neurons in deeper cortical layers. Several subcortical regions were also transduced. Our data demonstrate that AAV2-HBKO is a powerful vector for the potential treatment of a wide number of neurological disorders, and highlight that delivery route can significantly impact cellular tropism and pattern of CNS transduction.


Subject(s)
Genetic Therapy , Genetic Vectors/adverse effects , Neurons/drug effects , Parvovirinae/genetics , Spinal Cord/drug effects , Animals , Axonal Transport/drug effects , Brain/drug effects , Brain/pathology , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Central Nervous System/drug effects , Central Nervous System/pathology , Dependovirus , Disease Models, Animal , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Heparan Sulfate Proteoglycans/administration & dosage , Heparan Sulfate Proteoglycans/genetics , Humans , Infusions, Intraventricular , Motor Neurons/drug effects , Neurons/pathology , Primates , Spinal Cord/pathology , Thalamus/drug effects
4.
Hum Gene Ther ; 28(5): 378-384, 2017 05.
Article in English | MEDLINE | ID: mdl-28322590

ABSTRACT

Despite improvements in drug and device therapy for heart failure, hospitalization rates and mortality have changed little in the past decade. Randomized clinical trials using gene transfer to improve function of the failing heart are the focus of this review. Four randomized clinical trials of gene transfer in heart failure with reduced ejection fraction (HFrEF) have been published. Each enrolled patients with stable symptomatic HFrEF and used either intracoronary delivery of a virus vector or endocardial injection of a plasmid. The initial CUPID trial randomized 14 subjects to placebo and 25 subjects to escalating doses of adeno-associated virus type 1 encoding sarcoplasmic reticulum calcium ATPase (AAV1.SERCA2a). AAV1.SERCA2a was well tolerated, and the high-dose group met a 6 month composite endpoint. In the subsequent CUPID-2 study, 243 subjects received either placebo or the high dose of AAV1.SERCA2a. AAV1.SERCA2a administration, while safe, failed to meet the primary or any secondary endpoints. STOP-HF used plasmid endocardial injection of stromal cell-derived factor-1 to promote stem-cell recruitment. In a 93-subject trial of patients with ischemic etiology heart failure, the primary endpoint (symptoms and 6 min walk distance) failed, but subgroup analyses showed improvements in subjects with the lowest ejection fractions. A fourth trial randomized 14 subjects to placebo and 42 subjects to escalating doses of adenovirus-5 encoding adenylyl cyclase 6 (Ad5.hAC6). There were no safety concerns, and patients in the two highest dose groups (combined) showed improvements in left ventricular function (left ventricular ejection fraction and -dP/dt). The safety data from four randomized clinical trials of gene transfer in patients with symptomatic HFrEF suggest that this approach can be conducted with acceptable risk, despite invasive delivery techniques in a high-risk population. Additional trials are necessary before the approach can be endorsed for clinical practice.


Subject(s)
Gene Transfer Techniques/trends , Genetic Therapy , Heart Failure/therapy , Sarcoplasmic Reticulum Calcium-Transporting ATPases/therapeutic use , Dependovirus , Female , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Male , Parvovirinae/genetics , Randomized Controlled Trials as Topic , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL