Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Mar Pollut Bull ; 197: 115796, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984091

ABSTRACT

Crude oil cargo operation poses significant oil spill risk although utmost care is exercised by ship and shore crew. This paper focuses on quantitative risk analysis for oil spill incidents in crude oil tanker ships to enhance safety at the operational level and prevent potential pollution. To achieve this purpose, the Bayesian network (BN) is used under the improved Z-numbers theory. While BN provides a powerful tool based on cause and effect network between the variables, the improved Z-numbers are capable of handling uncertainty and improving the reliability of qualitative expert judgments. The findings show that the occurrence probability of oil spill risk in crude oil tanker ships is found 2.90E-02 during the cargo loading operation. The findings of the research are expected to contribute ship crew, safety inspectors, ship owners, HSEQ managers, and terminal managers in risk management decision-making, improving operational safety, taking control actions, and minimizing oil spills.


Subject(s)
Petroleum Pollution , Petroleum , Petroleum Pollution/prevention & control , Ships , Bayes Theorem , Reproducibility of Results , Risk Assessment
2.
Chemosphere ; 308(Pt 3): 136328, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36130647

ABSTRACT

The transition towards a sustainable land management (SLM) needs for utilizing appropriate technologies for controlling soil pollution, and ensures the development of environmental, economic, technical, and social dimensions in region. Using these technologies for cleaning up soils polluted with oil and petroleum products in Behbahan city (in the southwest of Iran) is considered. The soil pollution control technologies (SPCTs) can assist local authorities, governments, investors, and developers to reduce climate change, mitigate soil, water, and air pollution and construct the sustainable communities. With the aim of balance between the issues in the context of sustainability policy, criteria (principles) including environmental, economic, technical, and social aspects are considered. The research takes into consideration the applicability of a novel multi-criteria decision-making approach namely complex spherical fuzzy set-based CODAS (Combinative distance-based assessment). The approach can be used to choose the suitable technology in a sustainable mode, considering the principles related to sustainability pillars. It comprises various technologies for soil pollution control and prioritizes technologies from the most to least as: Biorestoration technology, Excavation technology, Soil venting technology, Soil flushing, and Hydraulic barriers technology.


Subject(s)
Petroleum Pollution , Petroleum , Soil Pollutants , Petroleum Pollution/prevention & control , Soil , Soil Pollutants/analysis , Technology , Water Pollution
3.
J Hazard Mater ; 436: 129260, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739779

ABSTRACT

Growing concerns over the risk of accidental releases of oil into the marine environment have emphasized our need to improve both oil spill preparedness and response strategies. Among the available spill response options, dispersants offer the advantages of breaking oil slicks into small oil droplets and promoting their dilution, dissolution, and biodegradation within the water column. Thus dispersants can reduce the probability of oil slicks at sea from reaching coastal regions and reduce their direct impact on mammals, sea birds and shoreline ecosystems. To facilitate marine oil spill response operations, especially addressing spill incidents in remote/Arctic offshore regions, an in-depth understanding of the transportation, fate and effects of naturally/chemically dispersed oil is of great importance. This review provides a synthesis of recent research results studies related to the application of dispersants at the surface and in the deep sea, the fate and transportation of naturally and chemically dispersed oil, and dispersant application in the Arctic and ice-covered waters. Future perspectives have been provided to identify the research gaps and help industries and spill response organizations develop science-based guidelines and protocols for the application of dispersants application.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Biodegradation, Environmental , Ecosystem , Mammals/metabolism , Petroleum/metabolism , Petroleum Pollution/analysis , Petroleum Pollution/prevention & control , Water , Water Pollutants, Chemical/analysis
4.
J Environ Manage ; 316: 115175, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35658268

ABSTRACT

Environmental contamination by petroleum hydrocarbons was exacerbated by oil pipeline breaks, marine oil spills and discharges from industrial production. To further improve the removal performance of petroleum hydrocarbons in solid particles, the deoiling experiments of swirl elution with micro-macrobubbles on oily sands were carried out in this paper. Experiment results indicated that when particles fell from the center of the bubble, the collision efficiency was 99.3%. The instantaneous contact angle (ICA) between the macrobubbles and the oil layer was improved in the presence of microbubbles. Furthermore, the maximum ICA of bubbles attaching to the oil layer was found to occur at pH 9 in the system of oily sand mixtures ranging from pH 5 to pH 14. This finding indicated that the slightly alkaline solution was more advantageous for bubbles to attach to the oil layer than the highly alkaline solution. The optimum condition for the elution of oily sand in the mixture of pH 7-14 was pH 12, and the oil removal efficiency was 85.4% for 10 min. The oil removal efficiency of swirl elution (SE) with bubbles on oily sand at pH 12 for 10 min was superior to either SE without bubbles or air flotation (AF). The results show that the swirl elution with bubbles can effectively enhance the oil removal efficiency of oily sands and provide guidance for controlling the environmental petroleum hydrocarbon contamination and reducing the usage of surfactants.


Subject(s)
Petroleum Pollution , Petroleum , Hydrocarbons , Oils , Petroleum Pollution/prevention & control , Sand
5.
J Hazard Mater ; 432: 128740, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35338936

ABSTRACT

Rapid and efficient clean-up of viscous crude oil spills is still a global challenge due to its high viscous and poor flowability at room temperature. The hydrophobic/oleophilic absorbents with three-dimensional porous structure have been considered as a promising candidate to handle oil spills. However, they still have limited application in recovering the high viscous oil. Inspired by the viscosity of crude oil depended on the temperature, a solar-heated ink modified plant fiber sponge (PFS@GC) is fabricated via a simple and environmentally friendly physical foaming strategy combined with in-situ ink coating treatment. After wrapping by the polydimethylsiloxane (PDMS), the modified PFS@GC (PFS@GC@PDMS) exhibits excellent compressibility, high hydrophobic (141° in water contact angle), solar absorption (> 96.0%), and oil absorptive capacity (12.0-27.8 g/g). Benefiting from the favorable mechanical property and photothermal conversion capacity, PFS@GC@PDMS is demonstrated as a high-performance absorbent for crude oil clean-up and recovery. In addition, PFS@GC@PDMS can also be applied in a continuous absorption system for uninterrupted recovering of oil spills on the water surface. The proposed solar-heated absorbent design provides a new opportunity for exploring biomass in addressing large-scale oil spill disasters.


Subject(s)
Petroleum Pollution , Petroleum , Ink , Petroleum Pollution/analysis , Petroleum Pollution/prevention & control , Viscosity , Water/chemistry
6.
Ecotoxicol Environ Saf ; 208: 111673, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396005

ABSTRACT

In the present research, a bioremediation process was developed using solid complex bacterial agents (SCBA) through a combined two-step biodegradation process. Four isolated strains showed high efficiency for the degradation of total petroleum hydrocarbons (TPH) and the reduction of COD of the oily sludge, at 96.6% and 92.6%, respectively. The mixed strains together with bran prepared in form of SCBA exhibited improved performance compared to individual strains, all of which had an optimal temperature of around 35 °C. The use of SCBA provided advantages over commonly used liquid media for storage and transportation. The two-step process, consisting of firstly biosurfactant-assisted oil recovery and secondly biodegradation of the remaining TPH with SCBA, demonstrated the capability for treating oily sludge with high TPH content (>10 wt%) and short process period (60 days). The large-scale (5 tons oily sludge) field test, achieving a TPH removal efficiency of 93.8% and COD reduction of 91.5%, respectively, confirmed the feasibility and superiority of the technology for industrial applications.


Subject(s)
Microbiota , Petroleum Pollution/prevention & control , Petroleum/analysis , Sewage , Biodegradation, Environmental , Culture Media , Hydrocarbons/analysis , Hydrocarbons/metabolism , Petroleum/metabolism , Petroleum Pollution/analysis , Sewage/chemistry , Sewage/microbiology , Temperature
7.
Molecules ; 25(4)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075198

ABSTRACT

Crude oil-derived hydrocarbons constitute the largest group of environmental pollutants worldwide. The number of reports concerning their toxicity and emphasizing the ultimate need to remove them from marine and soil environments confirms the unceasing interest of scientists in this field. Among the various techniques used for clean-up actions, bioremediation seems to be the most acceptable and economically justified. Analysis of recent reports regarding unsuccessful bioremediation attempts indicates that there is a need to highlight the fundamental aspects of hydrocarbon microbiology in a clear and concise manner. Therefore, in this review, we would like to elucidate some crucial, but often overlooked, factors. First, the formation of crude oil and abundance of naturally occurring hydrocarbons is presented and compared with bacterial ability to not only survive but also to utilize such compounds as an attractive energy source. Then, the significance of nutrient limitation on biomass growth is underlined on the example of a specially designed experiment and discussed in context of bioremediation efficiency. Next, the formation of aerobic and anaerobic conditions, as well as the role of surfactants for maintaining appropriate C:N:P ratio during initial stages of biodegradation is explained. Finally, a summary of recent scientific reports focused on the removal of hydrocarbon contaminants using bioaugmentation, biostimulation and introduction of surfactants, as well as biosurfactants, is presented. This review was designed to be a comprehensive source of knowledge regarding the unique aspects of hydrocarbon microbiology that may be useful for planning future biodegradation experiments. In addition, it is a starting point for wider debate regarding the limitations and possible improvements of currently employed bioremediation strategies.


Subject(s)
Bacteria/chemistry , Biodegradation, Environmental , Hydrocarbons/chemistry , Petroleum/toxicity , Bacteria/metabolism , Humans , Hydrocarbons/adverse effects , Hydrocarbons/toxicity , Petroleum Pollution/prevention & control , Soil Pollutants/chemistry , Surface-Active Agents/chemistry
8.
Chemosphere ; 237: 124430, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31369904

ABSTRACT

Coastal environment are often stress from petroleum-derived hydrocarbon pollution. However, petroleum-derived hydrocarbon is persistent organic pollutants and their biodegradation by phytoplankton is little known. Five species of marine phytoplankton, including Dunaliella salina, Chlorella sp., Conticribra weissflogii, Phaeodactylum tricornutum Bohlin, and Prorocentrum donghaiense, have been used to test their tolerance to petroleum hydrocarbon contamination. D.salina and Chlorella sp can survive in high levels of No. 0 diesel oils water-soluble fractions (WSFs, 5.0 mg L-1), furthermore, petroleum hydrocarbon could be biodegraded effectively by them (Fig. 2). The content of ß-carotene in these two species of phytoplankton has significant correlation with degradation rate of WSFs concentrations (Fig. 4), petroleum hydrocarbons could be biodegraded effectively by algae. Meanwhile, the ·OH in seawater can be removed by ß-carotene effectively so that algal cells could be protected by the ß-carotene for its strong antioxidant capacity. Therefore, ß-carotene as a coin has two sides on the degradation of WSFs. Here we explore the relationship between plankton-based ß-carotene and biodegradable adaptabllity to petroleum-derived hydrocarbon, which offers a green technology for petroleum-derived hydrocarbon treatment.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Phytoplankton/chemistry , beta Carotene/analysis , Petroleum , Petroleum Pollution/prevention & control , Plankton/chemistry , Plankton/metabolism , Seawater/chemistry , Solubility
9.
Molecules ; 24(7)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30979013

ABSTRACT

Rhamnolipids are a mixture of the homologs species due to variations in the rhamnose units and ß-hydroxy fatty acid moieties, mainly including Rha-C10-C10, Rha-Rha-C10-C10, and Rha-C10. In this study, strain P. aeruginosa YM4 was selected for its capacity to efficiently produce di-rhamnolipid (Rha-Rha-C10-C10) as the predominant component with soybean oil and glycerol as carbon source, accounting for 64.8% and 85.7% of total products, respectively. The critical micelle concentration (CMC) of rhamnolipid products varies with the content of di-rhamnolipid, whereby lower CMC values corresponding to higher di-rhamnolipid contents. The rhamnolipids containing 85.7% di-rhamnolipid had the lowest CMC value of 50 mg/L. Accordingly the viscosity-reducing efficiency and oil-washing efficiency of rhamnolipids increased with higher di-rhamnolipid component. At a concentration of 500 mg/L, the rhamnolipids containing 85.7% di-rhamnolipid worked best and showed 82.5% oil-washing efficiency, which offered great promise for applications in enhanced oil recovery. The results showed the variation of structure and composition of rhamnolipids had a significant effect on their application.


Subject(s)
Glycolipids/biosynthesis , Petroleum Pollution/prevention & control , Pseudomonas aeruginosa/metabolism , Rhamnose/biosynthesis , Carbon/chemistry , Fatty Acids/chemistry , Glycerol/chemistry , Glycolipids/chemistry , Humans , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Rhamnose/chemistry , Soybean Oil/chemistry , Surface-Active Agents/chemistry
10.
Ecotoxicol Environ Saf ; 169: 615-622, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30496993

ABSTRACT

The aim of the study was to assess the impact of inoculation of petroleum-contaminated soil with the hydrocarbon-degrading bacterial strains Rhodococcus erythropolis CD 130 and CD 167 or their consortium on the removal of hydrocarbons from the soil. Additionally, changes in the activity and structure of soil autochthonous bacterial communities were studied. At the end of the experiment, the fastest hydrocarbon removal was seen in the soil treated with the CD 167 strain (38.40%) and was statistically higher compared to the removal of total petroleum hydrocarbons (TPH) observed in soils inoculated with strain CD 130 (29.8%) or bacterial consortium CD 130 + CD 167 (29.72%). The rifampicin-resistant CD 130 and CD 167 strains, introduced as single strains or a consortium, survived in the soil for 42 days. The introduction of gram-positive strains of R. erythropolis primarily caused an increase in the biomass of branched phospholipid fatty acids (PLFAs), characteristic for gram-positive bacteria. Nevertheless, changes in the concentrations of gram-positive and gram-negative PLFA markers were periodic, and at the end of the experiment, significant changes were observed only in the case of the soil bioaugmented with the CD 167 strain. After the bioaugmentation, higher values of substrate-induced respiration (SIR) were observed in all the inoculated soils compared to the non-inoculated control. Nonetheless, after 91 days of incubation, a significant decrease in soil respiration was observed in the soil treated with single CD 130 or CD 167 strains or with their consortium. The number of transcripts of the CYP153 gene obtained on days 91 and 182 reflected the results of the hydrocarbon loss. The level of expression of the alkH gene in experimental soil was estimated and found to be higher than the level of expression of the CYP153 gene but did not coincide with the loss of hydrocarbons. The introduction of strains CD 130, CD 167, or CD 130 + CD 167 caused temporary changes in the composition of the soil autochthonous bacterial community, but it seems that these changes were needed for the enhanced removal of hydrocarbons from this soil.


Subject(s)
Petroleum Pollution/analysis , Petroleum/analysis , Rhodococcus/metabolism , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Biomass , Fatty Acids/analysis , Petroleum/metabolism , Petroleum Pollution/prevention & control , Phospholipids/analysis , Soil Pollutants/metabolism
11.
J Hazard Mater ; 366: 229-239, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30530014

ABSTRACT

A new synthesis strategy was adopted to convert cellulose to a biodegradable sorbent with properties of very high oil absorption and retention capacities, excellent oil-water selectivity, good mechanical strength and recycling ability. The sorbent in form of a hydrophobic/oleophilic nano-structured aerogel was prepared through functionalizing cotton cellulose with low surface energy moieties followed by dissolving and chemically cross-linking the product in an organic medium (DMSO), and freeze-drying. High absorption capacities of 40.7, 57.1, and 47.3 g/g were achieved for three different light crude oils at 25 °C which is comparable with most synthetic oil sorbents. Washburn's model was utilized to describe the wicking dynamics and fluid flow through the pores and to evaluate the effects of all important factors on the sorption process. Via comparing the experimental data with the predictions made by the model, it was revealed that unlike other cellulose-based oil sorbents reported in the literature, the swelling of fibrous network in the synthesized aerogel plays an important role in the absorption process besides the capillary pressure, resulting in a very good oil retention capacity and at the same time lowering the absorption rate, especially for viscose organic liquids.


Subject(s)
Cellulose/chemistry , Gels/chemistry , Nanostructures , Petroleum Pollution/prevention & control , Petroleum/analysis
12.
Chemosphere ; 215: 241-247, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30317095

ABSTRACT

Eliminating the adverse environmental impact of chemical dispersants for oil spill has been a significant challenge since decades ago. Here, we prepared an effective and environmentally-friend dispersant with stable emulsifying capacity by the soybean lecithin and Tween 80. The mean droplet diameters of emulsions prepared by decane decreased from 11.3 to 4.1 µm, the emulsification index of emulsion climbed from 0 to 22.0% by 0.5 wt% dispersant. This dispersant exhibits favorable emulsifying capacity when the temperature ranges from 10 to 40 °C, pH within 5-7, and the concentration of inorganic cation is 30000 mg/L. Fluorescence microscopy analysis, FTIR, and the interfacial tension meter were employed to investigate the interaction between the soybean lecithin and Tween 80, a clear redshift of the hydroxyl group on the lecithin/Tween 80 dispersant and the detected surfactants over the oil-water interface confirm that there exists a synergy between the lecithin and Tween 80 due to the electrostatic attractions, which tremendously contribute to the reduction in the interfacial tension between water and oil. To further understand the influence of the dispersant on the oil hydrocarbon concentration in the water column, visualization simulation with the varying depths were performed. The results showed that the oil hydrocarbon concentration in the water column bottom was proportional to the addition of the dispersant, which facilitates spilled oil dispersing into smaller droplets, accelerates the biodegradation process. Hence, the lecithin/Tween 80 dispersant can be perceived as a promising alternative for oil spill remediation.


Subject(s)
Biodegradation, Environmental/drug effects , Lecithins/pharmacology , Petroleum Pollution/prevention & control , Polysorbates/pharmacology , Surface-Active Agents/chemistry , Emulsions/chemistry , Lecithins/chemistry , Petroleum/analysis , Petroleum Pollution/analysis , Glycine max/chemistry , Surface-Active Agents/pharmacology
13.
PLoS One ; 13(9): e0203485, 2018.
Article in English | MEDLINE | ID: mdl-30192837

ABSTRACT

Following the Deepwater Horizon oil spill, eastern oyster (Crassostrea virginica) reefs in the northern Gulf of Mexico were exposed to oil and various associated clean-up activities that may have compromised oyster reef health. Included in the exposure was oil, dispersant, and in some locales, atypical salinity regimes. Oil and dispersants can be detrimental to oysters and the effects of salinity depend on the level. In addition to these extrinsic factors, genetic diversity of oyster populations may help the oysters respond to stressors, as demonstrated in other systems. We used a 3×3×2 factorial design to experimentally examine the effects of oil/dispersed oil, intraspecific genetic diversity, and salinity on juvenile (ca. 25 mm shell height) oyster survivorship and growth during a 21-d exposure in a closed, recirculating system. The genetic effect was weak overall, oil and dispersed oil negatively affected juvenile oyster survivorship, and low salinity mitigated mortality in oil and dispersed oil treatments. Survivorship was about 40% greater in low-salinity than in mesohaline water for both oil and dispersed oil treatments, bringing survivorship in low salinity oil-only treatments to a similar level with low salinity controls (no oil). Oyster growth was minimal after 21 d but appeared to be negatively affected by oil and dispersed oil, and had a significant interaction with salinity. Our results may be informative for future decisions regarding oil spill response activities and suggest that a pulse of low salinity water may be a viable short-term mitigation option for oysters if filtration characteristics, exposure time, and water temperatures are all considered, in addition to weighing the costs and benefits of this type of response on other organisms and habitats.


Subject(s)
Crassostrea/drug effects , Petroleum Pollution/prevention & control , Petroleum/toxicity , Salinity , Water Pollutants, Chemical/toxicity , Animals , Coral Reefs , Crassostrea/genetics , Crassostrea/physiology , Environmental Monitoring/methods , Genetic Variation , Gulf of Mexico , Laboratories , Larva/drug effects , Larva/genetics , Larva/physiology , Seawater/chemistry , Temperature
14.
Environ Sci Process Impacts ; 20(9): 1273-1284, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30140829

ABSTRACT

To explore the oxidation effects and mechanisms for the oxidation of alkanes by H2O2 in a Fenton system catalyzed by two types of iron bound to soil organic matter (Fe-SOM) in crude oil-contaminated soil, an oxidation experiment was performed in active Fe-SOM and Fe-SOM systems. The results showed that the TPH removal ability of active Fe-SOM (average 0.36 g TPH/g Fe-SOM) was 2.25-fold higher than the corresponding value of Fe-SOM. Active Fe-SOM contained both -NH2 and -OH functional groups, and had a higher content of iron with high binding energy, while Fe-SOM only contained -NH2 groups. Thus, a large yield of hydroxyl radicals (·OH) was generated (8.92 a.u.) by active Fe-SOM catalyzing the decomposition of H2O2, while the corresponding yield of ·OH in the Fe-SOM system was only 4.81 a.u. In addition, the removal efficiency of C17-C23 (70%) was comparable to that of C24-C30 (69%), not restricted by the hydrophobicity of different alkanes. The alkane removal by active Fe-SOM was higher than that by Fe-SOM, although the content of Fe-SOM was double that of active Fe-SOM. In summary, the active Fe-SOM formed in the soil sample containing humic acid-like and hydrophobic acid derivates could catalyze H2O2 decomposition to improve the removal efficiency of crude oil in contaminated soil.


Subject(s)
Alkanes/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Petroleum Pollution/prevention & control , Soil Pollutants/chemistry , Soil/chemistry , Catalysis , Fluorometry , Humic Substances/analysis , Hydroxyl Radical/analysis , Oxidation-Reduction , Petroleum , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared
15.
Environ Sci Pollut Res Int ; 25(23): 23091-23105, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29860688

ABSTRACT

Modified Hummer's method has been used in this study to synthesize graphene oxide (GO) solution that was utilized for the fabrication of three-dimensional (3D) graphene sponges and their subsequent functionalization through a low-cost and facile vapor-based surface enhancement approach. The functionalized 3D-graphene sponge is an excellent absorbent, which can remove more than 3300 wt.% of crude oil (calculated with respect to the original sorbent mass). The functionalization of the obtained graphene sponges with trichloro (1H,1H,2H,2H-perfluorooctyl)silane enhanced their wettability properties due to the super-hydrophobic nature of the resulting materials characterized by the contact angles in water greater than 150°. Furthermore, their elastic compression modulus (estimated by conducting a series of compression tests) was about 22.3 kPa. The equilibrium modeling of the oil removal process, which was performed by plotting Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, confirmed the properties of the fabricated 3D graphene sponges as exceptional absorbents for crude and diesel oil, which could be attributed to the oleophilic nature of graphene. Moreover, the obtained 3D graphene sponges could be regenerated via heat treatment, which was conducted to release the adsorbed species. After five adsorption-desorption cycles, the sorption capacity of the produced 3D graphene sponges towards crude oil reached 95% of the initial value.


Subject(s)
Environmental Restoration and Remediation/methods , Gasoline/analysis , Graphite/chemistry , Petroleum Pollution/prevention & control , Petroleum/analysis , Adsorption , Environmental Restoration and Remediation/instrumentation , Models, Chemical
16.
Ecotoxicol Environ Saf ; 154: 100-107, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29454985

ABSTRACT

This study aims to investigate the ability of a biosurfactant produced by Marinobacter hydrocarbonoclasticus strain SdK644 isolated from hydrocarbon contaminated sediment to enhance the solubilization rate of crude oil contaminated seawater. Phylogenetic analysis shows that strain SdK644 was very closely related to M. hydrocarbonoclasticus with 16S rRNA gene sequence similarity of 97.44%. Using waste frying oil as inducer carbon source, the producing biosurfactant by strain SdK644 was applied to improve crude oil solubilization in seawater. The preliminary characterization of the produced biosurfactant by FT-IR analysis indicates its possible classification in a glycolipids group. Results from crude oil solubilization assay showed that SdK644 strain biosurfactant was 2-fold greater than Tween 80 surfactant in crude oil solubilization and 12-fold higher than seawater control, as shown by GC-MS analysis of aliphatic compounds. Furthermore, this bioactive compound was shown to be nontoxic against Artemia larvae in short-term acute toxicity bioassay. Generally, the results showed the possible use of M. hydrocarbonoclasticus strain SdK644 biosurfactant in bioremediation processes of the marine environments.


Subject(s)
Marinobacter/growth & development , Petroleum Pollution/prevention & control , Petroleum/analysis , Seawater/chemistry , Surface-Active Agents/chemistry , Water Pollutants, Chemical/analysis , Animals , Artemia/drug effects , Biodegradation, Environmental , Marinobacter/isolation & purification , Phylogeny , RNA, Ribosomal, 16S/genetics , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents/isolation & purification , Surface-Active Agents/toxicity
17.
Mar Pollut Bull ; 129(2): 623-632, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29102071

ABSTRACT

In case of an oil spill, dispersant application represents a response option, which enhances the natural dispersion of oil and thus reduces coating of seabirds and coastal areas. However, as oil is transferred to the water phase, a trade-off of potential harmful effects shifted to other compartments must be performed. This paper summarizes the results of a workshop on the current knowledge on risks and benefits of the use of dispersants with respect to specific conditions encountered at the German sea areas. The German North Sea coast is a sensitive ecosystem characterised by tidal flats, barrier islands and salt marshes. Many prerequisites for a potential integration of dispersants as spill response option are available in Germany, including sensitivity maps and tools for drift modelling of dispersed and undispersed oil. However, open scientific questions remain concerning the persistence of dispersed oil trapped in the sediments and potential health effects.


Subject(s)
Conservation of Water Resources/methods , Petroleum Pollution/prevention & control , Petroleum/analysis , Surface-Active Agents/chemistry , Water Pollutants, Chemical/analysis , Decision Making , Germany , Guidelines as Topic , Petroleum Pollution/adverse effects , Wetlands
18.
Arch Environ Contam Toxicol ; 73(1): 5-11, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28695263

ABSTRACT

Scientific studies of the environmental effects of oil spills in the United States have produced a steady stream of unexpected discoveries countering prior and often simplistic assumptions. In this brief review, I present how major discoveries from scientific studies of oil spill effects on marine ecosystems and environments, beginning with the 1989 Exxon Valdez, have led to a more informed appreciation for the complexity and the severity of the damage that major spills can do to marine ecosystems and to an increasing recognition that our ability to evaluate those damages is very limited, resulting in a structural bias toward underestimation of adverse environmental effects.


Subject(s)
Environmental Monitoring , Petroleum Pollution/analysis , Petroleum/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Petroleum Pollution/prevention & control , Petroleum Pollution/statistics & numerical data , United States
19.
Appl Microbiol Biotechnol ; 101(11): 4341-4348, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28500385

ABSTRACT

Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.


Subject(s)
Biodegradation, Environmental , Gene Transfer, Horizontal , Microbial Consortia/genetics , Petroleum Pollution , Soil Microbiology , Bacteria/genetics , Bacteria/metabolism , Microbial Consortia/physiology , Petroleum/metabolism , Petroleum Pollution/prevention & control , Petroleum Pollution/statistics & numerical data , Sewage/microbiology , Soil Pollutants
20.
Rev. biol. trop ; Rev. biol. trop;65(1): 21-30, Jan.-Mar. 2017. tab, ilus
Article in Spanish | LILACS | ID: biblio-897522

ABSTRACT

ResumenLa industria petrolera ha generado derrames crónicos de petróleo y su acumulación en Gleysoles en zonas anegadas en el estado de Tabasco, en el sureste de México. El anegamiento es un factor que limita el uso de tecnologías de remediación por el alto costo y los bajos niveles de degradación del petróleo, sin embargo, Leersia hexandra Sw. es un pasto que crece en estas zonas contaminadas con petróleo intemperizado. El objetivo del estudio fue evaluar la densidad de bacterias, producción de biomasa vegetal y fitorremediación de L.hexandra en suelo contaminado con petróleos fresco e intemperizado, bajo condiciones experimentales de anegamiento. Se realizaron dos experimentos (E1 y E2) en un túnel de plástico. El E1 se basó en ocho dosis: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 y 180 000 mg kg-1 base seca (b.s.) de hidrocarburos totales de petróleo fresco (HTPF), y en el E2 se evaluaron cinco dosis: 14 173, 28 400, 50 598, 75 492 y 112 142 mg kg-1 b. s. de hidrocarburos totales de petróleo intemperizado (HTPI), con ocho repeticiones en cada experimento, además se utilizó un testigo con 2 607 mg kg-1 b. s. de HTP de origen biogénico. Las variables evaluadas a los tres y seis meses fueron 1) densidad microbiana de las bacterias fijadoras de nitrógeno de vida libre totales (BFN), del grupo Azospirillum (AZP) y Azotobacter (AZT), por cuenta viable en placa seriada; 2) producción de materia seca total (MS), se cuantificó por el peso seco por gravimetría, y 3) el porcentaje de descontaminación de los hidrocarburos (DSC) por extracción en equipo soxhlet. En suelos con HTPF, la población de BFN, AZP y AZT se estimuló hasta cinco veces más que el tratamiento testigo a los tres y seis meses; sin embargo, concentraciones de 150 000 y 180 000 mg kg-1 b. s. inhibieron entre un 70 y 89 % la densidad bacteriana. A su vez, en suelos con PI, la inhibición se registró hasta en un 90 %, a excepción del tratamiento con 14 173 mg kg-1 b. s., el cual estimuló las BNF y AZT en 2 y 0.10 veces más que testigo, respectivamente. La producción de MS fue continua en los experimentos hasta los seis meses, con valores de 63 y 89 g en PF y PI, respectivamente; sin diferencias significativas con el testigo (p ≤ 0.05). El DSC alcanzó valores del 66 % al 87 % en HTPF como HTPI a los seis meses, respectivamente. Estos resultados demuestran la habilidad del L. hexandra para desarrollar una rizósfera con alta densidad de BFN, producir biomasa vegetal y fitorremediar Gleysoles con petróleo fresco e intemperizado en ambientes tropicales inundados.


Abstract:The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 mg.kg-1 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 mg.kg-1 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 mg.kg-1 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 mg.kg-1 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63 and 89 g in fresh and weathered petroleum, respectively; had no significant differences with the control (p≤0.05). The PDH reached values of 66 to 87 % both TPH-F and TPH-W at six months, respectively. These results demonstrated the ability the L. hexandra rhizosphere to stimulate the high NFB density, vegetal biomass production and phytoremediation of contaminated soils (with fresh and weathered petroleum), in a tropical waterlogging environment. Rev. Biol. Trop. 65 (1): 21-30. Epub 2017 March 01.


Subject(s)
Soil Pollutants/chemistry , Biodegradation, Environmental , Petroleum Pollution/prevention & control , Poaceae/microbiology , Poaceae/chemistry , Reference Values , Soil/chemistry , Soil Microbiology , Azotobacter/growth & development , Time Factors , Petroleum/analysis , Colony Count, Microbial , Reproducibility of Results , Azospirillum/growth & development , Biomass , Hydrocarbons/analysis , Hydrocarbons/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL